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We explore critical properties of a chain of interacting Majorana fermions, particles that are their own
antiparticles. We study the combined effect of two competing interaction terms of the shortest possible range
and show this results in a very rich phase diagram with nine different phases, five of which are critical.
In addition, we report a wide variety of quantum phase transitions: the tri-critical Ising lines; the Lifshitz
critical line characterized by the dynamical critical exponent z = 3; two Kosterlitz-Thouless transitions; and
an exotic first-order transition between the floating and the gapped phases. However, the most surprising
result is the emergence of the commensurate line at which the floating phases collapse into direct transition.
We provide numerical evidences that the resulting multicritical point belongs to the universality class of the
eight-vertex model. Implications in the context of supersymmetric properties of the Majorana chain are briefly

discussed.

DOLI: 10.1103/PhysRevB.108.054509

I. INTRODUCTION

Over the years quantum critical phenomena are attracting
a lot of interest of both theorists and experimentalists in
condensed matter physics [1,2]. The concept of universality
classes and the invention of density matrix renormalization
group (DMRG) algorithm [3-6] open a possibility to study
quantum phase transitions on simple lattice models and po-
sition strongly correlated one-dimensional (1D) systems as a
fruitful playground to explore quantum critical phenomena.
Among various models of frustrated spin chains, bosons, and
fermions, a special role is played by the models of Majo-
rana zero modes bridging various areas of physics. A model
of noninteracting Majorana fermions, particles that are their
own antiparticles, is rigorously equivalent to the model of
hard-core bosons and spinless fermions with an extra term
that simultaneously create or destroy a pair of particles.
Revising this model as an effective model of p-wave super-
conductor, Kitaev [7] has shown that it possesses Majorana
edge states. Motivated by their potential usage for qubits
[8,9] this discovery launched a tremendous experimental
activity [10-16].

At the same time, and quite logically since fermions
experience a repulsion, theoretical studies of Majorana chains
are centered on extended models incorporating interactions
between Majorana fermions in various forms [17-26]. In this
paper we study the combined effect of the two interaction
terms of the shortest possible range. The motivation behind
that is twofold. First, any realistic interaction potential is
a continuous function that does not vanish immediately
beyond the first or second neighbors. Thus, by considering
the terms beyond the shortest possible range of interactions
we effectively include the next-to-leading-order corrections
into the lattice Hamiltonian. Second, competing interactions
introduce frustration and may lead to a new critical behavior
and exotic phenomena. The microscopic model can be defined

2469-9950/2023/108(5)/054509(11)

054509-1

by the following Hamiltonian:

H =it Z YaVa+1 — gZ YaVa+1Va+2Ya+3

—fZVaVa+1Va+3Va+4, (D)
a

where Majorana operators ), are Hermitian and obey
{Vas Yo} = 284, Since yuz = 1, the shortest-range nontrivial
interaction g spans over four consecutive sites. The last term f
spans the four-body Majorana operator over five consecutive
sites. The precise form of this interaction term has been
introduced by O’Brien and Fendley [23] as a shortcut to
realize an exact supersymmetry of the tricritical Ising point
on a lattice [23].

By means of Jordan-Wigner transformation, the Hamilto-
nian (1) can be written in terms of Pauli matrices aj-‘ <

H= Z [ — Jofaj’»‘ﬂ - haj + g(afcrj+1 + aj‘aerz)
J

+ f(afdfﬂajﬂz + Gf"fﬂ“ﬁz)]- ()

Without loss of generality we set J = 1 throughout the paper.
The equivalence between two models is exact (up to boundary
terms) when J = h = ¢. In the first two terms one can imme-
diately recognize the celebrated transverse-field Ising model
[27,28]. It is therefore not surprising that in the noninteract-
ing case g = f = 0 the system is critical and belongs to the
Ising universality class [29]. The model with g = 0 has been
carefully studied by O’Brien and Fendley [23]. It has been
shown that there is a frustration-free point located at f = %
with threefold degenerate ground states: one Z,-symmetry-
preserving ground state coexisting with two symmetry-broken
ones. Building on the intuition from the transverse-field Ising
model, the entire gapped threefold degenerate phase that hosts
the frustration-free point corresponds to the first-order phase
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transition that system undergoes upon tuning the transverse
field i from the twofold degenerate Z, phase to a param-
agnetic one. The transition changes from Ising to first order
at f =~ 0.428 [23]. At the end point the critical behavior is
described by the tricritical Ising superconformal field the-
ory [23,29]. Similar to other frustration-free points, such
as Majumdar-Ghosh point [30] in spin—% zigzag chain and
Affleck-Kennedy-Lieb-Tasaki point [31,32] of the bilinear-
biquadratic spin-1 chain, the exact point of the Majorana chain
at f = % is also a disorder point, beyond which the system
develops incommensurate short-range correlations.

The Majorana chain with 7 =t = 1 and g interaction only
has been intensely studied in recent years [18,19,26,33]. It
was shown that for small coupling g the system remains in
the critical Ising phase, however, at g ~ 0.29 it undergoes
a Lifshitz transition into a critical phase with the central
charge ¢ = % [19,26]. This phase is the Ising critical phase
(c= %) superposed with the floating phase, Luttinger liquid
phase (¢ = 1), with incommensurate correlations. How and
where this phase ends is a debated problem. According to
Refs. [19,33] the floating phase, the Ising criticality, and the
incommensurability all terminate at the same point, though
there was no agreement on the location of this transition: g ~
2.86 [19] vs g & 5 [33]. Beyond this terminal point the system
was expected to be gapped with fourfold degenerate ground
state [19,33]. However, in the recent study of an extended
phase diagram with J # h [26] it was shown that the floating
phase terminates much earlier, at g ~ 1.3, the Ising criticality
terminates at g &~ 3 with the tricritical Ising point, beyond
which the system is indeed gapped, but the ground state is
sixfold degenerate. It was also shown that incommensurability
persists beyond g = 3. Furthermore, the g interaction also
leads to an emergent supersymmetry: first, at the tricritical
Ising end point that was overlooked in early studies; second, in
the region where Luttinger liquid phase superposed with Ising
critical line; and third, at the Kosterlitz-Thouless transition
where the Ising critical line enters the floating phase [26,34].

In this paper we study the combined effect of the two
interaction terms introduced above. We show that (i) the
ground-state phase diagram is very rich and contains nine
different phases, five of which are critical; (ii) there is a com-
mensurate line along which two floating phases collapse into a
single multicritical point in the universality class of the eight-
vertex model; (iii) there is an extended Lifshitz critical line
characterized by the dynamical critical exponent z = 3; (iv)
and finally, there are two critical lines effectively described by
the tricritical Ising superconformal field theory and at least
one (and probably both) of them ends at the end point of
the Lifshitz line. In addition, we argue that there might be an
extended phase characterized by an emergent supersymmetry.

We address the problem numerically with state-of-the art
DMRG [3-6,35] algorithm written in terms of matrix product
states. We perform simulations on a chain with up to N =
1201 sites and with open and appropriately fixed boundary
conditions. We perform up to 8 sweeps, keeping up to 3000
states and discarding the singular values below 1073,

The rest of the paper is organized as follows. In Sec. II
we overview the main features of the obtained phase diagram
and discuss a self-duality of the model. In Sec. III we discuss
the tricritical Ising and disorder lines. In Sec. IV we provide
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FIG. 1. Phase diagram of the interacting Majorana chain model
(2) as a function of coupling constants g and f. It contains four
gapped phases: G1 (bright yellow) and G2 (pale and dark yellow)
with threefold degenerate ground states and G3 (pale green) and G4
(green) with sixfold degenerate ground states. In addition, there are
two critical phases in the Ising universality class (light and dark
blue), two floating phases (magenta and rose); one critical phase
where the floating phase is superposed with the Ising criticality
(violet). The disorder line (dotted black) separates the commensurate
region (dark yellow) of the G1 phase from an incommensurate one
(pale yellow). Purple line denotes the Lifshitz critical line with z = 3;
solid blue lines stand for the tricritical Ising transitions; dashed blue
lines are guide to eyes and indicate possible location of the tricritical
Ising line. Red lines indicate Kosterlitz-Thouless transitions taking
place when the Luttinger liquid exponent K reaches its critical values
% (red squares) and % (red diamonds). Black dashed-dotted line
denotes the first-order transition. Along the commensurate (dotted
black) line the floating phases collapse into a multicritical point
(green star) in the eight-vertex universality class.

numerical evidences of an extended Lifshitz critical line
with the dynamical critical exponent z = 3. In Sec. V we
provide the details of the three floating phases and discuss
the Kosterlitz-Thouless transitions out of them. In Sec. VI
we provide numerical evidences that there is a commensurate
line along which the two of the floating phases collapse into a
single multicritical point. We also show that this point belongs
to the universality class of the eight-vertex model. Finally, we
discuss the results and put them into a perspective in Sec. VII.

II. PHASE DIAGRAM

Our main results are summarized in the phase diagram pre-
sented in Fig. 1. It contains nine different phases and various
types of quantum phase transitions. Below we provide a short
summary of different regimes.
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Phases:

(i) Ising-1 is a critical phase realized for small couplings
f and g that corresponds to the continuous phase transition in
the Ising universality class between the topological Z, phase
for h < 1 and a paramagnetic phase for 4 > 1. This phase is
commensurate.

(i) G is a gapped phase with threefold degenerate ground
state that corresponds to the first-order transition between
the Z, phase for 4 < 1 and a paramagnetic phase for i >
1. Small portion of the phase, before the disorder line, is
commensurate; the rest of it has incommensurate short-range
correlations.

(iii) G2 is another gapped phase with threefold degenerate
ground state. In contrast to G1 the states with spontaneously
broken parity symmetry are the ground states for 42 > 1.

(iv) Floating-1 + Ising is a critical phase where incom-
mensurate Luttinger liquid (LL) is superposed with Ising
criticality. The phase can be viewed as a continuous tran-
sition in the Ising universality class between two floating
phases,, one of which (at # > 1) spontaneously breaks Z,
symmetry. The entire phase is characterized by the cen-
tral charge ¢ = % and extends from f =0 and almost to
a commensurate line except a very tip of the phase where
we see a clear indication that Ising criticality is no longer
present.

(v) Floating-2 phase corresponds to the fist-order tran-
sition between the two floating phases with broken Z,
symmetry for 7 > 1 and the one that preserves this symme-
try for h < 1. Due to the self-duality of the model, the two
floating phases are characterized by the same wave vectors
and same critical exponents.

(vi) Floating-3 phase is a first-order transition between
two floating phases, but in contrast with floating-2 the Z,
broken symmetry phase is located at & < 1.

(vii) Ising-2 is the Ising critical phase that for small f
extends beyond the floating-1 phase. It corresponds to a
continuous Ising transition between the period-2 phase for
h < 1 with spontaneously broken translation symmetry and
period-2—Z, phase for h > 1 with both translation and parity
symmetries broken.

(viii) G4 is a gapped phase with sixfold degenerate ground
state that corresponds to the first-order transition between the
period-2 (at & < 1) and period-2-Z, (at h > 1) phases.

(ix) G3 is a gapped phase with sixfold degenerate ground
state that corresponds to the first-order transition, but in con-
trast to the G4 phase the Z, broken symmetry phase is realized
ath < 1.

In addition, the phase diagram contains a wide variety
of quantum phase transitions, special lines, and multicritical
points.

Phase transitions and special lines:

(1) Tricritical Ising (TCI). Along the line where Ising-1
critical phase turns into a gapped G1 phase the underlying
critical theory at the transition corresponds to the tricritical
Ising superconformal field theory. We use finite-size scaling
technique to locate the TCI transition between the Ising-1 and
Gl phases. For large-g Ising-2 critical phase turns into G4
gapped phase via yet another TCI line. Due to the presence
of incommensurability the location of this critical line is more
subtle and we have to look at the extended version of the

phase diagram with & > 1. The fate of this TCI line inside
the floating-1 phase is not entirely clear.

(ii) Lifshitz line separates Ising-1 from the floating-
1+Ising phases for f < 0.18 when transition between the
two is direct. Lifshitz line is a commensurate-incommensurate
transition with dynamical critical exponent z = 3. The critical
value of the LL exponent at this transition is K¢ = 1.

(iii) First-order transition. Lifshitz line continues beyond
the TCI and disorder lines as a first-order transition separating
a region where the parity symmetry is broken for 2 < 1 from
a region where this symmetry is broken for 2 > 1. For a short
interval this first-order transition quite unusually takes place
between the critical floating-2 and the gapped G3 phases.
When the first-order transition takes place between G1 and G2
phases, the ground state along the transition is expected to be
sixfold degenerate. Along the transition between G3 and G4
phases we expect the ground state to be 12-fold degenerate.

(iv) Kosterlitz-Thouless transitions. The Luttinger liquid
phase is stable against broken translation symmetry phases if
the LL exponent K > 1/p?, where p is a periodicity of the
symmetry-broken phase. Since Ising-2, G3, and G4 phases
all break translation symmetry by p = 2 sites the transition
between these three phases and the corresponding floating
ones takes place when the Luttinger liquid exponent drops
to a critical value K¢ = %. On both sides of these transitions
the phases are incommensurate that the transitions are of the
Kosterlitz-Thouless type [36]. On the other side, the LL phase
is stable against the pairing instability for K < % Note that
a pairing, an operator that simultaneously creates or destroys
a pair of particles and preserves parity, is very similar to an
instability of a spin flip in the paramagnetic phase since the
latter always creates a pair of domain walls. In both cases the
operators are relevant and lead to a gapped G1 and G2 phase
when the Luttinger liquid parameter exceeds K¢ = %

(v) Commensurate line and eight-vertex point. Inside the
overall incommensurate G4 and G2 phases there is a line
where the wave vector g takes the commensurate value g =
. Along this line the floating phase collapses into a direct
transition that according to our numerical data belongs to the
universality class of the eight-vertex model [37].

Duality

The spin model defined by the Hamiltonian (2) up to
boundary terms transforms into itself by Kramers-Wannier
duality transformation:

X X ~Z Z ~X =X
ojoiy, — 67 and of — 6,6}, (3)

where o and & are Pauli matrices. Coupling constants f and g
in the dual model are rescaled to g — g/h and f — f/h. This
implies that in an extended model with /& # 1 the transitions
between each pair of the dual phases take place exactly at h =
1. Therefore, a phase diagram presented in Fig. 1 describes a
plane of phase transitions in an extended model of Majorana
chain (1) with alternating hopping feven 7 fodd-

The property of duality is also reflected in local observ-
ables. As an illustration we show in Fig. 2 profiles of local
magnetization (07) and its dual (o; 0% ) that appears on a
finite-size chain due to Friedel oscillations. One can see a
perfect agreement between the critical scaling (the envelope
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FIG. 2. Duality reflected in local observables. Friedel oscillation
profile of (o) (blue) and its dual (070" ) (magenta) at the boundary
of the floating phase at g = 0.8 and f = 0.3. Perfect agreement
between the envelopes and oscillation frequency are the result of
self-duality of the model.

of the profile) and between the incommensurate wave vectors
(the frequency of oscillations).

III. TRICRITICAL ISING LINES

A. Location of the tricritical Ising and disorder lines for small g

In the noninteracting case f = g = 0 the Hamiltonian (2)
reduces to the transverse-field Ising model at the critical point
h = 1. From the previous studies [19,23] it is known that
neither f nor g terms immediately destroy Ising criticality.
For g = 0 it has been shown that upon tuning the coupling
constant f the critical Ising phase terminates at f = 0.428
with the end point in the tricritical Ising universality class
[23]. Beyond the end point the system is gapped with threefold
degenerate ground states that correspond to the two states with
broken Z, symmetry (ferromagnetic along x) and one with Z,
symmetry preserved (paramagnetic). At the frustration-free
point f = 0.5 these three states are exact [23]. Furthermore,
this point is also a disorder point beyond which the short-
range correlations are incommensurate.

For finite g critical properties of the system are qualitatively
similar: the Ising critical phase terminates with the tricritical
Ising line beyond which the system enters the gapped phase
with threefold degenerate ground states. Shortly after the TCI
line the system hits disorder line and its short-range order
becomes incommensurate. In order to locate the tricritical
Ising line for a finite g we look at the finite-size scaling of
the order parameter. For this we take local magnetization in
the x direction that should decay algebraically in the critical
regime and stays finite in the gapped phase. In order to lift the
degeneracy and superposition with the second ferromangetic
state we polarized the boundary spins in the x direction. This
acts as an impurity and leads to a Friedel oscillation profile
that according to the boundary conformal field theory scales
as (0}") x [(N/n)sin(rri/N)]’d, where d is the scaling di-
mension of the corresponding operator o. For the tricritical
Ising minimal model d = h, + hy = ;—0 + 83—0 =0.075 [29].
For the Ising critical theory the corresponding scaling dimen-
sion is significantly higher d = % + % = 0.125. This allows
to identify tricritical Ising transition with the separatrix in the

« f=028 X
f=0.282 L
f=0284 g=025"~

5 5.5 6
log(NV)

FIG. 3. Location of the tricritical Ising and disorder line for g =
0.25. (a) Finite-size scaling of the middle chain magnetization along
x with boundary spins polarized in the same direction. Tricritical
Ising point is associated with the separatrix; the slope (red line) is
in excellent agreement with the scaling dimension d = % of the
tricritical Ising model. The slope with the scaling dimensiond = é of
the Ising critical theory is included for a reference (dashed gray line).
(b) Scaling of the connected correlation function with the distance for
g = 0.25 and various values of f. Starting from f & 0.3 the system
shows the presence of incommensurability.

finite-size scaling of the order parameter in a log-log scale:
any convex curve leads to a finite o* magnetization in the
thermodynamic limit and thus to the gapped phase, while the
concave curve will eventually get the slop d = % of the Ising
critical phase. In Fig. 3(a) we provide an example of such a
finite-size scaling for g = 0.25. Based on the results we locate
the tricritical Ising line at f & 0.282 and the slope of the
separatrix d ~ 0.073 is in excellent agreement with the CFT
prediction d = 0.075. As one can see the curve for f = 0.28
is not yet at its asymptotic Ising regime for the available
system sizes N < 401 and has some noticeable curvature.

In order to locate the disorder line away from the ex-
actly solvable point, we look at the connected correlations
(ofo]f’) — (af)(o]?). In Fig. 3 we provide examples of these
correlation functions for g = 0.25 and various values of f
inside the dapped phase. For each point correlations decay
exponentially fast with the distance |i — j| but starting from
f =~ 0.299. One can clearly distinguish periodic oscillations
with incommensurate wave vector ¢g. The disorder line cor-
responds to the kink in the correlation length, that is often
(though not always) also a sharp minimum of the correlation
length. This agrees with a nonmonotonous behavior of the
slope of the correlations and despite the proximity to the
tricritical Ising point the correlation length at the disorder line
is very small (for f = 0.298 we got £ ~ 3.1). Let us also
emphasize that upon tuning the g term the tricritical Ising
and the disorder lines take place at smaller values of f and
approach each other.

B. Tricritical Ising transition for large g

For small values of g we located the tricritical Ising line
by looking as the finite-size scaling at the self-dual plane.
Because of the incommensurability at large g this method
would require to access much larger systems sizes that would
significantly exceed current computational limits. Instead, we
closely follow the procedure introduced in Ref. [26]: we look
at the scaling of the order parameter for # > 1 as a distance to
the self-dual plane h = 1.
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FIG. 4. Critical scaling towards Ising and tricritical Ising tran-
sition. The amplitude A(o;) extracted in the middle of the chain
with N = 400 sites in an extended version of the model with g = 1.5
and three values of f = 0.1, 0.11, 0.13 as a function of field & > 1.
Extracted critical exponents 8 ~ 0.115 and 0.126 are in excellent
agreement with the Ising critical theory, while for f = 0.13 the
critical exponent is significantly smaller in a qualitative agreement
with the tricritical Ising point for which the theory predicts g = i.
Inset: the same plot in a log-log scale.

We take an amplitude of the Friedel oscillations A(of ) in
the period-2-7Z, phase as an order parameter. The amplitude
of the oscillations A(o7) is extracted as a difference between
the largest and smallest values that (07) takes over an interval
of length N/4 in the middle of the chain. Of course, to see
it nonzero we have to break the parity symmetry by polar-
izing the edge spins in the x direction. Upon approaching
the Ising transition the amplitude is expected to decay with
the Ising critical exponent 8 = %, while upon approaching the
tricritical Ising point, the critical exponent is much smaller
and is equal g8 = i. Here we locate the tricritical Ising line
following the same procedure. An example for g = 1.5 is
provided in Fig. 4. One can see that for f < 0.11 the scaling
is in excellent agreement with the Ising critical theory, while
for f = 0.13 the effective critical exponent is significantly
smaller. It is worth to mention that the tricritical line shown
in Fig. 1 was obtained with N = 400 sites. We expect that due
to finite-size effects associated with the incommensurability
the location can be slightly underestimated, thus one can take
the blue line in Fig. 1 as a lower bound of the TCI transition
in the thermodynamic limit. As an upper bound, one takes the
commensurate line.

Upon approaching the floating-1 phase and the commen-
surate line the finite-size effects become stronger and with the
available method we cannot reach the sufficient accuracy to
locate the tricritical Ising line below g = 1.2. In this respect
the fate of the tricritical Ising line in the middle part of the
phase diagram remains an open question. We do not see any
indication of the Ising criticality on the right side of the
commensurate line. Thus, the most feasible scenario is that
the tricritical Ising line makes a turn and together with the
second tricritical Ising transition coming from small g ends up
at the end point of the Lifshitz line. We will come back to this
question in Sec. V while discussing the floating phases.
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FIG. 5. Extraction of floating phase characteristics from Friedel
oscillations profile. Examples of the Friedel oscillations inside the
floating phase obtained on a finite-size system with N = 802 sites
with polarized boundary conditions. Blue points are DMRG data, red
points are the result of the fit with Eq. (4) (blue dots are completely
hidden under red ones). Note that the uniform part of the spin density
(of) has been subtracted, and the fitting window is restricted to the
range i € [160, 642] in order to avoid a short-distance correction.

IV. LIFSHITZ TRANSITION

Upon tuning the coupling constant g and for small enough
f the system undergoes a Lifshitz transition and enters
the floating phase. At every point floating phases can be
characterized by the Luttinger liquid exponent K and the
incommensurate wave vector g. We extract both quantities by
fitting the Friedel oscillations profile with [38]

(0%} o cos(q,) @

73l [Ny sin(r j/N)E

In Fig. 5 we show an example of such a fit for f = 0.1 and
g = 0.37. In order to reduce the edge effects, we discard 20%
of sites close to each end of the chain and only fit the middle
part part as shown in Fig. 5. The result of the fit (red) is in
an excellent agreement with DMRG data (blue), such that the
latter are completely hidden under the red dots. This method
allows us to extract K and g with the spectacular accuracy.

Along f =0 line the transition to the floating phase is
known to be of the Lifshitz type [19,26]. Lifshitz transition is
a very special critical point at which (in addition to the Ising
criticality) the system simultaneously enters the Luttinger liq-
uid phase and develops incommensurability. We check this
by looking at the LL exponent K and the wave vector g as
a function of coupling f as shown in Figs. 6(a) and 6(b). The
Luttinger liquid is destroyed and the system undergoes a Lif-
shitz transition at g =~ 0.295 £ 0.005 when the LL exponent
reaches it critical value K¢ = 1 [26]. At the same value of g
the wave vector g shown in Fig. 6(b) starts to be incommen-
surate. Note that the finite-size effects at this transition are
negligibly small.

Above we have introduced the Lifshitz transition as a
critical point where Luttinger liquid phase emerges together
with incommensurability. In the theory of quantum phase
transitions there is a second example that fits this definition:
the Pokrovsky-Talapov transition [39]. Both transitions are
characterized by the vanishing sound velocity that leads to
a dynamical critical exponent z > 1, thus, none of the two
are conformal. But the dispersion relations and thus the ex-
act values of the dynamical exponents z are different: for
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FIG. 6. Numerical evidences of the Lifshitz critical line. (a) Lut-
tinger liquid exponent K and (b) wave vector ¢ as a function of
coupling g along a vertical cut at f = 0.1. K takes the critical value
K¢ =1 at the Lifshitz transition at g &~ 0.295 (dashed dark-red line),
at the same point the wave vector g shown in (b) develops in-
commensurability. The Luttinger liquid phase terminates at K¢ = %.
(c) Finite-size scaling of the energy gap between the ground state
(Ep) and first (E}) and second (E,) excitations for f = 0.1 (red) and
0.15 (blue) as a function of N3, Linear scaling is in the perfect
agreement with the dynamical critical exponent z = 3 of the Lifshitz
transition. (d) Wave vector g along a vertical cut at f = 0.3. In the
gapped phases the wave vector is extracted by fitting short-range
correlations (red crosses); in the critical phases by fitting the Friedel
oscillation profiles (red crosses for N = 401, black triangles for
N = 801). There is a pronounced jump in the wave vector g at the
first-order transition that appears as a continuation of the Lifshitz
critical line.

Pokrovsky-Talapov transition z = 2, while for the Lifshitz
universality class the theory predicts z = 3. In order to check
that the transition that we face in the phase diagram of Fig. 1
is indeed the Lifshitz one we look at the finite-size scaling
of the energy gap that is expected to vanish as A o« N7%.
We extract low-lying levels of the excitation spectra for sys-
tems with up to 40 sites by targeting several states along
with the ground state in DMRG simulations as described in
Ref. [35]. The results of these simulations for f = 0.1 and
0.15 are presented in Fig. 6(c) and are in excellent agreement
with z = 3.

Another distinct feature of the Lifshitz transition is that
by contrast to the Pokrovsky-Talapov one it appears as a
multicritical point, or in the present case a multicritical line.
In order to see that one has to think in terms of an extended
model, for instance, the one with 4 # 1, and look at the phases
away from the self-dual plane. This extended model has been
explored recently for f = 0 [26]: there, the Lifshitz point lo-
cated at g° & 0.29 and h° = 1 appears as a multicritical point
of four phases: the Z,-symmetry-broken phase for h < h¢
and g < g% its dual, the paramagnetic phase at 4 > h¢ and
g < g°; the ordinary floating phase for 4 < h° and g > g; and
a dual to that, the floating phase with spontaneously broken
Z, symmetry for h > h° and g > g°. In other words, in the
phase diagram shown in Fig. 1 the Z, symmetry is broken for
h < 1 below the Lifshitz line and for 4 > 1 above it.

(@) g=0.32 (b) g=0.36
0.8 h = 0.998 0.8

h =1.002 0.6

100 200 300 400 "0 100 200 300 400
i i

FIG. 7. Location of the Z, broken-symmetry phase on two sides
of the first-order transition. Friedel oscillations from boundary spins
polarized in x direction for f = 0.35 and (a) g = 0.32 below the
first-order transition and (b) g = 0.36 above it. For each point we
present two profiles away from the self-dual surface: for 4 = 1.002
(red) and for 4 = 0.998 (blue). The order parameter that reflects bro-
ken Z, symmetry is indicated with black arrows (for details see the
main text).

First-order transition

Surprisingly, after the Lifshitz line meets the tricritical
Ising transition it continues as a first-order transition. At this
transition we observe a pronounced jump in the wave vector
q as shown in Fig. 6(d). Below the first-order transition the
Z, broken-symmetry phase is realized for & < 1, while above
the first-order line the Z, symmetry is broken for 7 > 1. We
illustrate this in Fig. 7 where we present Friedel oscillations
from the edge spins polarized in the x direction for two points:
below and above the first-order line and away from the self-
dual plane. Below the first-order transition at f = 0.35 and
g =0.32 and for h < 1 the ground state breaks Z, symmetry
and corresponds to the two ferromagnetic states polarized
along x. Imposed boundary conditions pick up one of these
two states and allow us to detect a finite magnetization (o;")
in the bulk. At the same values of couplings f and g but for
h > 1 we see that o7 is zero in the bulk that is consistent with
unbroken Z, symmetry. For the point above the first-order
line, f = 0.35 and g = 0.36, we observe an opposite situation.
Following Ref. [26] we associate a Z; order parameter with an
amplitude of the oscillations: it is finite for 2 > 1 and goes to
zero (although quite slowly due to proximity to the floating
phase) for & < 1.

V. FLOATING PHASES

Let us now take a closer look at the floating phases and
their boundaries. The Luttinger liquid phase is stable against
broken translation symmetry by two sites if the LL expo-
nent exceeds the critical value K¢ = %. In all three phases in
the upper part of the phase diagram, Ising-2, G3, and G4,
the translation symmetry is broken (in fact, the translation
symmetry is broken in the same fashion even away from the
self-dual plane [26]. This implies that the transition out of all
floating phases, floating-1, -2, and -3, will take place at the
same value of the LL exponent K¢ = %.

An example of the Luttinger liquid parameter K extracted
along a horizontal cut at g= 0.8 that goes through all
three floating phases and phases G3 and G4 is shown in
Fig. 8(a). One can see that K is not monotonous and has
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FIG. 8. Numerical results for the floating phases. (a) Luttinger
liquid exponent K, (b) wave vector ¢ of ¢%, and (c) wave vector ¢,
of ¢* correlations. In (a) one can see the presence of four quantum
phase transitions. K drops below K¢ = % on both sides of the com-
mensurate (dotted) line where ¢ = 7 and g, = 7 /2 implying that
there is no floating phase along the commensurate line, thus there are
two Kosterlitz-Thouless (KT) transitions (dashed lines) on both sides
of it. Around f ~ 0.5 the system undergoes a first-order transition
(dashed-dotted line) from the floating-2 to G3 phase: K shows a finite
jump; g, (red crosses) jumps to 1 — g, (dashed red line). Around
f & 0.8 the system undergoes yet another Kosterlitz-Thouless transi-
tion between G3 and floating-3 phases. (d) Luttinger liquid exponent
along a vertical cut at f = 0.6. The floating-3 is stable when the LL
exponent 1/4 < K < %
two pronounced drops. The first one takes place around
f =~ 0.25 where the wave vector g takes commensurate
value ¢ = [see Fig. 8(b)]. This wave vector measures
incommensurability in local magnetization (o), and, because
of the duality, in the pairing {(07'07} ). In Fig. 8(c) we present
the incommensurate wave vector g, computed for o;* operator.
One can see that around f & 0.25 it continuously passes the
value g, = /2. The floating phase cannot exist along this
commensurate line and thus collapses into a single transition
point that we will discuss in details in the next section. The
fact that on both sides of the commensurate line the Luttinger
liquid exponent drops below K¢ = }1 fully agrees with this
picture. The second drop takes place around f ~ 0.5 and is
associated with the first-order transition from the floating-2
phase to the G3 phase until eventually, around f = 0.78,
the Luttinger liquid parameter K exceeds the critical value
K= % and the system enters the floating-3 phase.

In the lower part of the phase diagram in Fig. 1 the
Luttinger liquids become unstable due to pairing instability
that becomes relevant when the Luttinger liquid parameter
exceeds K¢ = % Since G1 phase is always incommensurate
in the vicinity of the floating phases the transition is of the
Kosterlitz-Thouless type. In Fig. 8(d) we provide an example
of the Luttinger liquid exponent K along the vertical cut at
f = 0.6. We associate the boundaries of the floating-3 with
the two points where the LL exponent K takes critical val-
ues K¢ = 1 and }1. Similar procedure has been applied for a

2
transition between the G1 floating-1 phases. We also expect

FIG. 9. Finite-size scaling of the reduced entanglement entropy
Sy (n) with the conformal distance d(n). The central charges indi-
cated for each curve were obtained by fitting the Sy (n) with Eq. (5).
Except the points deep inside the floating-1+Ising phase (blue) the

central charge is always significantly smaller than ¢ = %

that the transition between the floating-2 and G1 phases takes
place when K = % but we cannot confirm this numerically due
to proximity of the first-order transition between G1 and G2
phases and the commensurate line.

Let us also comment here that the pairing instability re-
sponsible for the transitions into G1 and G2 phases is not
relevant in the critical Ising phase. Therefore, the critical value
of the Luttinger liquid exponent at the Lifshitz transition is
larger and equal to K¢ = 1 [26].

In order to distinguish pure floating phases from the critical
phase when the Luttinger liquid is superposed with Ising crit-
icality we extract the central charge. In conformal field theory
[29] Luttinger liquid phase is characterized by the central
charge ¢ = 1, while Ising criticality has the central charge
c= % When the two critical regimes come together, the phase

is characterized by the central charge ¢ =1+ 3 = 3. The
entanglement entropy Sy(n) = —Trp, In p, is extracted from
the eigenvalues of the reduced density matrix p,. We extract
the central charge numerically from the finite-size scaling of
the entanglement entropy in an open chain that on a finite
chain with N sites scales with the size of the subsystem n
(1 € n < N)as[40]

Sy(n) = glndm) + 2{0% 0% ni1) + 58, ©)

where d = % sin(%) is the conformal distance and ¢ is a
nonuniversal constant introduced in order to suppress Friedel
oscillations from fixed boundary conditions [41,42], sg is a
nonuniversal constant that includes, in particular, the bound-
ary entropy. In Fig. 9 we provide examples of the scaling of
the entanglement entropy at four points in the floating phases:
Deep inside the floating-1+Ising phase at g = 0.8 and f =
0.1 (blue) the central charge ¢ &~ 1.46 agrees within 3% with
c= % But by upon approaching the tip of the floating-1 phase
the central charge is systematically smaller. For instance, at
g=0.5and f = 0.25 it takes a value ¢ &~ 1.4. From previous
experience with central charges inside and in the vicinity of
the floating+Ising phase we know that it changes extremely
slowly [26]. In this respect the value ¢ ~ 1.4 is a smoking
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f

FIG. 10. Sketch of the phase diagram around the multicritical
point. Along the commensurate line (dotted line) the floating phases
collapse and the transition between gapped G2 and G4 phases is
direct in the eight-vertex universality class. Red lines stand for the
Kosterlitz-Thouless transitions.

gun, suggesting that at the tip of the floating phase the central
charge in the thermodynamic limit can actually dropto ¢ = 1
but because of huge finite-size effect we observe much larger
value. If that is the case, then Ising criticality terminates inside
the floating-1 phase. In the floating-2 (g = 0.55, f = 0.4)
and floating-3 (g = 0.6, f = 0.8) phases the central charge is
always significantly smaller that ¢ = %, thus, we conclude that
Ising criticality does not intervene these floating phases.

VI. THE EIGHT-VERTEX MULTICRITICAL POINT

In Fig. 6(d) we have already seen that incommensurate
wave vector g eventually takes a commensurate value g = 7.
Along the commensurate line the floating phase cannot exist
and the transition between the G4 and G1 phases has to be
direct as sketched in Fig. 10. Recently, the nature of this tran-
sition has been studied in details in closely related models of
interacting Kitaev chain [25]. In the simplest integrable case
the model can be mapped to an XYZ model with J, = —/J,
for which Baxter has shown [37] that in the vicinity of the
transition, the critical behavior is governed by the universality
class of the eight-vertex model. This implies that critical expo-
nents, although not fixed to a single universal value, all depend
on a single parameter . In particular, the critical exponent
of the order parameter is given by g = (7 — u)/(4n) and
the scaling dimension, the ratio between § and the correla-
tion length critical exponent v, isd = B/v = (w — )/ (2m).
Later it was numerically established that even in the nonin-
tegrable case the direct transition between period-2 and Z,
phases along a commensurate line belongs to the eight-vertex
universality class [25,26]. In all these cases the location of
the commensurate line was known exactly due to an explicit
particle-hole symmetry of the Hamiltonian (or equivalently a
spin-flip symmetry o7 — —o7).

In the present case, the model defined in Eq. (2) is not
invariant under spin flip and the exact location of the com-
mensurate line is unknown. Therefore, as a first step we
locate the commensurate line by extracting the wave vector
g and identifying the point where it is commensurate (g = )
as shown in Fig. 8(b). We then repeat this procedure along
many horizontal cuts. In Appendix A we provide a table with
obtained data points.

Next, along the commensurate line we measure the local
order parameter of the G4 phase. Note that, in principle, it

_”iz+1)|

z

log |{o?

i

0.7

(d)
0.45 L 0.6
0.4 o 0.5
j=1
£035 ~— | doy4 +
= fc
03 oN=401] 03
0.25 o N =801 0.2
g o N =1201
0.2 0.1
0.25 03 0.35 0.4 0.2 0.4 0.6
f 28/(1 + 48)

FIG. 11. Numerical evidences of the multicritical point in the
eight-vertex universality class. (a) Local order parameter of the G4
phase with broken translation symmetry |(o; — o ,)| as a function
of distance L to the transition at f =~ (0.39. (b) Same as (a) but
in a log-log scale. The slope of the scaling gives critical exponent
B~ 0.66, 0.71, and 0.75 for chains with N = 201, 401, and 801
sites. (c) Apparent scaling dimension d,;, as a function of f along
the commensurate line. Upper and lower bounds of the scaling
dimension at the multicritical point are marked with dashed lines.
(d) Comparison of the numerically extracted critical exponents
and d (red error bars) and the theory predictions for the eight-vertex
model (black line).

is not necessary to follow the commensurate line and the
nature of the transition can be extracted along any cut that
lies inside the G2 and G4 phases and goes through the mul-
ticritical point. However, in practice, the G4 phase in the
vicinity of the multicritical point is extremely narrow, while
the location of the multicritical point is unknown, thus the
simplest choice for the cut is to follow the commensurate
line. Since all ground states in the G4 phase break trans-
lation symmetry we define the local order parameter as an
amplitude of the Friedel oscillations |{o — o/ ,)| in the mid-
dle of the chain. In order to reduce finite-size corrections
we fix boundary spins to be polarized along z. Usually, one
extracts critical exponent 8 by looking how the order pa-
rameter vanishes with the distance j — j¢ to the transition,
where j is a single tuning parameter that drives the system
through the transition located at j¢. According to conformal
field theory [(o; — o7 )| o< (j — j€)P. And now we face yet
another difficulty: the commensurate line along which we
have to locate the transition is not a linear function of cou-
pling constants f and g. Thus, the distance to the transition
point has to be computed along the commensurate line. The
simplest way to do so is by summing up all intervals be-
tween the available points, given the high density of data
points this provides a reasonable approximation for L. In
Fig. 11(a) we plot an order parameter |(o; — o7, )| for three
different system sizes N as a function of distance L. Here
the origin L = 0 is associated with f =~ 0.39 and g ~ 0.368.
In Appendix B we also show how the order parameter as a
function of f and g along the commensurate line. Important
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FIG. 12. Friedel oscillation profiles along the commensurate
line. The profiles are computed for a finite-size chain with
N =801 sites and boundary spins polarized along z direc-
tion. Magenta and red dots are the results of the fit to o/ o
cos(ni)[(N/rr)sin(rri/N)]_d.

to notice that all these plots are consistent with continuous
transition.

In order to extract the value of the critical exponent 8 we
plot the obtained order parameter as a function of distance
to the transition in a log-log scale. Since the location of the
critical point is not known, we try several possible locations
along the commensurate line. The best agreement with the
linear scaling is achieved when the critical point is located at
fe &~ 0.39; these results are presented in Fig. 11. In this case
the critical exponent for N = 201 is equal to 8 ~ 0.66, the
one for N =401 is g = 0.71, and for N = 801 itis 8 ~ 0.75.
By varying the location of the critical point within the interval
0.38 < f < 0.4 we got a reasonable agreement with the linear
scaling and critical exponent in the range 0.65 < 8 < 0.9. Be-
yond this interval the scaling clearly deviates from the linear
decay. The obtained range of the critical exponent might seem
large at the first glance, but it is important to remember that
at the eight-vertex critical point 8 can take any value between
0 and oo. In this respect the interval 0.65 < 8 < 0.9 is rather
well defined. Let us also comment here that from the previous
experience with eight-vertex criticality we know that the size
of the period-2 phase is typically slightly overestimated. This
means that f ~ 0.39 defines an upper bound of the location
of the critical point.

We complement our results for 8 by extracting the scaling
dimension d = B/v. At the quantum critical point it can be
extracted by fitting the Friedel oscillation profile with o7
cos(mi)[(N/m)sin(rwi/N)]~?. Since the exact location of the
critical point is not known, we will extract the apparent scaling
dimension d,p, along the commensurate line. An example of
the Friedel oscillation profile along the commensurate line
and the fit to the CFT prediction with an apparent scaling
dimension d,p, is shown in Fig. 12.

The results for dy,, are summarized in Fig. 11(c). Beyond
f =~ 0.35 the fit is no longer good and we cannot extract
the scaling dimension accurately. However, dyp, seems to be
almost linear as a function of f. We thus estimate the upper
bound of scaling dimension at the critical point d by extrapo-
lating the last four available points to the approximate location
of the phase transition f ~ 0.39. As a lower bound we take

the scaling dimension at the last available point where the fit
is still good.

To summarize, we end up with the following intervals:
0.65 < B8 .<0.9,0.392 < d <0.457, and the location of the
critical point between 0.35 < f < 0.39. In order to check
whether the transition along the commensurate line indeed
belongs to the eight-vertex universality class, we compare the
relation between 8 and d with the theory predictions. Since
the parameter p introduced by Baxter [37] is not known for
the nonintegrable model, we exclude p from the two equa-
tions and express d as a function of 8. We end up with the fol-
lowing theory prediction: d = 28/(1 + 48). In Fig. 11(d) we
show how numerically extracted critical exponents agree with
this theory prediction. Given the number of obstacles we had
to overcome and the fact that there is no fitting parameter and
the comparison between the theory and numerics is direct, the
agreement between the two is spectacular. However, let us put
as a disclaimer that the shown error bars mainly account for
the error associated with the location of the critical point on a
commensurate line. It is important to bear in mind that there is
also an error that comes from our estimate of distances to the
transition point along the commensurate line, from finite-size
effects, etc. But even keeping all these in mind there is a little
room for doubts about the nature of this multicritical point.

VII. DISCUSSION

To summarize, in this paper we study the ground-state
properties of the interacting Majorana chain. We have shown
that the combination of the two interaction terms of the short-
est possible range lead to an extremely rich phase diagram
and a wide variety of critical phenomena. We hope this will
motivate further exploration of frustrated Majorana chains.

The most striking result reported in the paper is an emer-
gence of the commensurate line along which the floating
phase collapses into a single multicritical point. We have
provided numerical evidences that this point belongs to the
universality class of the eight-vertex model. Thus far, the
eight-vertex universality class has only been realized along
the particle-hole (or spin-flip) symmetry lines. However, the
Hamiltonian (2) does not preserve this symmetry explicitly. It
means that along the commensurate line this symmetry must
be emergent.

For f =0 the eight-vertex critical point has been real-
ized at h = 0 between period-2 and Z, phases. Based on
the duality, it was argued that the same critical point must
appear at 1 = oo between the paramagnetic and period-2-Z,
phase. According to our numerical results, by tuning coupling
constant f one can bring these two points to a self-dual
surface and realize the two copies of the eight-vertex model
simultaneously. It implies that by looking at the extended
phase diagram with /4 # 1 one should be able to track the
two multicritical points on their way towards each other. It
also implies that in a three-dimensional (3D) parameter space
of (h, g, f) there is a two-dimensional (2D) surface where
correlations are commensurate.

Another interesting feature is an existence of an extended
Lifshitz line with the dynamical critical exponent z = 3. Typ-
ically appearing as a multicritical point, Lifshitz criticality
extends here over a finite interval thanks to the self-duality

054509-9



NATALIA CHEPIGA

PHYSICAL REVIEW B 108, 054509 (2023)

TABLE I. The table lists the location of the available data points
along the commensurate line. In the last column we also provide our
estimate of the distance along the commensurate line to the possible
location of the critical point at f =~ 0.39.

g f L (f ~0.39)
1 0.214 0.6649
0.8 0.241 0.4521
0.7 0.261 0.3565
0.6 0.283 0.2585
0.55 0.297 0.2065
0.5 0.315 0.1534
0.47 0.329 0.1202
0.45 0.338 0.0983
0.43 0.347 0.0788
0.41 0.358 0.0535
0.4 0.364 0.0419
0.38 0.38 0.0162
0.36 0.397

of the model and it is indeed a line of multicritical points
in an extended version of the model with three-dimensional
parameter space. Interesting to notice that at least one (and
probably two) tricritical Ising lines meet the Lifshitz transition
at its end point. The nature of this end point remains an open
question and is left for future investigation.

The tricritical Ising conformal field theory is supersym-
metric [23,29], thus, we might expect the supersymmetry to
emerge along both tricritical Ising lines. In addition to that, the
entire floating-1+Ising phase might have an emergent N =
(1, 1) supersymmetry [43,44]. The conditions to that are pre-
served Z, and U(1) symmetries. The former is preserved by
the model and not spontaneously broken at the Ising transition
at the self-dual plane. The latter is an emergent symmetry that
stabilizes the floating phase [19,24]. Furthermore, along the
Kosterlitz-Thouless transition between the floating-1+Ising
and Ising-2 critical phases one might expect the spontaneously
emergent N = (3, 3) supersymmetry. According to Ref. [34]
this higher supersymmetry can be realized if the velocity of
the fermionic degree of freedom is smaller than or equal to
the velocity of the bosonic degree of freedom. The verification
of this condition goes beyond the scope of this paper and
is left for future studies. Finally, there is also a line where

@] (b

FIG. 13. Local order parameter of the G4 phase. We show the
order parameter |(of — o7 ,)| as a function (a) f and (b) g along
the commensurate line. In both cases, the results are consistent with
continuous transition.

supersymmetric tricritical Ising line is superposed with the
floating phase and point where it crosses the Kosterlitz-
Thouless transition and enters the critical phase. It would be
very interesting to understand the underlying critical theory
and the type of supersymmetries emergent in these two cases.
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APPENDIX A: THE LOCATION
OF THE COMMENSURATE LINE

In this Appendix we provide additional numerical data
along the commensurate line. In Table I we list the location
of the available data points along the commensurate line and
the distance to the multicritical point.

APPENDIX B: ORDER PARAMETER ALONG
THE COMMENSURATE LINE

In Fig. 4(a) of the main text we have shown how the
order parameter scales with the distance L to the transition.
In Fig. 13 we show similar scaling as a function of coupling
constants f and g. In both cases, the results are consistent with
continuous transitions.
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