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Andreev reflection in altermagnets

Chi Sun, Arne Brataas, and Jacob Linder
Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

(Received 7 April 2023; revised 16 July 2023; accepted 11 July 2023; published 14 August 2023)

Recent works have predicted materials featuring bands with a large spin-splitting distinct from ferromagnetic
and relativistically spin-orbit-coupled systems. Materials displaying this property are known as altermagnets
and feature a spin-polarized band structure reminiscent of a d-wave superconducting order parameter. We here
consider the contact between an altermagnet and a superconductor and determine how the altermagnetism affects
the fundamental process of Andreev reflection. We show that the resulting charge conductance depends strongly
on the interfacial orientation of the altermagnet relative to the superconductor, displaying features similar to
normal metals or ferromagnets. The zero-bias conductance peaks present at the interface in the d-wave case are
robust toward the presence of an altermagnetic interaction. Moreover, the spin conductance also strongly depends
on the orientation of the altermagnet relative the interface. These results show how the anisotropic altermagnetic
state can be probed by conductance spectroscopy and how it offers voltage control over charge and spin currents
that are modulated due to superconductivity.
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I. INTRODUCTION

The interaction between magnetism and superconductiv-
ity is a major research topic in modern condensed matter
physics [1–4]. Its allure stems both from a fundamental
viewpoint and cryogenic technology applications such as
extremely sensitive detectors of radiation and heat as well
as circuit components such as qubits and dissipationless
diodes [5,6].

To understand the transport of charge, spin, and heat
in such structures, it is crucial to understand the basic
transport mechanism involving the Cooper pair condensate:
Andreev reflection [7]. Whereas Andreev reflection in fer-
romagnetic materials has been studied in great detail [3],
antiferromagnetic materials have received less attention. A
particularly interesting example is recently discovered antifer-
romagnets [8,9] that break time-reversal symmetry and feature
a spin-splitting that does not originate from relativistic effects
such as spin-orbit coupling [10]. Dubbed altermagnets [11]
in the literature, these are spin-compensated magnetic sys-
tems with a huge momentum-dependent spin splitting even
in collinearly ordered antiferromagnets. Ab initio calculations
have identified several possible material candidates that can
host an altermagnetic state, including metals like RuO2 and
Mn5Si3 as well as semiconductors/insulators like MnF2 and
La2CuO4 [12–16].

The interaction between superconductivity and altermag-
netism has only very recently started to be explored [17–20].
An interesting analogy exists between altermagnets and un-
conventional superconductivity in the high-Tc cuprates where
the order parameter has a d-wave symmetry in momentum
space [21]. Similarly, the band structure of altermagnets has
a spin-resolved d-wave symmetry which mimics the structure
of the d-wave superconducting order parameter (see Fig. 1).
Since hybrid structures of superconductors and magnetic ma-
terials are attracting wide interest due to their functional

properties, we here consider Andreev reflection in an alter-
magnet (AM)/superconductor (SC) bilayer. We allow for both
conventional s-wave superconductivity and unconventional d-
wave superconductivity. Importantly, we allow for different
crystallographic orientations of the interface between the ma-
terials to explore both how the nodal orientation of the SC
order parameter and the spin-resolved Fermi surface orienta-
tion in the AM affect transport.

We find that the altermagnetism strongly influences both
charge and spin currents flowing into the SC for high-
transparency contacts. Depending on the crystallographic
orientation of the interface relative to the spin-polarized
lobes of the altermagnetic Fermi surface, the zero-bias charge
conductance peak in d-wave superconductors can be either
enhanced or suppressed relative to the normal state with
increasing altermagnetic strength. Moreover, the spin conduc-
tance strongly depends on the orientation of the altermagnet
relative the interface. Our findings demonstrate how the
unique momentum-dependent spin polarization of the alter-
magnetic state is revealed in conductance spectroscopy by
using superconductors.

II. THEORY

The Hamiltonian for the AM, using a field operator basis
ψ = [ψ↑, ψ↓, ψ

†
↑, ψ

†
↓]T is given by

ĤAM =
(

HAM 0
0 −H∗

AM

)
,

HAM = − h̄2�2

2me
− μ + αkxkyσz, (1)

in which α is the parameter that characterizes the altermag-
netism strength, σz denotes the Pauli matrix, me is the electron
mass, μ is the chemical potential, and . . . is the notation for
a 2 × 2 matrix. The four eigenpairs are obtained as E1 = E+
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FIG. 1. Andreev reflection is probed in a bilayer consisting of an
altermagnet (AM) and a superconductor (SC). The order parameter
in the SC can have a s-wave or d-wave symmetry, including different
nodal orientations of the d-wave case. Different interface orientations
are also considered, effectively rotating the spin-resolved Fermi sur-
face in the AM for majority (blue ellipse) and minority (red ellipse)
spin carriers. A voltage V is applied to the system and the differential
conductance provides information about the Andreev reflection.

with (1, 0, 0, 0)T for e ↑, E2 = E− with (0, 1, 0, 0)T for e ↓,
E3 = −E+ with (0, 0, 1, 0)T for h ↑ and E4 = −E− with
(0, 0, 0, 1)T for h ↓, using e/h for electron/hole excitations.
The eigenenergies are

E± = h̄2
(
k2

x + k2
y

)
2me

− μ ± αkxky. (2)

Considering an excitation with energy E ,
the x-components of the four possible wave
vectors in the AM are given by ke(h)σ,± =
±h̄−1

√
2me(μ ±′ E )−h̄2k2

y +α2m2
ek2

y h̄−2−ασmekyh̄−2, where
σ = +1(−1) for spin-↑ (↓), ±′ = +(−) for e(h). The ±
sign in the subscript denotes propagation direction along
±x. Translational invariance is assumed in the y-direction
with associated momentum ky of the incident particle. In
the superconducting region, we use well-known expressions
for the Hamiltonian and eigenenergies/states, allowing for
both s-wave and d-wave symmetries (see the Appendix for
details).

The altermagnetic Hamiltonian modifies the standard ex-
pressions for the charge current and boundary conditions
satisfied by the scattering wave functions. To see this, consider
for concreteness an e ↑ incident from the AM side of an
AM/SC bilayer. We have

�AM,e↑ =
(

1
0

)
eike↑,+x + r

(
1
0

)
eike↑,−x + rA

(
0
1

)
eikh↓,+x,

�SC,e↑ = t

(
u+

v+e−iγ+

)
eiqe,+x + tA

(
v−eiγ−

u−

)
e−iqh,−x, (3)

in which r, rA, t , and tA describe the normal reflection,
Andreev reflection, normal transmission, and Andreev trans-
mission, respectively. We consider a superconducting gap
which can be anisotropic, � = �0g(θS ) with g(θS ) = 1
for the s-wave case and g(θS ) = cos (2θS − 2β ) for the d-
wave case, where eiγ± = g(θ±)/|g(θ±)| with θ+ = θS and

θ− = π − θS are defined. The scattering angle θS in the SC
is determined by using conservation of momentum ky, e.g.,
θS = arctan(ky/qe,+).

To derive the boundary condition for the e ↑ incident,
antisymmetrization of the altermagnetic term

αkxkyσz → αky

2
{kx,�(−x)}σz (4)

is necessary to ensure the hermiticity of the Hamilton op-
erator, where �(x) is the step function. Above, kx = −i∂x.
Applying H� = E� and integrating over [−ε, ε] with ε →
0, we obtain �AM,e↑|x=0 = �SC,e↑|x=0 = ( f , g)T and

∂x�SC,e↑|x=0 − ∂x�AM,e↑|x=0 =
(

kα,+1 f
kα,−1g

)
, (5)

where

kα,σ = 2me

h̄2

(
U0 + iαkyσ

2

)
. (6)

Here the imaginary number i appears in kα,σ since we consider
ky invariance (unlike kx = −i∂x). The boundary conditions
for incident e ↓, h ↑, and h ↓ particles can be found in the
Appendix.

To compute the conductance of the junction, the charge
current produced by all possible types of incoming quasipar-
ticles toward the interface must be considered . The electric
current is computed by taking the quantum mechanical ex-
pression for the charge current and multiplying it with the
density of states (DOS) and distribution function of the
incident particle. The DOS of quasiparticles in the super-
conducting region is well known but is worth presenting in
the altermagnetic region. We consider again an incident e ↑
with energy E from the AM side for concreteness. We have

E = E+ = h̄2(k2
x +k2

y )
2me

− μ + αkxky. The general expression for
the two-dimensional density of states (2D DOS) of a band
E (k) is given by

N (E ) = 1

4π2

∫
dl

|∇kE (k)| , (7)

which can be used to compute the k-anisotropic DOS in the
altermagnetic case. When α < h̄2/me ≡ αc, a constant energy
contour defines an elliptical energy surface in k-space for e ↑.
The ellipse has semi-major (minor) axis a (b), which can be
obtained as

a =
√

2me(μ + E )

h̄2 − meα
, b =

√
2me(μ + E )

h̄2 + meα
. (8)

On the other hand, when α > αc, the energy dispersion corre-
sponds to a hyperbola, which cannot define a closed integral
path. Therefore, we confine our attention to α < αc in this
work.

The quantum mechanical charge current density for e ↑
channel in the AM is given by

jQ,e↑ = − eh̄

me
[Im{ f ∗∇ f } + Im{g∗∇g}] − eαky

h̄
(| f |2 − |g|2).

(9)

We can compute the total charge current flowing in the AM
by using Eq. (9) in the e ↑ channel and integrating over all
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incoming modes after multiplying jQ,e↑ with the distribution
function for the incoming particles. Assume that a voltage is
applied across the AM/SC junction so that the distribution
function for electrons (holes) is f (E − eV ) [ f (E + eV )] on
the AM side while it is f (E ) for quasiparticles on the SC
side. For instance, an incoming hole from the AM side can
be Andreev-reflected into the e ↑ channel as ψ = rA(1

0)eike↑,−x

and contributes with a current

jQ,e↑ = −e|rA|2
(

h̄ke↑,−
me

+ αky

h̄

)
. (10)

The total charge current I is then obtained by first computing
the total electric current flowing in the e and h channels for
both spins on the AM side, each contribution determined by
jQ,i fi(E ) where jQ,i is the charge current density produced by
an incoming particle channel i, fi(E ) is the distribution func-
tion for channel i, and then integrating over all energies and
all possible transverse modes via

∫
dkx = ∫

dE (dkx/dE ) and∫
dky. Note that dkx/dE plays the role of a one-dimensional

(1D) DOS instead of 2D DOS in Eq. (7) since here
∫

dky is
included separately. In performing the integration over trans-
verse modes, conservation of momentum ky needs to be taken
into account. We find that the charge current carried in the e
and h channels are equal, and it thus suffices to consider only
transport in the e channel for spin ↑ and ↓. Specifically, the
total charge current Iσ flowing in the electron channel for spin
σ is obtained as

Iσ ∝
∫∫

dE
dkx

dE
dky ji

Q,eσ fi(E ), (11)

where ji
Q,eσ is the charge current produced in the e, σ channel

from a particle that is incoming from channel i, giving a total
current I = I↑ + I↓. Andreev-reflection and normal-reflection
contribute to the conductance qualitatively in the same way
as in the Blonder-Tinkham-Klapwijk (BTK) model (the first
enhancing and the second suppressing the conductance) [22].
The conductance is then G(V ) = dI/dV and we normalize
it against the high-voltage conductance (normal state) G0 =
limeV ��0 G(V ), which cancels the proportionality constant,
which includes the area of the junction, in Eq. (11). The spin
current IS is obtained by computing the difference I↑ − I↓
between the currents carried by e ↑ and e ↓, and the spin
conductance is GS = dIS/dV with a similar normalization as
for the charge current.

We will show how the conductance of the AM/SC junc-
tion depends strongly on the crystallographic orientation of
the interface between the materials. This can be modeled by
replacing αkxky → α(k2

x − k2
y )/2 in HAM, corresponding to a

45◦ rotation of the interface. This leads to different expres-
sions for the wave vectors

ke(h)σ,± = ±
√

2me
(
μ ±′ E + σαk2

y /2
) − h̄2k2

y

h̄2 + meσα
, (12)

boundary condition

∂x�SC,e↑|x=0 −
(

(1 + meαh̄−2)∂x f

(1 − meαh̄−2)∂xg

)
= 2mU0

h̄2

(
f
g

)
, (13)

and the charge current density

jQ,e(h)σ = Im{ f ∗∇ f }(−eh̄/me ∓′ eασ/h̄)

+ Im{g∗∇g}(−eh̄/me ±′ eασ/h̄). (14)

The boundary conditions for incident e ↓, h ↑, and h ↓ par-
ticles can be found in the Appendix. A similar procedure as
described earlier can then be used to compute the charge and
spin conductances of the junction.

III. RESULTS

The dimensionless parameter Z = meU0

h̄2kF
with kF =

√
2meμ

h̄

characterizes the quality of electric contact between the AM
and SC [22]. The high-transparency limit Z � 1 is routinely
achievable experimentally using point-contact spectroscopy
measurements [23,24] or very high-quality interfaces. A tun-
neling interface, modeled by Z = 3 in this work, can be
achieved with the same experimental technique by increas-
ing the tip-sample distance or by explicitly inserting a thin
insulator between the AM and SC. Both transport regimes
are interesting and the altermagnetic interactions reveal them-
selves differently in these two cases.

To understand the results for the conductance, it is useful
to consider the wave vectors of the incident electrons with the
corresponding Andreev-reflected holes. In the normal metal
(NM) case, there is only a very slight mismatch between
the wave vectors of the incident and Andreev-reflected par-
ticles as the sign of the energy changes: the wave vector
is proportional to factor

√
μ + E versus

√
μ − E . However,

for ferromagnetic materials (FMs), there is a much larger
mismatch between these wave vectors due to the presence
of a (momentum-independent) spin-splitting or exchange en-
ergy Jex:

√
μ + Jex versus

√
μ − Jex. This large change in

momentum suppresses the Andreev-reflection process as Jex

increases.
We can now compare this with the altermagnetic case. For

simplicity, let us focus on particles close to normal incidence,
ky → 0, which contribute the most to the transport across the
junction. In the kxky orientation of the spin-bands of the AM,
the wave vectors of the incident and Andreev-reflected parti-
cles are then almost equal, distinguished only by their sign in
energy, just like the NM case. In contrast, in the k2

x − k2
y case,

the wave vectors can be strongly mismatched even for ky → 0
as seen from Eq. (12). This is similar to the FM case.

With increasing ky, however, the mismatch increases in the
kxky case while it decreases in the k2

x − k2
y case. This is differ-

ent from both the NM and FM cases and is a unique feature
of the altermagnetic band structure. For larger ky, Andreev-
reflection thus becomes less favorable in the kxky orientation
compared to normal incidence, whereas the opposite is true in
the k2

x − k2
y orientation.

The conductance in the high-transparency case is shown
in Fig. 2. In this case, increasing the magnitude of the spin-
splitting α in the altermagnetic band structure substantially
changes the conductance. In the s-wave and d-wave β = 0
cases, both known not to feature interfacial bound states, the
conductance is suppressed with increasing α. In the d-wave
β = π/4 case, known to feature zero-energy bound states
at interfaces and defects, the conductance is either enhanced
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FIG. 2. Normalized charge conductance G/G0 as a function of bias voltage for different types of AM/SC junctions. The barrier is set to
Z = 0, which describes a high-transparency contact. The columns correspond to different superconducting order parameter symmetries. Upper
row: Case (a) in Fig. 1 (AM term αkxky in HAM). Lower row: Case (b) in Fig. 1 [AM term α(k2

x − k2
y )/2 in HAM].

or suppressed relative to the normal state depending on the
orientation of the spin-polarized elliptical Fermi-surfaces of
majority and minority spin carriers.

As explained before, it can be seen that the influence of the
k2

x − k2
y altermagnetism on the conductance for the orienta-

tion shown in case (b) in Fig. 1 (corresponding to the lower
row of Fig. 2) is similar to that of a conventional FM/SC
junction [25]: the magnetic interaction simply suppresses the
conductance. This can be understood physically from the fact
that the most dominant trajectories contributing to transport
in the junction are the ones normal to the interface. For such
directions of incident particles, the band structure of the al-
termagnet is qualitatively similar to a ferromagnet in that one
spin species dominates over the other independently of mo-
mentum. Our model can also be directly applied to describe
the conventional FM by considering HFM = − h̄2�2

2me
− μ +

Jexσz, which can give the same trends as shown in Ref. [25].
Refer to the Appendix for more details.

Case (a) in Fig. 1 (corresponding to the upper row of Fig. 2)
is more complex and interesting. In this kxky AM case, there is
no spin-polarization for normal incidence ky = 0, while spin-
↓ is the majority carrier for incident electrons with ky > 0
and spin-↑ is the majority carrier for ky < 0. The total spin
polarization of the incident particles cancel since the majority
and minority spin bands contribute equally when integrating
over all possible angles of incidence toward the AM/SC inter-
face. Therefore, the AM behaves similarly to a NM with zero
spin-polarization, as mentioned before. Compared with the

FM, the reduction in spin-polarization for incident particles
then causes a lesser suppression of the charge conductance,
consistent with the upper row of Fig. 2 for s-wave and d-
wave β = 0. On the other hand, the conductance relative
the normal state increases with altermagnetism for the d-
wave β = π/4 SC, which corresponds to the behavior with
a higher effective barrier introduced by altermagnetism, as
will be explained below, based on comparison with the the
NM/d-wave SC β = π/4 shown in Fig. 2(c) in Ref. [27].
Note that in the left top of Fig. 2, a slight peak at the gap edge
appears for α/αc = 0.9, which is similar to the conductance
behavior when adding a weak barrier (e.g., Z = 0.5) at the
interface of a NM/s-wave SC bilayer (e.g., Fig. 7 in Ref. [22]).
Here this weak effective barrier is introduced by and propor-
tional to the altermagnetism strength, i.e., the second term in
kα,σ = 2me

h̄2 (U0 + iαkyσ

2 ) in the boundary condition described
by Eq. (6).

In Fig. 3, we show the case of a tunneling interface between
the AM and SC for completeness. In this case, the altermag-
netism has less effect on the charge conductance, even for
large values α/αc = 0.9. However, it is interesting to note
that the zero-bias peak present for a d-wave β = π/4 order
parameter [26,27] survives for both orientations of the AM
[cases (a) and (b) in Fig. 1]. This suggests that the zero-bias
conductance peaks known to be present at d-wave interfaces
are robust toward the presence of altermagnetism. Further-
more, comparing Fig. 2, center top, to Fig. 3, center top, it can
be seen that going from the high transparency to the tunneling
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FIG. 3. Normalized charge conductance G/G0 as a function of bias voltage for different types of AM/SC junctions. The barrier is set to
Z = 3, which describes a low-transparency contact. The columns correspond to different superconducting order parameter symmetries. Upper
row: Case (a) in Fig. 1 (AM term αkxky in HAM). Lower row: Case (b) in Fig. 1 [AM term α(k2

x − k2
y )/2 in HAM].

limit can reverse the dependence of the conductance on the
altermagnet strength relative to the normal state for small eV ,
which might be probed in experiments. This behavior can be
understood by comparing with the NM/d-wave SC β = 0
bilayer (Fig. 2 in Ref. [27]): In the high transparency limit
with Z = 0, the second term in kα,σ acts as the only effective
barrier whose strength increases with α, playing a role as a
weak Z . In the low-transparency limit with Z = 3, the second
term in kα,σ can partially compensate Z = 3 in the first term,
giving rise a slightly lower but still strong Z .

Finally, we consider the spin-polarization properties of the
current flowing in the junction. For case (a) in Fig. 1, similar
to NM, the spin conductance GS is zero since the total spin
polarization of the incident particles cancels upon averaging
over all incident angles. For case (b) in Fig. 1, the transmit-
ted current is spin-polarized and shows similar behavior as
a FM/SC bilayer [25]. The magnitude of the spin conduc-
tance GS vanishes for α = 0. The low-transparency case is
considered in the lower row of Fig. 4. Similarly to the charge
conductance, the altermagnetic interaction has very little im-
pact on the results in this case. Therefore, high-transparency
contacts between altermagnets and superconductors will offer
the clearest transport signature of the altermagnetic interac-
tion.

In this work, two representative AMs with 0◦ and 45◦
rotation relative to the interface are investigated. As for the

AM with arbitrary rotation, it can be modeled based on the
combination of our established 0◦ and 45◦ cases, i.e.,

HAM = − h̄2�2

2me
− μ + α1kxkyσz + α2

(
k2

x − k2
y

)
σz/2, (15)

in which two different altermagnetism strength parameters α1

and α2 are introduced and the arbitrary angle is determined
by θα = 1

2 arctan(α1/α2). More details can be found in the
Appendix.

We also comment on the altermagnetism ratios used in the
plots. We defined the altermagnetism strength as α = nααc, in
which αc = h̄2/me is its critical value and nα is the ratio, e.g.,
(0,0.6,0.9). In terms of energy, the ratio between the alter-
magnetic and kinetic coefficients are α/ h̄2

2me
= 2nα . Previous

ab initio calculations predicted spin splittings of order eV for
metallic altermagnets. If we assume that the Fermi energy
μ = h̄2k2

F /2me in the normal state is of order eV, then we
note that our choice of nα = 0.6 corresponds to a maximal
altermagnetic spin splitting in k-space (roughly approximated
as αk2

F ) of similar magnitude as the ab initio calculations.

IV. SUMMARY

In conclusion, we showed that charge and spin conduc-
tances are strongly affected by altermagnetism for junctions
with high-quality interfaces. The zero-bias conductance peaks
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FIG. 4. Normalized spin conductance GS/GS0 as a function of bias voltage for case (b) in Fig. 1 [AM term α(k2
x − k2

y )/2 in HAM]. The
columns correspond to different superconducting order parameter symmetries. Upper row: High-transparency contact Z = 0. Lower row:
Low-transparency contact Z = 3.

present for d-wave superconductors remain robust in the pres-
ence of altermagnetism. The spin conductance demonstrates
a strong dependence on the orientation of the altermagnetic
crystal structure relative the interface. Our predicted effects
can be tested experimentally using a metallic altermagnet such
as RuO2, and point the way toward a further investigation of
interesting spintronics effects in heterostructures comprised of
altermagnets and superconductors.
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APPENDIX A: WAVE VECTORS IN THE AM

The Hamiltonian for the altermagnet (AM), using a field
operator basis ψ = [ψ↑, ψ↓, ψ

†
↑, ψ

†
↓]T , is given by

ĤAM =
(

HAM 0
0 −H∗

AM

)
, (A1)

with

HAM = − h̄2�2

2me
− μ + ασzkxky, (A2)

in which α is the parameter that characterizes the altermag-
netism strength, σz denotes the Pauli matrix, me is the electron
mass, μ is the chemical potential, and . . . is the notation for
a 2 × 2 matrix. The four eigenpairs are obtained as E1 = E+
with (1, 0, 0, 0)T for e ↑, E2 = E− with (0, 1, 0, 0)T for e ↓,
E3 = −E+ with (0, 0, 1, 0)T for h ↑ and E4 = −E− with
(0, 0, 0, 1)T for h ↓. The eigenenergies are described by

E± = h̄2
(
k2

x + k2
y

)
2me

− μ ± αkxky. (A3)

Applying E1 = E2 = E3 = E4 = E , the x-components of
the wave vectors in the AM are given by

ke↑,± = ±1

h̄

√
2me(μ + E ) − h̄2k2

y + α2m2
ek2

y

h̄2 − αmeky

h̄2 ,

(A4)

ke↓,± = ±1

h̄

√
2me(μ + E ) − h̄2k2

y + α2m2
ek2

y

h̄2 + αmeky

h̄2 ,

(A5)
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kh↑,± = ±1

h̄

√
2me(μ − E ) − h̄2k2

y + α2m2
ek2

y

h̄2 − αmeky

h̄2 ,

(A6)

kh↓,± = ±1

h̄

√
2me(μ − E ) − h̄2k2

y + α2m2
ek2

y

h̄2 + αmeky

h̄2 ,

(A7)

in which the ± sign in the subscript denotes the propaga-
tion direction along the ±x. Here we assume translational
invariance in the y-direction with an associated conserved
momentum ky. The momentum ky of the incident particle
appearing in Eqs. (A4) to (A7) is determined by the Fermi
surface of the incident particle, which is described as follows.

Consider an e ↑ particle in the AM. We then have E =
E+ = h̄2(k2

x +k2
y )

2me
− μ + αkxky in Eq. (A3), which defines an

elliptical Fermi surface in the k-space when α < h̄2/me ≡ αc.
On the other hand, Eq. (A3) corresponds to a hyperbola when
α > αc, which cannot define a closed integral path. Therefore,
we confine α < αc in this work. The general equation of the
ellipse is given by

h̄2k2
x

2me
+ αkxky + h̄2k2

y

2me
− (μ + E ) = 0, (A8)

from which the semi-major (minor) axis can be obtained as

a1 =
√

2me(μ + E )

h̄2 − meα
, b1 =

√
2me(μ + E )

h̄2 + meα
. (A9)

Consequently, the wave vectors on the Fermi surface of e ↑ in
the AM are described by

ky,e↑ = r1 sin θ, kx,e↑ = r1 cos θ,

r1 = a1b1√
b2

1 cos2(θ + π/4) + a2
1 sin2(θ + π/4)

, (A10)

in which θ is the incident angle in the AM with respect to the
x-axis. Therefore, we use ky = ky,e↑ in Eq. (A4) to (A7) to get
the x-component of the wave vector belonging to incident e ↑
particles on the AM side.

Similarly, we can obtain the wave vectors on the Fermi
surface of e ↓, h ↑ and h ↓ particles in the AM, i.e.,

ky,e↓ = r2 sin θ, kx,e↓ = r2 cos θ,

r2 = a2b2√
b2

2 cos2(θ − π/4) + a2
2 sin2(θ − π/4)

,

a2 =
√

2me(μ + E )

h̄2 − meα
, b2 =

√
2me(μ + E )

h̄2 + meα
(A11)

ky,h↑ = r3 sin θ, kx,h↑ = r3 cos θ,

r3 = a3b3√
b2

3 cos2(θ + π/4) + a2
3 sin2(θ + π/4)

,

a3 =
√

2me(μ − E )

h̄2 − meα
, b3 =

√
2me(μ − E )

h̄2 + meα
, (A12)

ky,h↓ = r4 sin θ, kx,h↓ = r4 cos θ,

r4 = a4b4√
b2

4 cos2(θ − π/4) + a2
4 sin2(θ − π/4)

,

a4 =
√

2me(μ − E )

h̄2 − meα
, b4 =

√
2me(μ − E )

h̄2 + meα
. (A13)

By inserting ky = ky,e↓, ky = ky,h↑, and ky = ky,h↓ into
Eqs. (A4) to (A7) we can get the x-components of the wave
vectors induced by e ↓, h ↑, and h ↓ incidents on the AM
side, respectively, which will appear in the wave functions to
describe the propagation along the x-direction.

Note the relation between the two x-components of the
wave vectors involved, e.g., kx,e↑ and ke↑,±: kx,e↑ is the x-
component of the wave vector of e ↑ particle on the Fermi
surface for a given value of the angle θ and is thus uniquely
defined. Instead, ke↑,± are the two possible solutions for the
x-component of the momentum on the Fermi surface which
both have the same value for ky. Thus, ke↑,± can be used to
describe the x-component of the incident and reflected e ↑
particles for a given ky-value. Only when considering the e ↑
incident from the AM with ky = ky,e↑, kx,e↑ is equivalent to
either ke↑,+ or ke↑,− depending on the value of θ . To con-
struct the wave functions, we thus assumed ky invariance and
include the x-components of the wave vectors for different
scattered particles to describe the reflection and transmission
procsesses. In effect, Eqs. (A4) to (A7) are utilized as wave
vectors in the wave functions.

APPENDIX B: WAVE VECTORS IN THE SC

Based on the BTK theory [22], the Hamiltonian for
the superconductor (SC), using a field operator basis ψ =
[ψ↑, ψ↓, ψ

†
↑, ψ

†
↓]T , is given by

ĤSC =

⎛
⎜⎜⎜⎜⎝

− h̄2�2

2me
− μ 0 0 �

0 − h̄2�2

2me
− μ −� 0

0 −�∗ h̄2�2

2me
+ μ 0

�∗ 0 0 h̄2�2

2me
+ μ

⎞
⎟⎟⎟⎟⎠.

(B1)

The superconducting gap is denoted as � = �0g(θS ), where
�0 is the gap amplitude and g(θS ) describes the superconduct-
ing pair symmetry. θS is the scattering angle in the SC, which
can be determined from θ in the AM by using conservation of
momentum along the y direction.

In a s-wave SC, the superconducting gap is isotropic, i.e.,
g(θS ) = 1. The four eigenpairs are obtained as E1 = E+ with
(u0, 0, 0, v0)T for e ↑, E2 = E− with (0, u0,−v0, 0)T for e ↓,
E3 = −E+ with (0, v0,−u0, 0)T for h ↑ and E4 = −E− with
(v0, 0, 0, u0)T for h ↓. The eigenenergies are described by

E+ = E− =
√

(
h̄2

(
q2

x + q2
y

)
2me

− μ)2 + |�|2. (B2)

Applying E1 = E2 = E3 = E4 = E , we have the usual

coherence factors u0 =
√

1
2 (1 +

√
E2−�2

0

E ) and v0 =√
1
2 (1 −

√
E2−�2

0

E ). The corresponding x-components of
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the wave vectors in the s-wave SC are given by

qe =

√
2me

(
μ +

√
E2 − �2

0

) − h̄2q2
y

h̄
, (B3)

qh =

√
2me

(
μ −

√
E2 − �2

0

) − h̄2q2
y

h̄
, (B4)

which describe the electron-like and hole-like quasiparticles,
respectively. Here we consider the transverse component of
the wave vector is conserved across the interface, i.e., qy = ky

in the AM.
In a d-wave SC, the superconducting gap is anisotropic,

i.e., g(θS ) = cos (2θS − 2β ), in which β defines the d-wave
type. Due to the gap anisotropy, the eigenvectors are modified
compared with those in the s-wave case: (u±, 0, 0, v±e−iγ± )T

for e ↑, (0, u±,−v±e−iγ± , 0)T for e ↓, (0, v±eiγ± ,−u±, 0)T

for h ↑ and (v±eiγ± , 0, 0, u±)T for h ↓. Depending on the
quasiparticle motion direction, the coherence factors are u± =√

1
2 (1 +

√
E2−�2

0g2(θ± )
E ) and v± =

√
1
2 (1 −

√
E2−�2

0g2(θ± )
E ) with

θ+ = θS and θ− = π − θS . In addition, the factor eiγ± = g(θ± )
|g(θ± )|

is introduced. Consequently, the x-components of the wave
vectors become

qe,± =

√
2me

(
μ +

√
E2 − �2

0g2(θ±)
) − h̄2q2

y

h̄
, (B5)

qh,± =

√
2me

(
μ −

√
E2 − �2

0g2(θ±)
) − h̄2q2

y

h̄
, (B6)

where the ± sign in the subscript represents the propagation of
the quasiparticles along the ±x axis. Again, qy = ky is applied
for the conservation of momentum along the y direction.

Note that the energy-dependent wave vectors and coher-
ence factors in the SC as introduced above are only applicable
for positive energies, i.e., E > 0. When E < 0, the following
replacements should be made: qe(h) → qh(e), u0 → −v∗

0 and
v0 → u∗

0 for s-wave and qe(h),± → qh(e),±, u± → −v∗
± and

v± → u∗
± for d-wave. A detailed explanation regarding the

negative energy wave vectors and coherence factors can be
found in the Appendix of Ref. [28].

In the following, we will focus on the d-wave SC since the
s-wave case can be treated as a simplified version of d-wave
with g(θ±) = 1.

APPENDIX C: WAVE FUNCTIONS IN THE AM AND SC

Aiming to investigate the differential conductance of the
AM/SC bilayer system as shown in Fig. 1 in the main text,
we focus on different incident particles from the AM side.

Consider the e ↑ incident from the AM side based on the
AM/SC bilayer, we have

�AM,e↑ =
(

1
0

)
eike↑,+x + r

(
1
0

)
eike↑,−x + rA

(
0
1

)
eikh↓,+x, (C1)

�SC,e↑ = t

(
u+

v+e−iγ+

)
eiqe,+x + tA

(
v−eiγ−

u−

)
e−iqh,−x, (C2)

in which we use ky = ky,e↑ given in Eq. (A10). r, rA, t , and
tA describe the normal reflection, Andreev reflection, normal
transmission, and Andreev transmission, respectively, whose
values can be solved by applying appropriate boundary con-
ditions (see the next section for details).

Consider the e ↓ incident from the AM side based on the
AM/SC bilayer, we have

�AM,e↓ =
(

1
0

)
eike↓,+x + r

(
1
0

)
eike↓,−x + rA

(
0
1

)
eikh↑,+x, (C3)

�SC,e↓ = t

(
u+

−v+e−iγ+

)
eiqe,+x + tA

(
v−eiγ−

−u−

)
e−iqh,−x, (C4)

in which we use ky = ky,e↓ given in Eq. (A11).
Consider the h ↑ incident from the AM side based on the

AM/SC bilayer, we have

�AM,h↑ =
(

0
1

)
eikh↑,−x + r

(
0
1

)
eikh↑,+x + rA

(
1
0

)
eike↓,−x, (C5)

�SC,h↑ = t

(
v−eiγ−

−u−

)
e−iqh,−x + tA

(
u+

−v+e−iγ+

)
eiqe,+x, (C6)

in which we use ky = ky,h↑ given in Eq. (A12).
Consider the h ↓ incident from the AM side based on the

AM/SC bilayer, we have

�AM,h↓ =
(

0
1

)
eikh↓,−x + r

(
0
1

)
eikh↓,+x + rA

(
1
0

)
eike↑,−x, (C7)

�SC,h↓ = t

(
v−eiγ−

u−

)
e−iqh,−x + tA

(
u+

v+e−iγ+

)
eiqe,+x, (C8)

in which we use ky = ky,h↓ given in Eq. (A13).
In the SC, the approximation qe,+ ≈ qe,− ≈ qh,+ ≈ qh,− =

qF can be applied since E � μ is considered in this work.
Therefore, the scattering angle θS in the SC can be related to
the incident angle θ in the AM as θS = Re[arctan( ky

qF
)] due

to the conservation of momentum along the y direction. Note
here the Re[· · · ] is necessary to cover the case when there
exists no point on the SC Fermi surface which can satisfy
conservation of ky in the AM. For the same reason, we apply
real parts of all wave vectors in the SC, e.g., qe,+ = Re[qe,+].

APPENDIX D: BOUNDARY CONDITIONS

To derive the boundary condition, we write down the elec-
tron Hamiltonian of the bilayer system as

H = − h̄2∇2

2me
+ U0δ(x) + αky

2
{kx,�(−x)}σz, (D1)

in which only the terms affecting the boundary conditions are
included, i.e., the superconducting gap terms are excluded.
The anticommutator is necessary to ensure hermiticity of the
Hamilton-operator and �(x) is the step function. Above, kx =
−i∂x. Eq. (D1) can be rewritten as

H = − h̄2∇2

2me
+ U0δ(x) + αkyσ

2
{kx,�(−x)}, (D2)
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where σ = +1(−1) for e ↑ (↓). In Eq. (D2), we have

{kx,�(−x)}� = kx[�(−x)�] + �(−x)(kx�)

= −i[�∂x�(−x) + �(−x)∂x�]

− i�(−x)∂x�

= iδ(x)� − 2i�(−x)∂x�. (D3)

Apply H� = E� and integrate over [−ε, ε] with ε → 0,
we have∫ +ε

−ε

∂2
x �dx = 2me

h̄2

∫ +ε

−ε

(
U0 + iαkyσ

2

)
δ(x)�dx

− 2me

h̄2

∫ +ε

−ε

iαkyσ�(−x)∂x�dx

− 2me

h̄2

∫ +ε

−ε

E�dx. (D4)

Consequently, the remaining nonzero terms are

∂x�|+ε − ∂x�|−ε = 2me

h̄2

(
U0 + iαkyσ

2

)
�|+ε, (D5)

with �|+ε = �|−ε and σ = +1(−1) for e ↑ (↓).
For notation convenience, we rewrite the boundary condi-

tions for e ↑ incident from the AM side based on the AM/SC
bilayer as

�AM|x=0 = �SC|x=0 =
(

f
g

)
, (D6)

∂x�SC|x=0 − ∂x�AM|x=0 =
(

kα,+1 f
kα,−1g

)
, (D7)

where kα,σ = 2me

h̄2 (U0 + iαkyσ

2 ) with σ = +1(−1).
The boundary conditions for h ↓ incident from the AM

side have the same forms as Eqs. (D6) and (D7). On the other
hand, for e ↓ and h ↑ incidents from the AM side, the second
boundary condition described by Eq. (D7) changes to

∂x�SC|x=0 − ∂x�AM

∣∣
x=0 =

(
kα,−1 f
kα,+1g

)
. (D8)

APPENDIX E: 2D DOS IN THE AM

For e ↑ incident from the AM side based on the AM/SC
bilayer, we have

E = E+ = h̄2
(
k2

x + k2
y

)
2me

− μ + αkxky. (E1)

The general expression for 2D DOS is given by

N (E ) = 1

4π2

∫
dl

|∇kE (k)| , (E2)

which can be used for anisotropic DOS.
(i) When α < h̄2/me, Eq. (E1) defines an elliptical energy

surface. In Eq. (E2), we can use

dl =
√(

dkx

dθ

)2

+
(

dky

dθ

)2

dθ, (E3)

|∇kE (k)| =
√(

∂E

∂kx

)2

+
(

∂E

∂ky

)2

=
√(

h̄2kx

me
+ αky

)2

+
(

h̄2ky

me
+ αkx

)2

. (E4)

Insert kx = kx,e↑ and ky = ky,e↑ in Eq. (A10) into Eqs. (E3)
and (E4), |∇kE (k)| is expressed in terms of E and θ , i.e.,
|∇kE (k)| = K (E , θ ). Consequently, Eq. (E2) can be rewritten
as

N (E ) =
∫ 2π

0
N (E , θ )dθ, (E5)

N (E , θ ) = 1

4π2

√
(dkx,e↑/dθ )2 + (dky,e↑/dθ )2

K (E , θ )
, (E6)

in which N (E , θ ) corresponds to the DOS at a given incident
angle θ .

(ii) When α > h̄2/me, Eq. (E1) corresponds to a hyperbola,
which cannot define a closed integral path. Therefore, we
confine α < h̄2/me in this work, as mentioned before.

Following the same procedure as described above, the DOS
in the AM for e ↓, h ↑, and h ↓ incidents can be calculated.
Note that 1D DOS instead of 2D DOS is utilized in the main
text since

∫
ky is included separately.

APPENDIX F: CONDUCTANCE

The quantum mechanical charge current density for e ↑
channel in the AM is given by

jQ,e↑ = − eh̄

me
[Im{ f ∗∇ f } + Im{g∗∇g}] − eαky

h̄
(| f |2 − |g|2).

(F1)
The charge current density for h ↓ channel in the AM has the
same form as Eq. (F1). On the other hand, for e ↓ and h ↑
channels, the charge current density expression changes to

jQ,e↓(h↑) = − eh̄

me
[Im{ f ∗∇ f } + Im{g∗∇g}]

+ eαky

h̄
(| f |2 − |g|2). (F2)

Use Eq. (F1), we can compute the charge current contri-
butions 1 to 5 to the e ↑ channel in the AM. Assume that a
voltage is applied across the AM/SC junction so that distribu-
tion function for electrons is f (E − eV ) on the AM side while
it is f (E ) on the SC side.

(1) Contribution from the incoming e ↑ on the AM side:

ψ1 =
(

1
0

)
eike↑,+x, (F3)

jQ1 = −e

(
h̄ke↑,+

me
+ αky

h̄

)
. (F4)

This contributes to the total charge current density in the e ↑
channel on the AM side with

JQ1 = f (E − eV ) jQ1

= −e f (E − eV )

(
h̄ke↑,+

me
+ αky

h̄

)
. (F5)
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(2) Contribution from the reflected e ↑ produced by the
incoming e ↑ on the AM side:

ψ2 = r1

(
1
0

)
eike↑,−x, (F6)

jQ2 = −e|r1|2
(

h̄ke↑,−
me

+ αky

h̄

)
, (F7)

in which r1 is the solved reflection coefficient from the wave
functions given by Eqs. (C1) and (C2). This contributes to the
total charge current density in the e ↑ channel on the AM side
with

JQ2 = f (E − eV ) jQ2

= −e|r1|2 f (E − eV )

(
h̄ke↑,−

me
+ αky

h̄

)
. (F8)

(3) Contribution from the transmitted e ↑ produced by the
incoming e ↑ on the SC side:

ψ3 = t2

(
1
0

)
eike↑,−x, (F9)

jQ3 = −e|t2|2
(

h̄ke↑,−
me

+ αky

h̄

)
, (F10)

in which t2 is the solved transmission coefficient from the
following wave functions:

�SC =
(

u−
v−e−iγ−

)
e−iqe,−x + r2

(
u+

v+e−iγ+

)
eiqe,+x + rA2

×
(

v−eiγ−

u−

)
e−iqh,−x, (F11)

�AM = t2

(
1
0

)
eike↑,−x + tA2

(
0
1

)
eikh↓,+x. (F12)

This contributes to the total charge current density in the
e ↑ channel on the AM side with

JQ3 = f (E ) jQ3

= −e|t2|2 f (E )

(
h̄ke↑,−

me
+ αky

h̄

)
. (F13)

(4) Contribution from the Andreev-reflected e ↑ produced
by the incoming h ↓ on the AM side

ψ4 = rA3

(
1
0

)
eike↑,−x, (F14)

jQ4 = −e|rA3|2
(

h̄ke↑,−
me

+ αky

h̄

)
, (F15)

in which rA3 is the solved Andreev reflection coefficient from
the wave functions given by Eqs. (C7) and (C8). This con-
tributes to the total charge current density in the e ↑ channel
on the AM side with

JQ4 = [1 − f (−E − eV )] jQ4

= −e|rA3|2[1 − f (−E − eV )]

(
h̄ke↑,−

me
+ αky

h̄

)
. (F16)

(5) Contribution from the Andreev-transmitted e ↑ pro-
duced by the incoming h ↓ on the SC side

ψ5 = tA4

(
1
0

)
eike↑,−x, (F17)

jQ5 = −e|tA4|2
(

h̄ke↑,−
me

+ αky

h̄

)
, (F18)

in which tA4 is the solved Andreev transmission coefficient
from the following wave functions

�SC =
(

v+eiγ+

u+

)
eiqh,+x + r4

(
v−eiγ−

u−

)
e−iqh,−x

+ rA4

(
u+

v+e−iγ+

)
eiqe,+x, (F19)

�AM = t4

(
0
1

)
eikh↓,+x + tA4

(
1
0

)
eike↑,−x. (F20)

This contributes to the total charge current density in the
e ↑ channel on the AM side with

JQ5 = f (E ) jQ5

= −e|tA4|2 f (E )

(
h̄ke↑,−

me
+ αky

h̄

)
, (F21)

When computing the differential conductance as described
in the main text, only contributions induced by incident parti-
cles from the AM side contribute since we chose to apply the
bias voltage there, e.g., the differential conductance originates
from jQ3 and jQ5 becomes zero when calculating dI/dV in
the e ↑ channel. As a result, we only need to consider inci-
dents from the AM side, as mentioned before. The physics
is unchanged if one chooses to apply the voltage in a different
manner, so long as the voltage difference between the AM and
SC is the same.

APPENDIX G: 45◦ ROTATED AM

Here we summarize the useful equations for the rotated
Hamiltonian, i.e.,

HAM = − h̄2�2

2me
− μ + α

2

(
k2

x − k2
y

)
σz, (G1)

which corresponds to a 45◦ rotation of the AM/SC interface.
(1) Eigenpairs:
The four eigenpairs are obtained as E1 = E+ with

(1, 0, 0, 0)T for e ↑, E2 = E− with (0, 1, 0, 0)T for e ↓,
E3 = −E+ with (0, 0, 1, 0)T for h ↑ and E4 = −E− with
(0, 0, 0, 1)T for h ↓. The eigenenergies are described by

E± = h̄2
(
k2

x + k2
y

)
2me

− μ ± α

2

(
k2

x − k2
y

)
. (G2)

(2) Wave vectors in the AM to construct the wave func-
tions

ke↑,± = ±
√

2me
(
μ + E + αk2

y /2
) − h̄2k2

y

h̄2 + meα
, (G3)

ke↓,± = ±
√

2me
(
μ + E − αk2

y /2
) − h̄2k2

y

h̄2 − meα
, (G4)
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kh↑,± = ±
√

2me
(
μ − E + αk2

y /2
) − h̄2k2

y

h̄2 + meα
, (G5)

kh↓,± = ±
√

2me
(
μ − E − αk2

y /2
) − h̄2k2

y

h̄2 − meα
. (G6)

(3) Wave vectors on the AM Fermi surface

ky,e↑ = r1 sin θ, kx,e↑ = r1 cos θ,

r1 = a1b1√
b2

1 cos2(θ + π/2) + a2
1 sin2(θ + π/2)

,

a1 =
√

2me(μ + E )

h̄2 − meα
, b1 =

√
2me(μ + E )

h̄2 + meα
, (G7)

ky,e↓ = r2 sin θ, kx,e↓ = r2 cos θ,

r2 = a2b2√
b2

2 cos2 θ + a2
2 sin2 θ

,

a2 =
√

2me(μ + E )

h̄2 − meα
, b2 =

√
2me(μ + E )

h̄2 + meα
, (G8)

ky,h↑ = r3 sin θ, kx,h↑ = r3 cos θ,

r3 = a3b3√
b2

3 cos2(θ + π/2) + a2
3 sin2(θ + π/2)

,

a3 =
√

2me(μ − E )

h̄2 − meα
, b3 =

√
2me(μ − E )

h̄2 + meα
, (G9)

ky,h↓ = r4 sin θ, kx,h↓ = r4 cos θ,

r4 = a4b4√
b2

4 cos2 θ + a2
4 sin2 θ

,

a4 =
√

2me(μ − E )

h̄2 − meα
, b4 =

√
2me(μ − E )

h̄2 + meα
. (G10)

(4) Boundary conditions

�AM

∣∣
x=0 = �SC

∣∣
x=0 =

(
f
g

)
, (G11)

∂x�SC

∣∣
x=0 −

(
(1 + meα/h̄2)∂x f

(1 − meα/h̄2)∂xg

)∣∣
x=0 = 2meU0

h̄2

(
f
g

)
(G12)

for e ↑ and h ↓ incidents. To get the above boundary con-
ditions, we follow the similar procedure as described in
Appendix D by considering the Hermitian electron Hamilto-
nian of the bilayer system as

H = − h̄2∇2

2me
+ U0δ(x) + α

2
[kx�(−x)kx − ky�(−x)ky]σz,

(G13)

in which kx = −i∂x.
On the other hand, we have

∂x�SC

∣∣
x=0 −

(
(1 − meα/h̄2)∂x f

(1 + meα/h̄2)∂xg

)∣∣
x=0 = 2meU0

h̄2

(
f
g

)
(G14)

for e ↓ and h ↑ incidents.
(5) Charge current density expressions for different chan-

nels

jQ,e↑(h↓) = − eh̄

me
[Im{ f ∗∇ f } + Im{g∗∇g}]

− eα

h̄
[Im{ f ∗∇ f } − Im{g∗∇g}], (G15)

jQ,e↓(h↑) = − eh̄

me
[Im{ f ∗∇ f } + Im{g∗∇g}]

+ eα

h̄
[Im{ f ∗∇ f } − Im{g∗∇g}]. (G16)

APPENDIX H: ARBITRARY-ANGLE ROTATED AM

The arbitrary-angle rotated AM can be modeled based on
the combination of our established 0◦ and 45◦ cases, i.e., a
more general Hamiltonian is

HAM = − h̄2�2

2me
− μ + α1kxkyσz + α2

(
k2

x − k2
y

)
σz/2, (H1)

in which two different altermagnetism strength parameters α1

and α2 are introduced and the arbitrary angle is determined
by θα = 1

2 arctan(α1/α2). Following the same procedure as
introduced before, the eigenvalues and wave vectors can be
solved from the Hamiltonian, e.g.,

E± = h̄2
(
k2

x + k2
y

)
2me

− μ ± α1kxky ± α2

2

(
k2

x − k2
y

)
, (H2)

ke↑,± = ± 1

h̄ + α2me/h̄

√
2me(μ + E )

(
1 + α2me

h̄2

)
− h̄2k2

y +
(
α2

1 + α2
2

)
m2

ek2
y

h̄2 − α1meky

h̄2 + meα2
, (H3)

which reveal features of both the 0◦ and 45◦ cases. To en-
sure that the energy dispersion corresponds to an elliptical
energy surface rather than a hyperbola, the altermagnetism
parameters should satisfy ᾱ ≡

√
α2

1 + α2
2 < αc ≡ h̄2/me. The

corresponding semi-major and semi-minor axes are a =√
2me(μ+E )

h̄2−meᾱ
and b =

√
2me(μ+E )

h̄2+meᾱ
for electron incidents, based

on which the DOS can be calculated. Similarly, the boundary
conditions and charge currents expressions can be derived
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FIG. 5. Andreev reflection (AR) probability for different spin species [e ↑ (↓)] channels as a function of energy for different types of
k2

x − k2
y AM/SC junctions and incident angles θ : the rows correspond to different superconducting order parameter symmetries and the columns

correspond to different θ . Here we use Z = 0 and α/αc = 0.6.

from the Hamiltonian with all necessary details included in
our previous explanation for the 0◦ and 45◦ cases.

APPENDIX I: FERROMAGNET

To model a normal ferromagnet (FM), we use the Hamil-
tonian

HFM = − h̄2�2

2me
− μ + Jexσz, (I1)

in which Jex is the exchange energy in the FM.
(1) Eigenpairs: The four eigenpairs are obtained as E1 =

E+ with (1, 0, 0, 0)T for e ↑, E2 = E− with (0, 1, 0, 0)T for
e ↓, E3 = −E+ with (0, 0, 1, 0)T for h ↑ and E4 = −E− with
(0, 0, 0, 1)T for h ↓. The eigenenergies are described by

E± = h̄2
(
k2

x + k2
y

)
2me

− μ ± Jex. (I2)

(2) Wave vectors in the FM to construct the wave func-
tions

ke↑,± = ±1

h̄

√
2me(μ + E − Jex) − h̄2k2

y , (I3)

ke↓,± = ±1

h̄

√
2me(μ + E + Jex) − h̄2k2

y , (I4)

kh↑,± = ±1

h̄

√
2me(μ − E − Jex) − h̄2k2

y , (I5)

kh↓,± = ±1

h̄

√
2me(μ − E + Jex) − h̄2k2

y . (I6)

(3) Wave vectors on the FM Fermi surface

ky,e↑ = r1 sin θ, kx,e↑ = r1 cos θ,

r1 = 1

h̄

√
2me(μ + E − Jex), (I7)

ky,e↓ = r2 sin θ, kx,e↓ = r2 cos θ,

r2 = 1

h̄

√
2me(μ + E + Jex), (I8)

ky,h↑ = r3 sin θ, kx,h↑ = r3 cos θ,

r3 = 1

h̄

√
2me(μ − E − Jex), (I9)

ky,h↓ = r4 sin θ, kx,h↓ = r4 cos θ,

r4 = 1

h̄

√
2me(μ − E + Jex). (I10)
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FIG. 6. Probability coefficients for different spin species [e ↑ (↓)] channels as a function of energy for different junctions at a small
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use Z = 0, α/αc = 0.6 for AM and Jex/μ = 0.6 for FM.

Following the same approach as described for AM, the DOS
for FM can be derived based on the above new wave vectors.
Here we found the 2D DOS at angle θ is given by

N (E , θ ) = me

4π2h̄2 , (I11)

which is the same for e ↑, e ↓, h ↑, and h ↓ incidents.
(4) Boundary conditions

�FM|x=0 = �SC|x=0 =
(

f
g

)
, (I12)

∂x�SC|x=0 − ∂x�FM|x=0 = 2meU0

h̄2

(
f
g

)
. (I13)

These boundary conditions apply for e ↑, e ↓, h ↑, and h ↓
incident cases.

(5) Charge current density expressions for different chan-
nels

jQ = − eh̄

me
[Im{ f ∗∇ f } + Im{g∗∇g}], (I14)

which has the same form for e ↑, e ↓, h ↑, and h ↓ channels.
Based on the above expressions, we can investigate the

charge and spin conductances for the FM/SC bilayer. We have
done so and our results agree with Ref. [25], in which the
charge conductance decreases with increasing Jex.

APPENDIX J: ANDREEV-REFLECTION PROBABILITY

We here determine the Andreev reflection probabilities for
different incident angles in Fig. 5.

The probability coefficients are derived by applying the
continuity of the probability current at the k2

x − k2
y AM/SC

interface. In the k2
x − k2

y AM, if we write the wave function in
the form of �AM = ( f , g)T , the probability current is given by

jAM
P = h̄

me
[Im{ f ∗∇ f } − Im{g∗∇g}] ±′ α

h̄
[Im{ f ∗∇ f }

+ Im{g∗∇g}], (J1)

in which ±′ = + for e ↑ (h ↓) incident and ±′ = − for e ↓
(h ↑) incident. In the SC, if we write the wave function in the
form of �SC = ( f , g)T , the probability current is given by

jSC
P = h̄

me
[Im{ f ∗∇ f } − Im{g∗∇g}], (J2)

which has the same form for e ↑, e ↓, h ↑, and ↓ incidents. By
applying jSC

P |x=0 = jAM
P |x=0 and inserting the explicit expres-

sions of the wave functions, the probability coefficients of the
Andreev reflection, normal reflection, Andreev transmission,
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and normal transmission can be derived, and the sum of the
four probability coefficients induced by the same incident is
as 1.

Except for the AR probability, the normal reflection (NR)
probability should also be considered since NR suppresses
the conductance. We here focus on a particular example: the

d-wave β = π/4 SC at a small incident angle, e.g., θ = π/8.
Unlike the AR, to get conductance in the e ↑ (↓) channel
through NR, the NR probability is derived based on the
wave functions induced by the e ↑ (↓) incident. In addition,
we compare the probability behaviors between AM/SC and
FM/SC, as shown in the Fig. 6.
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