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Superconducting fluctuations and charge-4e plaquette state at strong coupling
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We apply the static auxiliary field Monte Carlo approach to study phase correlations of the pairing fields
in a model with spin-singlet pairing interaction. We find that the short- and long-distance phase correlations
are well captured by the phase mutual information, which allows us to construct a theoretical phase diagram
containing the uniform d-wave superconducting region, the phase fluctuating region, the local pairing region, and
the disordered region. We show that the gradual development of phase coherence has a number of consequences
on spectroscopic measurements, such as the development of the Fermi arc and the anisotropy in the angle-
resolved spectra, scattering rate, entropy, specific heat, and quasiparticle dispersion, in good agreement with
experimental observations. For strong coupling, our Monte Carlo simulation reveals an unexpected charge-4e
plaquette state with d-wave bonds, which competes with the uniform d-wave superconductivity and exhibits a
U-shaped density of states.
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I. INTRODUCTION

Superconducting fluctuations have been proposed to play
an important role in underdoped cuprates [1–14]. Their pres-
ence may be responsible for the back-bending bands above the
superconducting transition temperature Tc [15], continuous
variation of the spectral gap across the transition [16], and
probably the large Nernst effect and diamagnetic signals [17].
They have also been used to explain the mysterious pseudogap
state [18–36], but negated by some experiments showing that
superconducting fluctuations only exist in a much narrower
region than the pseudogap [37]. Their interplay with com-
peting orders may be the cause of particle-hole asymmetry
[38], time-reversal symmetry breaking [38,39], or rotational
symmetry breaking [40] observed in some materials.

In overdoped cuprates, mean-field analyses have been
widely used to describe superconductivity, since it correctly
predicted the d-wave pairing and the decrease in Tc with hole
density [1], while superconducting fluctuations have scarcely
been considered seriously [41], although experiments have
reported a linear relation between the superfluid density and Tc

and thus highlighted the crucial role of superconducting phase
stiffness [42,43]. Very recently, the angle-resolved photoe-
mission spectroscopy (ARPES) observation of a d-wave gap
and particle-hole symmetric dispersion above Tc in overdoped
Bi2Sr2CaCu2O8+δ [44–46] has stimulated intensive debates
concerning the existence of phase fluctuations in overdoped
cuprates and whether the observed anomalous properties are
due to superconducting fluctuations or involve other mecha-
nisms such as anisotropic impurity scattering [47].
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In this work, we explore the potential consequences of
superconducting fluctuations on the spectroscopic observa-
tions in overdoped cuprates. Different from previous studies
[14,47–50], we employ a static auxiliary field Monte Carlo ap-
proach [51–56] and use phase mutual information to analyze
short- and long-range phase correlations of the superconduct-
ing pairing fields. The mutual information [57–63] measures
the nonlinear association of the probabilistic distribution
[64–66] and has been successfully applied to various phys-
ical systems [67–72]. It provides an excellent indicator of
superconducting phase correlation and allows us to con-
struct a superconducting phase diagram with the temperature
and pairing interaction. We identify three temperature scales
over a wide intermediate range of the pairing interaction,
and we determine four distinct phases: the superconducting,
(macroscopic) phase fluctuating, local pairing, and disordered
regions. Calculations of the angle-resolved spectra, scatter-
ing rate, entropy, specific heat, quasiparticle dispersion, and
Fermi arc show interesting anisotropic features, beyond the
mean-field theory but agreeing well with experiments. For
sufficiently strong pairing interaction, we find a plaquette state
of charge-4e pairing with a U-shaped density of states that
competes with the uniform d-wave superconductivity [73].
Our work provides a systematic understanding of the effects of
superconducting fluctuations on the spectroscopic properties
in overdoped cuprates.

II. MODEL AND METHOD

We start with the following Hamiltonian:

H = −
∑
ilσ

til c
†
iσ clσ − μ

∑
iσ

c†
iσ ciσ − V

∑
〈i j〉

(
ψS

i j

)†
ψS

i j, (1)
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where the pairing interaction is written in an explicit form
for the spin-singlet superconductivity with ψS

i j = 1√
2
(ci↓c j↑ −

ci↑c j↓) and the strength V > 0, which may be directly derived
from an antiferromagnetic spin-density interaction or an at-
tractive charge-density interaction between nearest-neighbor
sites [74]. To decouple the pairing interaction, we apply the
Hubbard-Stratonovich transformation and introduce the aux-
iliary field �i j [75]:

−V ψ̄S
i jψ

S
i j →

√
2
(
�̄i jψ

S
i j + ψ̄S

i j�i j
) + 2|�i j |2

V
. (2)

The model is generally unsolvable. To proceed, we further
adopt a static approximation and ignore the imaginary time
dependence of the auxiliary fields. This allows us to integrate
out the fermionic degrees of freedom and simulate solely the
pairing fields �i j . We obtain an effective action:

Seff (�) = −
∑

i

ln(1 + e−β�i ) + 2β

V

∑
〈i j〉

|�i j |2, (3)

where β is the inverse temperature and �i are the eigenvalues
of the matrix

O =
(−μ − T M

M∗ μ + T

)
, (4)

in which T is the N×N hopping matrix (N is the site number)
and Mi j = �i j comes from the pairing term.

For spin-singlet pairing, �i j is symmetric and defined on
the bond between two nearest-neighbor sites i j. We thus have
totally 2N independent complex variables satisfying the prob-
abilistic distribution:

p(�) = Z−1e−Seff , Z =
∫

D�D�̄e−Seff , (5)

where Z is the partition function serving as the normalization
factor. Because O is a Hermitian matrix, all its eigenvalues �i

and consequently Seff are real. Hence, the above model can be
simulated using Monte Carlo with the Metropolis algorithm.
In the following, all presented results are obtained on a 10×10
square lattice (N = 100). We have also performed calcula-
tions on a 12×12 lattice, and the results are qualitatively
consistent. Unfortunately, due to computational limitations,
we cannot go to a larger size and conduct a comprehensive
finite-size scaling analysis to obtain more accurate transition
temperatures. But the qualitative physics is insensitive to the
lattice size, and our method is also verified for the standard
XY model. For simplicity, only the nearest-neighbor (t) and
next-nearest-neighbor (t ′) hopping parameters are included.
We take t ′ = −0.45t following the common choice in the lit-
erature [76,77] and set t as the energy unit. For real materials,
t is typically of the order of 0.1 eV. The chemical potential
μ is specially chosen to be −1.4. As plotted in the inset of
Fig. 1(a), the corresponding noninteracting dispersion always
gives a large Fermi surface as in overdoped cuprates [78,79].

III. RESULTS

For comparison, we first discuss the uniform mean-field
solution. The pairing fields are found to satisfy �x = −�y,
where the superscript represents the bond direction. A gap
along the Fermi surface is shown in the inset of Fig. 1(a),

FIG. 1. (a) The mean-field phase diagram, where Tc and �(0) are
the superconducting transition temperature and the maximum of the
momentum-dependent gap at T = 0, respectively. For comparison,
the dashed line gives the values of 8Tc from our static auxiliary
field Monte Carlo simulations to be discussed later. The inset gives
the superconducting gap �k along the Fermi surface for V = 1.5 at
T = 0.0001. (b) Evolution of the amplitude distribution p(|�|) for
all bonds at T = 0.0008, showing one peak for moderate interaction
and two peaks for strong interaction. (c) The peak position |�|max

of p(|�|) as a function of the pairing interaction V , where two
maxima are seen to occur for V � 4. The dotted line shows the
uniform mean-field solution for comparison. (d) Evolution of p(|�|)
from two-peak to one-peak structure with increasing temperature for
V = 6.1.

reflecting a typical dx2−y2 -wave structure [80]. The maximum
gap size �(T = 0) and Tc are plotted in Fig. 1(a), and both
increase with increasing pairing interaction V . The typical
BCS formula of Tc is reproduced only at small V but violated
for V > 0.5, where we find a roughly linear relation Tc ∼ V
with the ratio 2�(0)/Tc ≈ 4.6–6.1, which differs from the
predictions of the weak-coupling BCS theory. A significant
reduction of Tc (dashed line) is found once superconducting
fluctuations are included.

A. Spatial correlations of the pairing fields

Our Monte Carlo simulations of the auxiliary pairing fields
allow us to study the effect of superconducting fluctuations
beyond the mean-field solution. Figure 1(b) shows the ampli-
tude distribution of the pairing field p(|�|) on all bonds at
a very low temperature, T = 0.0008. We focus on moderate
and large pairing interactions where Tc is not too small for our
numerical simulations. For V = 1.3 and 3.6, the distributions
are quite normal and can be well fitted by a Gaussian form.
But for V � 4, it develops a two-peak structure. Figure 1(c)
summarizes the peak positions as a function of V for T =
0.0008. Compared to the uniform mean-field solution (dotted
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line), a transition occurs at V ≈ 4.0, separating the supercon-
ductivity into two regions. We will see that they correspond to
a homogeneous superconducting state for moderate V and a
spatially modulated state for large V , respectively. In Fig. 1(d),
the two-peak distribution at large V is gradually suppressed
with increasing temperature and becomes a single peak at
sufficiently high temperatures. Apart from this, however, the
amplitude distribution seems to lack distinctive features in its
temperature evolution. We therefore explore mainly the phase
fluctuations in the following sections.

We first focus on the homogeneous state for moderate
V and study its properties from the perspective of phase
correlations of the pairing fields. Our tool is the joint distri-
bution p(θ i

0, θ
i
R), where 0 ≡ (0, 0) denotes the bond attached

to any origin site, R represents the relative coordinate of the
other bond, and i = x, y denotes the bond along the x- or
y-direction. Figure 2(a) plots some typical results for i = x
and R = (1, 0) (short-distance) and (5, 5) (long-distance) at
different temperatures. Due to rotational symmetries, the re-
sults are the same for i = y. At high temperatures, we find a
uniform distribution due to strong thermal fluctuations. With
lowering temperature, two phases are gradually locked, as
manifested by the maximum distribution along the diagonal.
A direct comparison shows that this feature first appears on
short range with R = (1, 0) and then on long range with R =
(5, 5). Hence, the phase coherence of the superconducting
pairing grows gradually on the lattice to longer distance with
decreasing temperature.

To quantify the correlation, we introduce their phase mu-
tual information defined as

I i
R =

∫
dθ i

0dθ i
R p

(
θ i

0, θ
i
R

)
ln

p
(
θ i

0, θ
i
R

)
p
(
θ i

0

)
p
(
θ i

R

) , (6)

where p(x) is the marginal distribution function of the con-
tinuous random variable x, and p(x, y) is the joint probability
distribution of x and y. Figure 2(b) compares the phase cor-
relations as a function of temperature on short and long
distances. We see they all exhibit similar behavior below
Tc = 0.054 and vary exponentially (dashed lines) with the
temperature. But for R = (5, 5), the mutual information suf-
fers from an abrupt change in its temperature dependence
and diminishes more rapidly above Tc. Such a slope change
actually occurs in the phase mutual information at all dis-
tances, but is responsible for the deviation of the phase mutual
information at different but close |R| due to its more rapid
decay with distance above Tc. Thus, Tc marks a characteristic
temperature scale separating the phase coherence on different
spatial scales, above which long-range correlations are more
rapidly suppressed.

At higher temperature Tp = 0.08 for the chosen param-
eters, a weaker slope change is found for both short- and
long-distance correlations. To see what happens at this tem-
perature, we apply the principal component analysis (PCA)
to the Monte Carlo samples as collected in Fig. 2(a). As
expected, this reveals two principal directions θ±

R = 1√
2
(θ0 ±

θR) on the (θ0, θR) plane for all temperatures, with opposite
temperature dependence of their variances. The superscript i
is dropped because the data on both bond directions i = x, y
are considered together. As shown in Fig. 2(c), the decrease

FIG. 2. (a) Comparison of the joint distribution p(θ x
0 , θ x

R) for
R = (1, 0) and (5, 5) at different temperatures. (b) Evolution of the
short- and long-distance phase mutual information calculated from
(a) as a function of temperature, showing two temperature scales
Tc and Tp (vertical gray lines) from the slope change. (c) Tem-
perature dependence of the variance of two principal components
θ±

R = 1√
2
(θ0 ± θR) from PCA analyses of the data in (a) for short-

and long-distance phase correlations. The inset shows the results
for R = (1, 0) on a larger temperature window. (d) Decay of the
phase mutual information Ix

R with distance |R| = |Rx| + |Ry|. The
dotted lines give the power-law fit using Ix

R ∝ |R|−α below Tc and
the exponential fit Ix

R ∝ exp(−|R|/ξ )| above Tc, respectively. (e) The
extracted correlation length ξ vs (T/Tc − 1)−1/2 following the BKT
prediction (dashed line) for T > Tc. The inset shows the extracted
exponent α for T < Tc.

of var(θ−
R ) signifies the increase of phase locking degree

on the distance R with lowering temperature. Interestingly,
var(θ±

R ) become almost equal above Tp along both directions
for R = (5, 5), implying a uniform distribution on the (θ0, θR)
plane and hence the almost complete loss of phase correla-
tion on long distances. On the other hand, the two variances
still differ for R = (1, 0), indicating the existence of short-
range correlation. The latter is to be suppressed only at much
higher temperatures above Tl = 0.25, as shown in the inset of
Fig. 2(c). Thus, Tl marks a temperature scale above which no
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phase correlations are present (a disordered state). Below Tl ,
the pairing fields start to develop phase correlations between
neighboring bonds, indicating the onset of local pairing only.
Phase correlations on longer distances only emerge below Tp

in the phase fluctuating state and eventually grow into a quasi-
long-range order [two-dimensional (2D) superconductivity]
at Tc.

The above separation of different regions may be seen from
a different angle by plotting the mutual information as a func-
tion of the “distance” |R| ≡ |Rx| + |Ry| (not the Euclidean
distance). The results of Ix

R are shown in Fig. 2(d). We ob-
serve power-law decay below Tc, characterized by Ix

R ∝ |R|−α ,
while above Tc the data can be fitted with an exponential func-
tion, Ix

R ∝ exp(−|R|/ξ ). The data saturate for larger distances
below Tc, reflecting the quasi-long-range order under finite
lattice size. We have examined these different behaviors in the
standard XY model with the famous Berezinskii-Kosterlitz-
Thouless (BKT) transition [81–83]. A slight difference is
that the finite-size effect seems less pronounced in the XY
model, possibly due to the inclusion of long-range interactions
beyond nearest neighbors by integrating out the fermions in
our model. Although finite-size effects cut off the power-law
decay with distance below Tc, the temperature dependence
of the phase mutual information still effectively captures the
transition point for both models. Interestingly, the extracted
correlation length ξ also follows closely the scaling, log(ξ ) ∝
(T/Tc − 1)−1/2, predicted by the BKT transition, and deviates
above the phase fluctuation transition temperature Tp. Below
Tc, the decay rate α extracted from the power-law scaling of Ix

R
decreases with temperature. As shown in the inset, it remains
a small value and approaches zero as T → 0, indicating the
establishment of true long-range order in the limit of zero
temperature.

B. Effects on spectroscopic properties

Having established how the superconductivity is developed
from its phase correlation, we now examine how these may
be related to the experimental observations in real materials.
First of all, the d-wave nature of the superconducting pairing
can be seen from the joint distribution of θ x

0 and θ
y
0 connected

to the same site. As shown in the inset of Fig. 3(a), we find a
rough correlation, θ

y
0 = θ x

0 ± π , namely a sign change of the
pairing fields along two perpendicular bond directions. Here
we define the mutual information between θ x

0 and θ
y
0 attached

to the same site along two perpendicular directions:

Ixy
0 =

∫
dθ x

0 dθ
y
0 p

(
θ x

0 , θ
y
0

)
ln

p
(
θ x

0 , θ
y
0

)
p
(
θ x

0

)
p
(
θ

y
0

) . (7)

As we can see in Fig. 3(a), its temperature dependence ex-
hibits similar slope changes at Tc and Tp.

The separation of phase correlations on short and long dis-
tances has important consequences on the spectral properties,
which may be studied by assuming a twist boundary condition
to overcome the finite-size effect [84]. Figure 3(b) plots the
total density of states at the Fermi energy N (0) normalized
by its high-temperature value. It is almost a constant above
Tp, but then decreases gradually with lowering temperature,
reflecting the spectral weight depression induced by a gap
opening at zero energy. Interestingly, its temperature deriva-

FIG. 3. (a) Temperature dependence of the phase mutual infor-
mation Ixy

0 between the x- and y-bonds attached to the same site.
The inset shows their joint phase distribution at T = 0.034, indi-
cating d-wave correlations between two bonds. (b) The normalized
total density of states N (0) at the Fermi energy and its temperature
derivative dN (0)/dT as functions of temperature, showing features
at Tc and Tp (gray vertical lines) determined from the phase mutual
information. (c) Temperature evolution of the total density of states
N (ω), showing the gradual gap opening near the Fermi energy. The
inset illustrates the azimuthal angle φ and the positions of node and
antinode. (d) Temperature dependence of the angle-resolved spectral
function A(φ, 0) and its derivative dA(φ, 0)/dT at the noninteracting
Fermi wave vector and the Fermi energy at V = 1.5 for φ = 0.2, 0.3.

tive dN (0)/dT exhibits a maximum at around Tc, consistent
with the slope change of the phase mutual information Ix(y)

(5,5).
Correspondingly, as shown in Fig. 3(c), a pseudogap develops
gradually on N (ω) with lowering temperature over the inter-
mediate range Tc < T < Tp. These establish a close relation
between the phase correlation and the spectral gap of the
superconductivity.

A similar temperature evolution is also seen in the
angle-resolved spectral function A(φ, 0) and its temperature
derivative dA(φ, 0)/dT along the azimuthal angle φ at the
noninteracting Fermi wave vector and zero energy. For larger
φ away from the antinode, the spectral function grows to a
maximum at lower temperature and has a higher residual value
at the zero-temperature limit. Meanwhile, its temperature
derivative becomes more enhanced below Tc but suppressed
above Tc. Such an intrinsic anisotropy has been observed in
the latest ARPES experiment [45].

To clarify the origin of the anisotropy, we compare in
Fig. 4(a) the temperature dependence of the spectral func-
tions A(φ,ω) for different azimuthal angle φ. Obviously, they
exhibit very different behaviors near nodal or antinodal direc-
tions. Figure 4(b) plots the extracted spectral gap �(φ, T ) as
a function of temperature. With increasing temperature, the
gap closes first near the nodal direction. Thus as shown in
Fig. 4(c), it only satisfies the ideal d-wave form �(φ, T ) ∝
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FIG. 4. (a) Temperature evolution of the angle-resolved spec-
tral function A(φ,ω) on different positions of the Fermi surface.
(b) Comparison of the extracted gap �(φ, T ) from (a) as functions
of the temperature T . (c) Angular dependence of the spectral gap
�(φ, T ) and scattering rate �(φ, T ) on the Fermi surface. � and �

are defined as the energy and the half-maximum half-width of the
upper peak of the spectral function A(φ,ω). Parts (d) and (e) give
the calculated thermal entropy S(φ, T ) and specific heat coefficient
γ (φ, T ) as functions of temperature at different positions (φ) on the
Fermi surface.

cos(2φ) (green dashed line) at sufficiently low temperatures.
This is beyond the mean-field approximation but reflects
the effect of phase fluctuations. Consequently, the scattering
rate �(φ) estimated from the half-maximum half-width of the
upper peak of A(φ,ω) also exhibits smaller values near the
node.

The anisotropy of the spectral functions has an effect on
the angle-resolved thermal entropy S(φ, T ) and the specific-
heat coefficient γ (φ, T ) = dS(φ, T )/dT by using S(φ, T ) =
− ∫

dωA(φ,ω)[ f ln f + (1 − f ) ln(1 − f )], where f is the
Fermi distribution function. As shown in Figs. 4(d) and 4(e),
the resulting S(φ, T ) and γ (φ, T ) exhibit a similar temper-
ature and angle dependence to A(φ, 0) and dA(φ, 0)/dT in
Fig. 3(d), which agree well with the entropy reduction and
specific-heat anisotropy reported in the latest ARPES experi-
ment [45].

To further compare with experiment [45], Fig. 5(a) plots
the energy-momentum dependent spectral function A(ky, E )
at fixed kx = −3.047, which allows us to extract the energy of
the maxima for each ky. The resulting dispersions are shown

FIG. 5. (a) Intensity plot of the spectral function A(ky, ω) for
kx = −3.047 at T = 0.022, 0.070, and 0.098. (b) Extracted disper-
sions from the spectral functions at different temperatures, showing
back bending even above Tc. The vertical gray lines mark the Fermi
wave vector ky = ±0.4712. (c) The dispersions near antinode and
node for T = 0.066 and 0.034. For comparison, all curves are shifted
such that the Fermi wave vectors are located at ky = 0.5 (gray line).
For clarity, only the lower (negative energy) parts of the supercon-
ducting dispersions are shown. (d) Length of the Fermi arc l (φ) as a
function of temperature. The green arrows mark Tc and Tp, and the
dashed line is a guide to the eye. The inset shows a Lorentzian fit of
the angle-dependent spectral function A(φ, 0) on the Fermi surface.
(e) Intensity plot of the spectral function A(k, 0) at zero energy in
the first Brillouin zone for different temperatures, showing gradual
development of the Fermi arc.

in Fig. 5(b) for T = 0.098, 0.07, and 0.022. We see that the
dispersion exhibits back bending even for T = 0.07 > Tc but
almost recovers the normal state one for T = 0.098 > Tp. The
vector kG where the bending occurs is the same as the Fermi
vector kF = ±0.4712 (the gray vertical line), which differs
from the prediction based on density wave or magnetic order
pictures. The extracted dispersion also manifests anisotropy
due to phase fluctuations. In Fig. 5(c), the dispersion near kF

(the gray vertical line) shows an angle-dependent gap at T =
0.034, but a clear node-antinode dichotomy at T = 0.066,
with the near-node dispersion crossing the Fermi energy and
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the near-antinode dispersion exhibiting a gap and back bend-
ing, as reported previously in underdoped experiments [15].

The effect of the phase correlation is also reflected in
the topology of the Fermi surface. As shown in the inset of
Fig. 5(d), the angle-dependent spectral function A(φ, 0) is
gradually suppressed away from the nodal point with low-
ering temperature. This leads to a variation of the Fermi
arc [27,85,86], whose length l (φ), estimated from the 0.6-
maximum width of the spectral peak, is plotted in Fig. 5(d)
as a function of temperature. We see that l (φ) almost sat-
urates below Tc, increases linearly with temperature in the
intermediate region, and reaches a full length (Fermi surface)
at high temperatures. This confirms its connection with the
phase correlation identified using the phase mutual informa-
tion. Such a temperature variation of the Fermi arc length
has been observed in scanning tunneling spectroscopy (STS)
experiment [20], implying that the zero arc length reported
in the ARPES experiments [87] might originate from the
peaks of the artificially symmetrized A(φ,ω). To be specific,
Fig. 5(e) maps out the zero-energy spectral function A(k, 0) in
the first Brillouin zone, and we see a clear evolution from the
Fermi arc at T = 0.058 to the Fermi surface T = 0.09. This
variation indicates that the Bogoliubov quasiparticle appears
at different temperatures in different regions of the Fermi sur-
faces. The arc is more broadened close to the node, consistent
with previous experiment [88].

C. The superconducting phase diagram
and a strong-coupling plaquette state

Having identified the different regions of phase correla-
tions at a fixed V , we now turn to their variation with the
pairing interaction. As shown in Figs. 6(a) and 6(b), the range
of exponential temperature dependence also varies. As V in-
creases, the curves first move to higher temperatures, but then
shift somewhat backwards. Such a nonmonotonic variation is
better seen in Figs. 6(c) and 6(d), where the phase mutual
information Ix

(1,0) and Ix
(5,5) are replotted as a function of V for

different temperatures. Both exhibit nonmonotonic behavior
with increasing V at low temperatures, indicating that the
phase correlations are suppressed when the pairing interaction
is getting too large. As we will see, this is closely associated
with the two-peak structure of the amplitude distribution in
Fig. 1(d).

Taken together, a superconducting phase diagram can be
constructed and shown in Fig. 6(e), where both Tc and Tp

behave nonmonotonically with V . Also shown is a third tem-
perature scale T2, below which the amplitude distribution has
two peaks. T2 only appears for sufficiently large V , indicat-
ing a strong-coupling limit whose nature will be clarified
later. Interestingly, we see that Tc takes its maximum near
the critical V of the two-peak distribution and is suppressed
as T2 increases. This suggests that the superconductivity is
competing with this strong-coupling state.

To clarify this issue, we compare in Fig. 7(a) typical Monte
Carlo configurations of the pairing fields for weak, interme-
diate, and strong V at T = 0.001. The size of the square
represents the amplitude |�| and the color denotes the sign
of the phase θ ∈ (−π, π ]. For weak V = 0.5, the distribution
on the lattice is random, reflecting that the system is not

FIG. 6. Comparison of the short- and long-distance phase mu-
tual information with R = (1, 0) and (5,5) (a),(b) as functions of
temperature for different pairing interactions, and (c),(d) as func-
tions of the pairing interactions for different temperatures. (e) The
superconducting phase diagram with Tc and Tp determined from
the phase mutual information and T2 from the onset of two-peak
amplitude distribution. (f) Comparison of the condensation energy
Eg for the uniform mean-field solution and the static auxiliary field
Monte Carlo (SAF-MC) solution. Also shown is the variance of the
amplitude distribution var(|�|) from the Monte Carlo simulations at
T = 0.001.

yet in a phase-coherent region (T > Tc). For intermediate
V = 3.7, we find a uniform distribution of the amplitude,
while the phase changes sign periodically and exhibits a d-
wave-like pattern. It is straightforward to identify this state
as the uniform d-wave superconductivity. For strong V = 6.1,
the amplitude distribution is no longer uniform but exhibits
cluster patterns. We call it a charge-4e d-wave plaquette state
since it is formed out of local plaquettes [89] with four bonds
of large |�| in a unit cell surrounded by weak bonds in a 2×2
cell. The plaquette has the same sign structure as the d-wave
superconductivity. The whole state can be regarded as weakly
connected charge-4e plaquettes. Clearly, this is not a phase
separation and the two-peak feature of the amplitude distri-
bution is a reflection of the special plaquette structure. This
state breaks the translational invariance of the pairing fields,
but keeps the uniform distribution of the electron densities.
It persists to a very large V = 7.5, beyond which the bonds
become less correlated as t/V → 0.
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FIG. 7. (a) Typical configurations of the pairing fields at T =
0.001 for V = 0.5, 3.7, and 6.1. The square size represents their
amplitude, and the colors mark the sign of their phase θ ∈ (−π, π ].
(b) Evolution of the total density of states N (ω) with pairing inter-
actions at T = 0.025, showing a crossover from V-shape to U-shape.
(c) Temperature dependence of N (ω) at V = 4.9. The inset shows the
joint distribution of θ x

0 and θ
y
0 at T = 0.02, indicating d-wave-like

bonds for the pairing fields in the plaquette state.

To show that the plaquette state is stable over the uniform
superconductivity, we calculate their condensation energies
using

Eg =
∑

l

|ξl | +
∑
〈i j〉

2|�i j |2
V

−
∑

l

�l , (8)

where l = 1, 2, . . . , N and ξl is the eigenvalue of the nonin-
teracting Hamiltonian. Figure 6(f) compares the condensation
energies of the mean-field uniform solution and the Monte
Carlo solution. For small V , we see they are almost equal.
But beyond the critical V of the plaquette state, the mean-field
uniform solution has higher energy than the Monte Carlo
(plaquette) solution. In this region, the variance var(|�|) of
the amplitude distribution grows rapidly with increasing V ,
reflecting an increasing difference between the strong and
weak bonds.

The transition to the plaquette state may be detected from
the V-shape-to-U-shape change of the density of states as
shown in Fig. 7(b). Figure 7(c) plots N (ω) at V = 4.9 for
different temperatures. The plaquette state melts as N (ω)
changes from a U-shape to a V-shape with increasing tem-
perature. Note that a U-shaped curve is typically ascribed to
s-wave superconductivity. However, the plaquette state still
exhibits d-wave-like bonds as shown in the inset of Fig. 7(c).
A similar variation has been observed in STS measurement
in twisted trilayer graphene [73], where it was argued to
originate from two-particle bound states. In our simulations,
the four-particle plaquette state is more favored with a nearest-
neighbor pairing interaction.

It has been suggested that strong attractive interaction may
always lead to phase separation [90–94]. It could be that the
pairing interaction for the plaquette state is not yet strong
enough. For sufficiently large V , we find randomly distributed
dimers and plaquettes, possibly because the pairing correla-
tions are suppressed as t/V becomes too small. The plaquette
state may be in some sense related to a pair density wave
(PDW) [95–97]. But our derived configuration is special. It
does not induce any charge-density wave and may only be
produced by a complicated combination of uniform super-
conductivity and bidirectional PDW states of the wave vector
(0, π ) and (π, 0). It may thus be better viewed as a different
strong-coupling limit of the d-wave superconductivity.

IV. DISCUSSION AND CONCLUSIONS

We have applied the static auxiliary field Monte Carlo
method to study phase correlations of the superconducting
pairing fields. We can reproduce the weak-coupling BCS so-
lution of the mean-field theory and identify a region above
Tc by separation between short- and long-distance phase cor-
relations for moderate and strong pairing interactions. This
phase fluctuating region above the uniform d-wave supercon-
ductivity has a number of spectroscopic features including the
anisotropy of the angle-resolved gap opening, scattering rate,
and specific heat coefficient, as well as gradual development
of the Fermi arc. These provide a potential explanation of the
experimental observations in overdoped cuprates, and suggest
that angular or momentum dependence of the gap opening
temperature may be a general feature of phase fluctuations.
For sufficiently strong pairing interaction, our simulation re-
veals a competing charge-4e plaquette state with d-wave-like
bonds and a U-shaped density of states, which may be useful
for understand the pairing in the strong-coupling limit. The
superconducting transition temperature seems maximal near
the critical pairing interaction of the plaquette state, raising an
interesting question concerning their relationship.

While our method captures the superconducting fluctua-
tions at finite temperatures beyond the uniform mean-field
theory, it ignores the imaginary-time dependence of the
pairing fields and therefore cannot apply at very low tem-
peratures where quantum fluctuations become important. By
integrating out the fermions, we only focus on the super-
conducting properties where nearest-neighbor pairing plays
a dominant role. It should be mentioned that we begin the
calculations with an attractive spin-singlet pairing interaction.
Ignoring other possible instabilities, this effective pairing in-
teraction covers a variety of microscopic pairing mechanisms,
including the nearest-neighbor antiferromagnetic spin interac-
tion, the nearest-neighbor attractive charge-density interaction
[98–100], and the spin fluctuation mechanism in momentum
space [74]. While these mechanisms may be supported by
different experiments [98,101,102], they exhibit similar super-
conducting properties as revealed in our calculations.

It may be useful to compare our results of the uniform
superconductivity with the XY model, which is believed to
describe the physics of two-dimensional superconductivity
[10,12,103]. For this purpose, we have to first define the
superconducting order parameter on the lattice sites, namely
�i = 1

4 (�i,i+x + �i,i−x − �i,i+y − �i,i−y ), where �i,i±x and
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�i,i±y are the pairing fields on the four bonds connected to site
i. The number of vortices can then be calculated using �i fol-
lowing the standard definition [13] and found to be nearly zero
below Tc, grow rapidly between Tc and Tp and slowly above
Tp, and eventually saturate above Tl . The rapid increase above
Tc is in good correspondence with that predicted for the BKT
transition due to the unbinding of vortices and antivortices,
indicating that our Tc is exactly the BKT transition tempera-
ture. The power-law decay of the phase mutual information
indicates a quasi-long-range order that does not break U(1)
symmetry conforming to the well-known Mermin-Wagner
theorem [104,105]. Our identification of three temperature
scales and four distinct regions may offer some insight into the
triple transition in resistance experiment [41], where normal
metal, pseudogap (incoherent metal), phase fluctuation, and
superconductivity are separated. A similar scenario may also
be related to the transition between superconductivity and
normal metal, where disorder or magnetic field may broaden
the transition and lead to one or two intermediate regions
[106,107].

Superconducting phase fluctuations also play an important
role in other superconductors, such as Fe-based superconduc-
tors [108–111] and disordered conventional superconductors
[112–118]. Our method may also provide useful insight into
the interplay between phase fluctuations and other important
effects such as disorder, multiband, and time-reversal symme-
try breaking in these systems.
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APPENDIX A: ORIGIN OF THE PAIRING INTERACTION

We show that the spin-singlet pairing interaction may be
derived from different microscopic models. To see this, we
first define the spin-singlet and spin-triplet pairing operators
in real space:

ψS
i j = 1√

2

∑
α,β

ciα (−iσy)αβc jβ,

ψT
i j = 1√

2

∑
α,β

ciα (−iσyσ)αβc jβ,

(A1)

which satisfy ψS
ji = ψS

i j and ψT
ji = −ψT

i j .
For nearest-neighbor attractive charge density interaction,

we have

Vint = −V c
∑
〈i j〉

nin j

= −V c
∑
〈i j〉

[(
ψS

i j

)†
ψS

i j + (
ψT

i j

)†
ψT

i j

]
. (A2)

Since this model favors d-wave superconductivity [35,99], we
may discard the spin-triplet part and obtain the singlet pairing
interaction in Eq. (1) with V = V c.

For nearest-neighbor antiferromagnetic spin density inter-
action, we have

Vint =
∑
〈i j〉

Jsi · s j

= −J

4

∑
〈i j〉

[
3
(
ψS

i j

)†
ψS

i j − (
ψT

i j

)†
ψT

i j

]
. (A3)

Again, we may exclude the spin-triplet pairing and obtain the
singlet pairing interaction in Eq. (1) with V = 3

4 J .
The spin fluctuation interaction in momentum space may

be transformed into real space, yielding

Vint =
∑

q

V (q)sq · s−q =
∑

i j

V (ri − r j )si · s j, (A4)

where sq = ∑
k

∑
α,β c†

k+qα

σα,β

2 ckβ and V (ri ) = ∑
q V (q)eiqri .

For some typical phenomenological form of V (q) [76], the
deduced interaction in real space is dominated by on-site
repulsion interaction and nearest-neighbor antiferromagnetic
spin density interaction. Excluding the on-site pairing and
considering only the nearest-neighbor pairing yield the singlet
pairing interaction in Eq. (1).

APPENDIX B: THE EFFECTIVE ACTION

The action of the Hamiltonian (1) is

S[c̄, c] =
∫ β

0
dτ

[∑
ilσ

c̄iσ (τ )[(∂τ − μ)δil − til ]clσ (τ )

−V
∑
〈i j〉

ψ̄S
i j (τ )ψS

i j (τ )

⎤
⎦. (B1)

To decouple the pairing interaction term, we use the
Hubbard-Stratonovich transformation [75] by introducing the
auxiliary pairing field �i j for each nearest-neighbor pair:

−V ψ̄S
i j (τ )ψS

i j (τ )

→
√

2
(
�̄i jψ

S
i j (τ ) + ψ̄S

i j (τ )�i j
) + 2|�i j |2

V
, (B2)

where �̄i j is the complex conjugate of �i j . In the static ap-
proximation, the pairing fields are assumed to be independent
of the imaginary time τ .

Thus we have the new action,

S =
∑

n

ψ̄ (iωn)(−iωn + O)ψ (iωn) + 2β

V

∑
〈i j〉

|�i j |2, (B3)

where [ψ̄ (iωn)] j = c̄ j↑(iωn), [ψ̄ (iωn)]N+ j = c j↓(−iωn) for
j = 1, 2, . . . , N , and

O =
(−μ − T M

M∗ μ + T

)
, (B4)

in which Ti j = ti j is the hopping matrix and Mi j = �i j con-
tains the pairing term. Integrating out the fermions yields the
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final effective action,

Seff = −
∑

i

ln(1 + e−β�i ) + 2β

V

∑
〈i j〉

|�i j |2, (B5)

where �i is the eigenvalue of O. In deriving this expression,
we have used

∫
Dψ̄Dψe− ∑

n ψ̄ (iωn )(−iωn+O)ψ (iωn ) =
∏

n

det(O − iωn)

(B6)
and

∑
n

ln(�i − iωn)eiωn0+ = ln(1 + e−β�i ). (B7)

APPENDIX C: THE MEAN-FIELD SOLUTION

Under the mean-field approximation, we define �i j =
− 1√

2
V 〈ψ s

i j〉 and assume a uniform mean-field solution �x
i j =

�x and �
y
i j = �y with �x = −�y = �. This leads to a

d-wave gap in the momentum space, �k = 2�[cos(kx ) −
cos(ky)], that satisfies

� = V

N

∑
k

�k

2Ek
[1 − 2 f (Ek)] cos(kx ), (C1)

where f (Ek) is the Fermi-Dirac distribution function,
Ek = √|�k|2 + ξ 2

k , and ξk is the dispersion of an electron.

APPENDIX D: MONTE CARLO SIMULATIONS

The effective action (B5) gives the probabilistic distribu-
tion of the 2N independent complex variables �i j :

p(�) = Z−1e−Seff , Z =
∫

D�D�̄e−Seff , (D1)

which may be simulated using the Monte Carlo approach with
the Metropolis algorithm following the standard procedures:

(a) Assign random initial values to the pairing field, �i j ,
on each bond and calculate the matrix O and its eigenvalues.

(b) Update the pairing field to |�i j |′ = |�i j | + ηaxV or
θ ′

i j = θi j + ηt x, with x being a random number distributed
uniformly between −1 and 1. We find that ηa = 1 and ηt = π

can give an appropriate acceptance rate.
(c) Calculate the change in the effective action, δS =

Seff (�′) − Seff (�), and accept the update with probability
min{1, exp(−δS)}.

(d) Repeat (b) and (c) for 10 000 sweeps for thermalization
and then 150 000 sweeps for measurement. During the mea-
surement, we take one sample for 2N pairing fields after every
10 sweeps to reduce the self-correlation effect in the data. All
physical quantities are calculated by averaging over 15 000
configurations of the pairing fields.

APPENDIX E: MUTUAL INFORMATION

The mutual information between two continuous random
variables X and Y is defined as [57]

I (X,Y ) =
∫∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy, (E1)

where p(x, y) is their joint probability distribution function,
and p(x) and p(y) are their respective marginal probabil-
ity distribution functions. We have p(x) = ∫

p(x, y)dy and
p(y) = ∫

p(x, y)dx. In practice, we divide the variable domain
into intervals and calculate the mutual information by

I (X,Y ) ≈
∑
i, j

pi, j log
pxy

i, j

px
i py

j

, (E2)

where pxy
i, j , px

i , and py
j are the probabilities for X and Y taking

values in the ith and jth intervals, respectively.
We have chosen 21 intervals in our calculations of the

phase mutual information. The results are found to be qual-
itatively stable if we change the interval size within an
appropriate range, or adopt other methods including the adap-
tive interval partition [59], the KSG method based on kth
nearest neighbors [58], and the neural network estimation
[62].

APPENDIX F: SPECTRAL CALCULATIONS

To overcome the finite-size effects for spectral property
calculations, we apply the twisted boundary conditions [84]:

ciσ → ciσ e−iσφ·ri , φ =
(

2π lx
nxmx

,
2π ly
nymy

)
(F1)

with lx = 0, 1, . . . mx − 1 and ly = 0, 1, . . . my − 1. Here mx

(my) denotes the number of sublattices in the x (y) direction,
and nx (ny) denote the number of lattice sites in the x (y)
direction of the original lattice. For a square lattice, we have
mx = my and nx = ny. This corresponds to the following trans-
formation:

ti j → ti je
iφ·rl , μ → μ,

�̄i j → �̄i je
iφrl , �i j → �i je

iφrl , (F2)

where rl = r j − ri.
In momentum space, the dispersion changes to εk →

εk+φ = −∑
i j ti jei(k+φ)·rl , which effectively includes mxnx ×

myny k-points for calculating physical properties. The pairing
fields are then

�k1+φ,k2+φ = 1

N

∑
i j

�i je
iφrl −ik2ri+ik1r j . (F3)

We have in the action

O =
(

εk+φ − μ M
M† −εk+φ + μ

)
, (F4)

where Mi j = �k j+φ,ki+φ. This can be diagonalized for each φ

and field configuration. The electron Green’s function is then
obtained after averaging over all field configurations, which
gives the spectral function and the density of states presented
in the main text.
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