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Superconducting valence bond fluid in lightly doped eight-leg t-J cylinders
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Superconductivity in doped quantum paramagnets has been a subject of long theoretical inquiry. In this work,
we report a density matrix renormalization group study of lightly doped t-J models on the finite-width square
lattice (doped hole densities δ = 1/12 and 1/8) with parameters for which previous studies have suggested that
the undoped system in 2D is either a quantum spin liquid or a valence bond crystal. Our studies are performed on
cylinders with width up to 8. Ground-state correlations are found to be nearly identical for the “doped quantum
spin liquid” and “doped valence bond crystal.” Upon increasing the cylinder widths from 4 to 8, we observed a
significant strengthening of the quasi-long-range superconducting correlations and a dramatic suppression of any
“competing” charge density wave order. Extrapolating from the observed behavior of the width eight cylinders,
we speculate that the system has a nodeless d-wave superconducting ground state in the 2D limit.
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I. INTRODUCTION

The mechanism by which superconductivity (SC) arises
from doped “Mott insulators” continues to attract broad the-
oretical interest, especially as it relates to the mechanism
of high temperature superconductivity in the cuprates [1–4].
Based on extrapolations from weak coupling [5] or various
mean-field theories [6,7], suggestive evidence has accrued that
unconventional superconductivity emerges near half-filling
in the Hubbard and related models with strong short-range
electron-electron repulsion. However, controlled numerical
treatments of the intermediate coupling problem, espe-
cially using density-matrix renormalization group (DMRG)
[5,7–11], have found that SC is less ubiquitous than was
originally conjectured.1 For example, in the “pure” Hubbard
or the related t-J model (with only nearest-neighbor (NN)
hopping t1), the undoped system (i.e., with n = 1 electron per
site) is well known to exhibit strong Néel antiferromagnetic
(AF) order characterized by a NN exchange coupling J1 ≈
4t2

1 /U . However, there is a growing consensus that unidirec-
tional charge density wave (CDW) (i.e., “stripe”) order rather
than SC arises for doped hole concentrations, δ ≡ 1 − n, in
the interesting range 0 < δ < 1/4 [9–19]. In the presence of
next-nearest-neighbor (NNN) hopping t2 and the generated
exchange coupling J2, the AF order at δ = 0 tends to be
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1Similar conclusions concerning competing orders quenching SC

were reached on the basis of variational auxiliary field quantum
Monte Carlo calculations in Refs. [40–42].

frustrated. At the same time, for δ > 0, SC correlations are
found to be significantly enhanced [13–15,19–22], although,
on systems wider than four-legs, this enhancement is only
observed when t2 > 0 [14–16,21]. The dependence of SC on
the sign of t2 was surprising in the cuprate context, given that
to reproduce the band dispersions of hole-doped cuprates seen
in ARPES, i.e., to obtain a closed hole-like Fermi surface
enclosing the (π, π ) point, requires t2 negative [23].

In this paper, we study the t-J model, which is defined in
Sec. II, Model and Method, with doping concentrations δ =
1/12 and 1/8 and with parameters t1/J1 = 3 (Ueff ≡ 4t2

1 /J1 =
12t1) and t2/t1 = √

0.5 and
√

0.55 such that J2/J1 = 0.5 and
0.55. Like other DMRG studies, this is done on cylinders with
a finite width W and length L > W . The maximum W we can
study is W = 8. (For W = 8, we have considered L = 24.)
For these values of J2/J1, earlier DMRG studies suggest that
the undoped (δ = 0) system at J2/J1 = 0.5 is a quantum spin
liquid (QSL), while at J2/J1 = 0.55, it is a valence bond crys-
tal (VBC) in the 2D limit [24–27]. (Other scenarios have also
been proposed.) However, on cylinders with W � 8, we found
no qualitative difference between these two values of J2/J1.
In both cases, the state can be characterized as a quantum
paramagnet in the sense that there is a finite spin-gap and
spin-spin (see Sec. III C) and dimer-dimer (see Sec. III D)
correlations both fall exponentially with distance. Moreover,
the correlation lengths are smaller than W when W � 6 and
show no tendency to increase with increasing W [24–28].

For δ = 1/12 and 1/8, we find the ground state is a
Luther-Emery liquid with superconducting quasi-long-range
(power-law decaying) order. Moreover, even though the
cylinders break the crystal 90◦ rotation symmetry, the SC
correlations we find are surprisingly isotropic which is similar

2469-9950/2023/108(5)/054505(12) 054505-1 ©2023 American Physical Society

https://orcid.org/0000-0003-2842-6591
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.054505&domain=pdf&date_stamp=2023-08-04
https://doi.org/10.1103/PhysRevB.108.054505


JIANG, KIVELSON, AND LEE PHYSICAL REVIEW B 108, 054505 (2023)

TABLE I. Summary of results shown in Figs. 1–6 and in Appendixes for the given values of J2/J1 and δ. Ksc is the SC Luttinger exponent
extracted from a “best fit” to the long-distance decay of �yy(r). Kc is the CDW Luttinger exponent extracted by fitting two different quantities—
the charge density profile n(x) and the decay of the density-density correlation function D(r). Kdimer is the dimer power-law decay exponent
extracted from a “best fit” to the dimer-dimer correlation function Byy(r). ξAF, ξF , and ξG are the spin-spin and single-particle correlation
lengths. Note that there are two spin-spin correlation lengths: ξAF is associated with the decay of locally commensurate, Q = (π, π ) correlations
while ξF is associated with locally ferromagnetic correlations.

Number of sites J2/J1 δ Ksc n(x) ⇒ Kc D(r) ⇒ Kc Kdimer ξAF ξF ξG

N = 72 × 4 0.55 1/12 1.1 1.2 1.6 1.6 1.9 10 21
N = 48 × 6 0.55 1/12 1.3 1.4 1.4 1.3 2.2 8.7 16
N = 24 × 8 0.55 1/12 0.6 � 2 � 2 3.1 2.8 2.1 3.4
N = 72 × 4 0.50 1/12 1.1 1.3 1.7 1.6 1.8 13 30
N = 48 × 6 0.50 1/12 1.3 1.5 1.4 1.4 3.7 6.5 21
N = 24 × 8 0.50 1/12 0.6 � 2 � 2 2.9 3.7 2.4 3.8
N = 64 × 4 0.50 1/8 1.2 1.4 1.3 1.4 2.4 20 36
N = 24 × 8 0.50 1/8 0.7 � 2 � 2 3.3 2.0 2.1 3.4

to findings of previous studies [14,21]. The symmetry of the
SC order parameter is d wave. For large W , the exponent Ksc

characterizing the power-law decay of correlations is expected
[29] to decrease as Ksc ∝ 1/W ; while we find roughly compa-
rable values of this exponent for W = 4 and 6, it is roughly a
factor of 2 smaller for W = 8. Moreover, the relatively short
values of ξAF < W on the finite (W, L) cylinders we have
studied are suggestive that the existence of a spin-gap persists
in the 2D limit.

However, despite the uncertainties concerning the half-
filled ground state at these values of J2/J1, we believe our
study provides plausible evidence that upon relatively light
doping, the ground state becomes a nodeless d-wave super-
conductor. In addition to the already mentioned isotropy of
the SC correlations, this conclusion is supported by the lack
of evidence of other orders in close competition with SC.
In other words, the SC is locally stable, and has the right
properties for being a finite cylinder manifestation of a 2D
SC. Our belief is also based on the intuition that so long
as the system is quantum paramagnetic at half filling, even
if it has weak symmetry-breaking such as a VBC, when δ

exceeds a (possibly small) critical value, and when the hole
hopping is sufficiently strong, the moving holes will quantum
melt the crystalline order of the dimers so that the resulting
state is superconducting. (This is the same intuition as that
of the short-range RVB picture [30]. This intuition is further
supported by an earlier DMRG study of a striped Hubbard
cylinder [31]) and a sign-problem free quantum Monte Carlo
simulation of lightly doped VBC on honeycomb lattice [32].

The most salient results of our study can be summarized as
follows. (1) We have extended an earlier DMRG study [21]
with J2/J1 = 0.5, to include the value J2/J1 = 0.55, which
according to Refs. [24–27], is in the VBC phase at half-filling.
We increased the maximum width of the cylinders from W =
6 [21], to W = 8, which was computationally costly, requiring
us to keep an enormous number up to m = 60 000 states. For
both values of J2/J1, we observed a quantum paramagnetic
state with no apparent symmetry breaking at half filling. (2)
When doped with δ = 1/12 and 1/8 holes, the ground state
exhibits d-wave SC quasi-long-range order. The correlation
function exhibits a high degree of isotropy, as expected for a
2D superconductor. (3) For W = 8, there is no other apparent

order in close competition with superconductivity. (4) On the
widest cylinders we studied (W = 8), the estimated decay
exponent (Ksc) of the quasi-long-range-ordered superconduc-
tivity is around 0.5. Within (significant) error bars this is
nearly a factor of two smaller than the value (≈ 1) obtained
for W = 4 and 6 cylinders. (We summarize various decay
exponents in Table I and comment on the error bars.)

The paper is organized such that in the Results section we
focus on presenting the numerical facts. The implications of
these results are left to the Summary and Discussions section.

II. MODEL AND METHOD

We employ DMRG [33] to study the ground-state proper-
ties of the hole-doped t-J model on the square lattice, with
Hamiltonian

H = −
∑
i jσ

ti j (ĉ
†
iσ ĉ jσ + H.c.) +

∑
i j

Ji j

(
�Si · �S j − n̂in̂ j

4

)
,

where ĉ†
iσ (ĉiσ ) is the electron creation (annihilation) operator

on site i = (xi, yi ) with spin polarization σ , �Si is the spin
operator and n̂i = ∑

σ ĉ†
iσ ĉiσ is the electron number operator.

The electron hopping amplitude ti j is equal to t1 (t2) if i and j
are NN (NNN) sites. J1 and J2 are the spin superexchange
interactions between NN and NNN sites, respectively. The
Hilbert space is constrained by the no-double occupancy con-
dition, ni = 0 or 1. At half-filling, i.e., ni = 1, H reduces to
the spin-1/2 AF J1-J2 Heisenberg model.

We take the lattice geometry to be cylindrical with peri-
odic and open boundary conditions in the ŷ and x̂ directions,
respectively, where ŷ = (0, 1) and x̂ = (1, 0) are the two basis
vectors of the square lattice. Here, we focus on cylinders
with width W and length L, where L and W are the number
of sites along the x̂ and ŷ directions, respectively. The total
number of sites is N = L × W , the number of electrons Ne,
and the doping level of the system is defined as δ = Nh/N ,
where Nh = N − Ne is the number of doped holes relative
to the half-filled insulator with Ne = N . We set J1 = 1 as an
energy unit, and consider J2 = 0.5 and J2 = 0.55 such that
according to Refs. [24–27] the undoped system in the 2D limit
is, respectively, in the QSL and VBC phases at half-filling.
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FIG. 1. Superconducting correlations �yy(r) vs distance r between two Cooper pairs in the x̂ direction for J2 = 0.55 and δ = 1/12: (A)
On a log-log where the dashed lines denote power-law fits. (B) On a linear plot with ordinate is rescaled as �yy(r)r1 for W = 4 and �yy(r)r1/2

for W = 8. (C) Ratios of �xx/�yy and -�xy/�yy on a N = 24 × 8 cylinder.

We take t1 = 3, which to the extent that the results can be
related to a corresponding Hubbard model, would correspond
to U eff ≡ 4t/J = 12t .With relation to the Hubbard model in
mind, we also impose the condition t2/t1 = √

J2/J1.
An advantage of DMRG is that large values of L are com-

putationally accessible, so we consider cylinders with L 	 W .
We consider W = 4–8 cylinders at both δ = 1/12 and 1/8.
We keep up to m = 16 000 states for W = 4 cylinders with
a typical truncation error ε < 10−8, m = 25 000 states for
W = 6 cylinders with a typical truncation error ε < 10−6,
and m = 60 000 states for W = 8 cylinders with a typical
truncation error ε < 10−5. Further details of the numerical

simulation are provided in Appendixes A and C. In Figs. 1–3,
we show results for J2 = 0.55. Figures 4–6 summarize results
for J2 = 0.5 to facilitate a comparison.

III. RESULTS

A. Superconducting pair-field correlations

To probe superconductivity, we have calculated the equal-
time spin-singlet SC pair-field correlation function

�αβ (r) = 〈
†
α (x0, y)
β (x0 + r, y)〉. (1)

FIG. 2. Charge density correlations for J2 = 0.55 and δ = 1/12. (A) Charge density profiles n(x) on W = 4, 6, and 8 cylinders where x
is the rung coordinate. (B) Log-log plot of the rung charge density correlations |D(r)| vs the distance r between two rungs in the x̂ direction.
The filled/open symbols represent the sign of D(r) being −/+, respectively. (Inset) Rescaled |D(r)|r2 for the W = 8 cylinder.
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FIG. 3. Spin-spin and single-particle correlations for J2 = 0.55 and δ = 1/12. (A) Log-linear plot of |F0(r)| and |Fπ (r)| for the W =
4, 6, and 8 cylinders. Dashed lines denote exponential fits |F0(r)| ∼ e−r/ξF and |Fπ (r)| ∼ e−r/ξAF with correlation length ξF and ξAF. (B)
Log-linear plot of |G(r)| for the W = 4, 6, and 8 cylinders. Dashed lines denote exponential fit |G(r)| ∼ e−r/ξG with single-particle correlation
length ξG. The filled/open symbols represent the sign of F0(r), Fπ (r), and G(r) being −/+, respectively.

Here 
†
α (x, y) = 1√

2
[ĉ†

(x,y),↑ĉ†
(x,y)+α,↓ + ĉ†

(x,y)+α,↑ĉ†
(x,y),↓] is the

spin-singlet pair creation operator on a bond in the α = x̂ or ŷ
direction, and (x0, y) is a reference site taken as x0 ∼ L/4 and
r is the displacement between two bonds in the x̂ direction.

In Fig. 1(a), we show �yy(r) versus r on a log-log scale
for all values of W with J2 = 0.55 and δ = 1/12. The dashed
lines in the figure represent a power-law decay with the power
chosen for each W to provide a best-fit (for W = 4 and 6)
thru the locus of peak heights of the decaying oscillations.
In Fig. 1(b), we show the same data for W = 4 and 8 as in

panel A, now on a linear-linear plot, but re-scaled by a simple
power law such that the vertical axis for W = 4 is r1�yy(r)
and is r1/2 �yy(r) for W = 8. Figure 1(c) shows the ratio of
�xx(r)/�yy(r) and −�xy(r)/�yy(r) for W = 8 on a linear-
linear plot. Data for other values of δ and J2, as a function
of the number of kept states m, are presented in Fig. 4 and
Appendix A.

Given that we can access relatively large values of L, it
is reasonable to analyze these results in the context of the
expected behavior for fixed W in the L → ∞ limit, where

FIG. 4. Superconducting correlations �yy(r) vs distance r between two Cooper pairs in the x̂ direction for J2 = 0.50, δ = 1/8, and δ =
1/12: (a) on a log-log plot where the dashed lines denote power-law fits; (b) on a linear-plot with ordinate rescaled as �yy(r)r1 for W = 4 and
�yy(r)r1/2 for W = 8; and (c) ratios of �xx/�yy and −�xy/�yy on a N = 24 × 8 cylinder at δ = 1/8.
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FIG. 5. Log-log plots of |Byy(r)| on (a) N = 72 × 4, (b) 48 × 6,
and (c) 24 × 8 cylinders at δ = 1/12 for J2 = 0.5 and 0.55. Here r is
the distance between two bonds in the x̂ direction. Here filled/open
symbols represent the sign of Byy(r) being −/+, respectively.

the asymptotic behavior is ultimately that of an effective 1D
quantum field theory. Since continuous symmetries cannot
be broken in 1D, the quasi-long-range order is the strongest
indication of SC order that can be expected:

�ab(r) ∼ r−Ksc . (2)

Given the fact that at large r, after rescaling, the W = 8 result
and the mean of the oscillatory part of W = 4 result are
approximately independent of r is evidence that the data in
Fig. 1(b) are consistent with Eq. (2) with exponents Ksc ≈ 1
for W = 4 and Ksc ≈ 1/2 for W = 8. (Similar scaling using
the exponents given in Table I, not shown, works for W = 6
as well.) The “best fit” values of these exponents obtained
in Fig. 1(a) are given in Table I, namely, Ksc(W = 4) ≈ 1.1,
Ksc(W = 6) ≈ 1.3, and Ksc(W = 8) ≈ 0.6. (The meaning and
uncertainties of the “best fit” are discussed in Sec. III F.)

One subtlety that is apparent in the data for W = 4 and 6,
but not present for W = 8, is the presence of spatial modu-
lations of � with the same ordering vector Q as the CDW
correlations [see Fig. 2(a) below]. The nearly constant ampli-
tude of the modulation in Fig. 1(b) implies the amplitude of
the SC pair density modulation decays with nearly the same
exponent as does the uniform SC order. In principle this could
signify the presence of significant pair-density-wave (PDW)
correlations. However, this would require a highly unlikely
accidental degeneracy of the decay exponent for the uniform
SC and PDW orders. Instead, we believe this behavior reflects
the fact that our calculations are carried out at finite L, and
is a consequence of the pinning of the CDW fluctuations by

the boundary, as are the charge density oscillations shown in
Fig. 2(a). We shall elaborate on this point in Appendix B.

Significantly, within numerical accuracy, �yy(r), �xx(r),
and −�xy(r) are all characterized by the same decay exponent
Ksc, as is shown for W = 8 in Fig. 1(c). Invoking the expected
asymptotic Lorenz symmetry of 1D systems, one can infer
that the SC susceptibility should diverge as χsc ∼ T −(2−Ksc ) as
T → 0, and hence a smaller value of Ksc implies a stronger
divergence.

B. Charge density wave correlations

For W = 4 and 6, we observe a tendency to form charge
stripes in the lightly doped cylinders with J2 = 0.55 that is
similar to that reported in earlier work at J2 = 0.5 [21]. In
comparison, all signatures of CDW ordering are much weaker
for W = 8.

To measure the CDW order, we define the rung charge
density n(x) = W −1 ∑W

y=1〈n̂(x, y)〉. Figure 2(a) shows exam-
ples of n(x) on W = 4, 6, and 8 cylinders with J2 = 0.55
at δ = 1/12, where x is the distance from one end of the
cylinder up to a maximum value x = L/2. The charge density
oscillations have a period λ that is consistent with δ W λ = 2,
namely, there are two holes per unit cell. When divided by W
this amounts to “half-filled stripes” for the case W = 4 and
“one third filled stripes” for W = 6. For W = 8, the oscil-
latory component of n(x) is much weaker, which combined
with the relatively small range of accessible x (� L/2) makes
extracting the period less reliable.

The oscillations in Fig. 2(a) are presumably a finite L
effect—reflecting the pinning of the CDW fluctuations by the
cylinder ends. At long distances, the spatial decay of the CDW
correlations associated with such “generalized Friedel oscil-
lations” are governed [34] by the CDW Luttinger exponent
Kc as

n(x) − n0 ∼ AQ ∗ cos(Qx + φ)x−Kc/2. (3)

Here AQ and φ are, respectively, a nonuniversal amplitude
and phase shift, n0 = 1 − δ is the mean electron density, and
Q = 2π/λ is the dominant charge density ordering wave vec-
tor. We find this formula works well for the W = 4 and W = 6
cylinders with J2 = 0.55, as it did for J2 = 0.5 [21]. The “best
fit” value of the Luttinger exponent from the decay of n(x)
yield Kc(W = 4) ≈ 1.2, Kc(W = 6) ≈ 1.4, Kc(W = 8) � 2,
respectively. However, for W = 8 cylinders the charge os-
cillations are much weaker, and the range of |r| < L more
restricted, so obtaining a value of Kc in this way is subject
to large uncertainty.

A value of the exponent Kc can also (independently) be ex-
tracted from the charge density-density fluctuation correlation
function, defined as

D(r) = 〈[n̂(x0, y) − 〈n̂(x0, y)〉][n̂(x0 + r, y) − 〈n̂(x0 + r, y)〉]〉.
(4)

Here (x0, y) is a reference site and r is the distance between
two sites in the x̂ direction and x0 ∼ L/4. Figure 2(b) shows
D(r) on W = 4, 6, and 8 cylinders at δ = 1/12. Based on
field theoretic (i.e., bosonization) considerations, we expect
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FIG. 6. Other correlations for J2 = 0.50 at δ = 1/8 and 1/12. (a) Log-log plot of the rung charge density correlations |D(r)| where dashed
lines denote power-law fits. [(b) and (c)] The log-linear plot of |F0(r)|, |Fπ (r)|, and |G(r)| where dashed lines denote exponential fits, between
two sites in the x̂ direction. Here the definition of r is the same as in the previous figures. The filled/open symbols represent the sign of D(r),
F0(r), Fπ (r), and G(r) being −/+, respectively.

that

D(r) ∼ A′
0 |r|−Kc0 + A′

Q cos(Qr + φ′)|r|−Kc + · · · , (5)

where again Q is the wave vector of the dominant CDW
correlations, A′

0, A′
Q, and φ′ are nonuniversal constants, the

· · · represent oscillations at other wave vectors—harmonics
of Q or in cases where there is more than one gapless
mode (presumably not relevant in present circumstances) at
subdominant CDW ordering wave vectors. Here Kc is the
same Luttinger exponent already discussed while on general
grounds, one expects Kc0 = 2 in the presence of any sound-
like compressional mode. Values of Kc corresponding to the
dashed line “best fit” to the data in Fig. 2(b) yield Kc(W =
4) ≈ 1.6, Kc(W = 6) ≈ 1.4, and Kc(W = 8) � 2. Note that
while Kc extracted from D(r) for W = 4 and 6 are slightly
different from those extracted from n(x) [21], they are quali-
tatively similar.

Extracting a value of Kc from D(r) is particularly difficult
whenever Kc > Kc0 = 2, as in this case the CDW correlations
contribute a subdominant piece. Indeed, an oscillating piece
of D(r) at the longest distances is not clearly identifiable
in our data for W = 8. We thus consider it likely that the
value of Kc ≈ 2 obtained from the dashed line fit to the data
with W = 8 corresponds to the value of Kc0, consistent with
inferred value of Kc(W = 8) > 2 obtained from the fit to n(x).
This holds true for both J2 = 0.55 and 0.5 (Fig. 4), which
demonstrates the clear suppression of charge order on wider
systems.

It is worth emphasizing that on the basis of the fact
that Kc < 2 for both W = 4 and W = 6 cylinders, the same
field theoretic analysis implies that the CDW susceptibility
diverges χc ∼ T −(2−Kc ) as T → 0. In contrast, the charge
susceptibility χc on W = 8 cylinders does not diverge even
at T = 0 since Kc(W = 8) � 2. More results on the CDW
correlations are given in Appendix C.

C. Spin-spin and single-particle correlations

To describe the magnetic properties of the ground state,
we calculate the equal-time spin-spin correlation functions
defined as

Fq(r) = W −2
∑
y,y′

eiq(y−y′ )〈�Sx0,y · �Sx0+r,y′
〉
, (6)

where x0 ∼ L/4 is a reference rung and q = 2πm/W is a
transverse momentum with 0 � m < W is an integer. Fig-
ure 3(a) shows |F0(r)| and |Fπ (r)| on a log-linear scale for
J2 = 0.55 and δ = 1/12, and Fig. 6(b) shows the same quan-
tities for J2 = 0.5 and δ = 1/12 and 1/8. The corresponding
correlation functions for other values of q are generally much
smaller and more rapidly falling at large r.

In the figures, the sign of Fq(r) is indicated by closed (pos-
itive) and open (negative) symbols. Thus, from the pattern of
open and closed symbols, it can be seen that Fπ corresponds to
locally Neel AF order [i.e., it has an ordering vector of roughly
(π, π )], while F0 is dominated by locally ferromagnetic corre-
lations. We thus identify two spin correlation lengths, ξAF and
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ξF , from the decay of these two quantities. The fact that ξAF

is always less than W and shows no clear tendency to increase
with W (see Table I) suggests that in the 2D limit it is finite.
This is consistent with the expected behavior of a quantum
paramagnet with short-range antiferromagnetic correlations.
Interestingly Figs. 3(a) and 6(b) also show that ferromagnetic
correlations arise which, for the case of W = 4 have rather
long correlations lengths, with ξF 	 ξAF! The reason for this
is currently unclear to us. We have, however, checked that
these correlations are induced by doping. Except for W = 4,
ξF is close to ξAF (see Table I), suggesting that ferromagnetic
correlations are also short-ranged in the 2D limit.

We have also calculated the equal-time single-particle
Green function, defined as

G(r) = 〈
c†

(x0,y),σ c(x0+r,y),σ
〉
. (7)

Figure 3(b) shows G(r) for W = 4, 6, and 8 cylinders with
J2 = 0.55 at δ = 1/12. At long distances, G(r) is also consis-
tent with an exponential decay G(r) ∼ e−r/ξG . The extracted
correlation lengths, ξG, are given in Table I. ξG also decreases
with increasing W , suggesting that at this doping ξG is finite
in two dimensions. Again, the same behavior is observed for
J2 = 0.5.

D. Dimer-dimer correlations

We have also calculated the dimer-dimer correlation func-
tion which is defined as

Bαβ (r) = 〈Bα (x0, y)Bβ (x0 + r, y)〉
− 〈Bα (x0, y)〉〈Bβ (x0 + r, y)〉. (8)

Here Bα (x, y) = �S(x,y) · �S(x,y)+α is the (spin) dimer operator on
bond α = x̂ or ŷ, and (x0, y) is a reference bond taken as x0 ∼
L/4 and r is the distance between bonds in the x̂ direction.

Figure 5 shows log-log plots of the dimer-dimer correla-
tions |Byy(r)| for W = 4, 6, and 8 cylinders at δ = 1/12 with
both J2 = 0.5 and 0.55. For W = 4 and 6 cylinders, the dimer
correlation has same oscillatory period as the CDW. All Byy(r)
shown in the figure are in the limit m = ∞ which are obtained
using a second-order polynomial function to fit the four data
points associated with the largest number of kept states. From
the figure, we can see that there are only small quantitative
differences in the behavior of Byy(r) between J2 = 0.5 and
0.55. The extracted exponent Kdimer is provided in Table I.

E. Results for J2 = 0.5

We have also studied the doped model with J2 = 0.5 on
cylinders with W = 8, extending earlier work [21] with the
same J2 but smaller W . Representative results are shown in
Figs. 4 and 6 which include the various correlation functions,
�yy(r), D(r), F0(r), Fπ (r), and G(r) for δ = 1/12 and δ =
1/8. We find that the qualitative behaviors for all these cor-
relation functions including the W dependence of exponents
Ksc and Kc, and the correlation lengths ξAF, ξF , and ξG, are
very similar to those at J2 = 0.55. For both cases, we ob-
served quasi-long-range ordered SC. Moreover, the isotropy
of �yy/�xx and − �xy/�xx, the dependence of Ksc on W ,
and the lack of other competing orders, suggest that what is
observed could be the manifestation of a 2D long-range

ordered superconductivity (without CDW order) on finite
cylinders.

F. Summary of results

In Table I, we summarize our results shown in the main
text, including the system sizes, doping concentration and
coupling parameters, the extracted Luttinger exponent Ksc for
SC correlations, Kc for charge density correlations, Kdimer

for dimer-dimer correlations, as well as extracted correlation
lengths for both spin-spin and single-particle correlations.
Note that we have not included error bars. This is because
errors can originate from multiple sources, e.g., from the finite
m extrapolation, the effects of finite L, and the uncertainty in
the assumed fitting functions, etc. Although, once a particular
fitting function is assumed, we can obtain error bars associated
with the range of parameters consistent with a fit, we refrain
from doing so, as the resulting error bars tend to be relatively
small, and thus could produce a false impression concerning
the certainty of the inferred exponents and correlation lengths.
In the same spirit, when we give a “best fit” value in the main
text, it means we have committed to a fitting function and
ignored the above uncertainties.

IV. SUMMARY AND CONCLUSIONS

We have studied the t-J model with J2/J1 = 0.5 and 0.55.
According to Refs. [24–27] for these values of J2/J1 the un-
doped insulating “parent state” at half-filling is in the QSL
and VBC phases, respectively. While the precise nature of
the phases of the undoped, 2D insulator is still under debate,
the preponderance of the evidence suggests that for these
values of J2/J1 they are paramagnets with at most weak VBC
order. The behaviors found in the present DMRG studies on
moderately lightly doped cylinders with W � 8 motivate us
to propose that the SC state we have found survives in the 2D
(W → ∞) limit.

To corroborate this conclusion, it is illuminating to
compare our results to the expected behavior of a 2D super-
conductor restricted to infinitely long cylinders (L → ∞) with
large but noninfinite W (see Ref. [29]). Since the system is
ultimately one dimensional for any finite W , quantum phase
fluctuations ensure that only SC quasi-long-range order is
possible, and for large W one expects the power-law decay
exponent Ksc ∼ 1/W . Moreover, the SC order parameter in
2D determines the cylinder SC correlations via �αβ (r) ∼

�

α
β r−Ksc where 
α is the 2D expectation value of the SC
order parameter on neighboring sites in the α = x, y direc-
tions. The fact that �yy(r)/�xx(r) ≈ −�xy(r)/�xx(r) ≈ 1 at
large r is consistent with the expectation that the SC state is
d-wave in the 2D limit. Although there is considerable uncer-
tainty in the accuracy with which they can be determined, the
inferred values of Ksc for W = 4 and 8 are roughly consistent
with the expected scaling behavior, i.e., Ksc(W = 8)/Ksc(W =
4) ≈ 1/2. Note, however, that the inferred value for W = 6 is
notably larger than would be expected on this basis. Indeed,
there is no compelling reason to expect the large W scaling
analysis to be applicable down to W ′s as small as 4 or even 8.

Turning to other correlations, if there is no CDW order
and no gapless Fermi surface in the 2D limit, one expects
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the CDW correlation function D(r) to fall with a power law
Kc ∼ 1/Ksc on finite cylinders. If Kc > 2, D(r) is expected
to be dominated by the long-wave-length acoustic modes of
the electron density, which always fall as r−2. This is also
roughly consistent with the results for W = 8. The estimated
dimer-dimer correlations also fall with a decay exponent
Kdimer ≈ Kc > Ksc. As to the spin-spin correlation function,
the existence of a relatively short (compared with W) spin
correlation length and a correspondingly robust spin-gap in
all cases suggests the SC state is a nodeless d wave in the
2D limit. This notion is supported by the exponential de-
cay of the equal-time single-particle Greens function. The
lack of nodal quasiparticles is probably best viewed from a
strong coupling limit in which the Cooper pairs correspond
to real-space valence bonds—quantum dimers [30]. In this
case, the d-wave symmetry of the pair wave function does not
necessarily imply gap nodes. However, we should add that the
above “Occam-razor” type interpretation of the data does not
prove that for even larger W a new trend will not emerge.

In our physical picture, the existence of singlet pair cor-
relations is not the only requirement for doping-induced
superconductivity. Another requirement is that the hopping of
the doped holes must generate significant superfluid stiffness.
An example of such hole mobility induced superconductivity
in a VBC is given in Ref. [32]. However, it is simultaneously
important that hole hopping does not overly disrupt the singlet
correlations of the “parent” state. When t2 < 0, the single hole
kinetic energy is minimized in a ferromagnetic background (a
generalized Nagaoka’s theorem [35]), which implies a strong
tendency to destroy local singlet correlations. It has been
argued [36] that this leads to a large mass renormalization of
the doped holes. Conversely, in Ref. [37], it was shown that on
a “triangular cactus lattice” the kinetic energy of a single hole,
with positive t1, is minimized in a resonating valence bond
liquidlike, i.e., the hole kinetic energy actually stabilizes local
singlet formation. A related suggestion presented in Ref. [38]
is that t2/t1 positive (negative) causes constructive (destruc-
tive) interference when a pair of holes move in a spin-singlet
background.

Given how hard it has proven to find any material that
demonstrably is a QSL without doping [4], looking for
dopable spin liquids may not be the most practical strategy
to identify new and interesting superconducting materials. In
this context, the fact that an essentially identical SC state can
be reached by doping what is likely a weak VBC may offer an
additional clue in the search for new superconductors.

It is important to point out that while the values of δ

we have studied are relatively small, we have not directly
addressed the behavior of the system in the limit as δ → 0.
What doping concentration is “sufficient” depends on the state
at half-filling. For example, the critical doping for inducing
SC in a QSL will likely be considerably smaller (and could
even vanish [30,39]) than that for a VBC.
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APPENDIX A: SUPERCONDUCTING CORRELATIONS

Figure 7 shows the log-log plots of the SC pair-field cor-
relations �yy(r) for N = 24 × 8 for different numbers of kept
states m. The top two panels are for J2 = 0.5, δ = 1/12 and
J2 = 0.5, δ = 1/8; the bottom panel is for J2 = 0.55 and
δ = 1/12. The extrapolated �yy(r) in the m → ∞ limit is
obtained using a second-order polynomial function fitting the
four data points with the largest m. A power-law fit to the
SC correlations of the form �yy(r) ∝ r−Ksc is indicated by
the dashed lines. To exclude the short-distance behavior and
the boundary effects due to finite L, the data points with the
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FIG. 8. The extrapolated superconducting correlations �xx (r)
and �yy(r) in log-log scales on (a) N = 48 × 6 and N = 24 cylinders
at δ = 1/12 and J2 = 0.5, (b) N = 32 × 6 and N = 24 × 8 cylinders
at δ = 1/12 and J2 = 0.5, and (c) N = 48 × 6 and N = 24 × 8 at
δ = 1/12 and J2 = 0.55.

smallest and the largest r were omitted in obtaining this fit. For
J2 = 0.5 and δ = 1/12, the “best-fit” exponent is Ksc ≈ 0.56
and for J2 = 0.5, δ = 1/8, Ksc ≈ 0.67. For J2 = 0.55, δ =
1/12, the “best-fit” exponent is Ksc ≈ 0.61. In addition to the
spin-singlet Cooper pair correlations, we have also calculated
the spin-triplet Cooper pair correlations. However, these are
much weaker, suggesting that spin-triplet superconductivity is
unlikely.

Figure 8 shows more results including �xx(r) and �yy(r)
on both W = 6 and 8 cylinders at different doping concen-
trations δ for J2 = 0.5 and 0.55. We find that in all cases
�xx(r) ≈ �yy(r), and both are consistent with power-law de-
cay �(r) ∼ r−Ksc with similar exponents.

APPENDIX B: PDW-LIKE CORRELATIONS IN FINITE
CYLINDERS-SOME VERSION

Figure 1(b) show that at large separations, r, the
pair-field correlators �αβ (r, r′) = 〈
†

α (r)
β (r′)〉 for

W = 4 and 6 can be approximately described as the
sum of two power-law decaying components, a smoothly
decaying piece, �

(0)
αβ (r, r′) ∼ |r − r′|−Ksc , and an oscillatory

piece, �
(Q)
αβ (r, r′) ∼ cos[Q · (r − r′) + θ ]|r − r′|−K ′

sc , with
Ksc ≈ K ′

sc. The oscillatory piece is absent, or at least much
less prominent in the cylinder with W = 8.

If such behaviors were observed in a translationally invari-
ant system, e.g., if it persisted to L → ∞, it would imply the
existence of two distinct SC ordering tendencies, a uniform
SC and a pair density wave (PDW). However, as mentioned
in the main text, we think this is not the correct interpretation
of our observations. Various features of the data that are un-
natural from this perspective include (1) the near equality of
the two exponents would require fine-tuning. (2) The fact that
Q is the same ordering vector that is seen in the CDW corre-
lations would be reasonable in this scenario only if the CDW
order were itself an induced order, in which case one would
expect that Kcdw = Ksc + K ′

sc, an equality that is far from sat-
isfied. (3) Moreover, we have checked for the case of W = 4
that the magnitude of the oscillatory piece decreases with
increasing L.

Instead, we have concluded that the oscillatory component
of the SC correlations are a finite L effect, reflecting the com-
bined effects of a uniform SC and a CDW ordering tendency.
The fundamental assumption is that the most relevant fields
in this Luther-Emery liquid are (1) the uniform SC pair field
ψ (0)

α (r) and (2) the CDW field ρQ(r), where

n(r) − n̄ = a0(ρQ(r)eiQ·r + ρ−Q(r)e−iQ·r ).

Here both ψ (0) and ρQ are smooth varying fields, and a0

is a nonuniversal constant. Based on the operator product
expansion, a modulating piece of the pair field is generated
via

ψ (Q)
α (r) = ρQ(r)ψ (0)

α (r)eiQ·r + · · · ,

where · · · denote the less relevant pieces. Thus the micro-
scopic pair-field creation operator can be expanded as


α (r) = a1 ψ (0)
α (r) + a2 ψ (0)

α (r)(ρQ(r)eiQ·r

+ ρ−Q(r)e−iQ·r ) + · · · , (B1)

where a1 and a2 are an nonuniversal amplitudes.
Figure 2(a) indicates that due to the “Friedel” oscillation

induced by the boundary 〈ρQ(r)〉 and 〈ρ−Q(r)〉 are nonzero
hence we replace Eq. (B1) by


α (r) = [a1 + a2A(r) cos(Q · r + φ(r))]ψ (0)
α (r) + · · · ,

(B2)

where A(r) is the amplitude and φ(r) is the phase of the CDW,
namely,

〈ρQ(r)〉eiQ·r + 〈ρ−Q(r)〉e−iQ·r = A(r) cos(Q · r + φ(r)).

Computing the pair-field correlation function using Eq. (B2)
leads to

�αβ (r, r′) = 〈
ψ (0)∗

α (r)ψ (0)
β (r′)

〉
�(r)�(r′) + · · · , (B3)

where

�(r) = a1 + a2A(r) cos(Q · r + φ(r))
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and 〈
ψ (0)∗

α (r)ψ (0)
β (r′)

〉 ∼ |r − r′|−Ksc Sαβ,

with Sαβ being the d-wave sign. In Fig. 1, one of the point, say,
r′ is fixed somewhere away from the boundary of the cylinder,
say, r0 = (L/4, y0) rendering �(r′) is a constant. The resulting
pair field correlation function depends on �(r). We expect
the boundary to induce a power-law decaying A(r) toward the
interior of the cylinder, namely,

A(x, y) = Ā

[(
x − 1

L/4 − 1

)−Kc

+
(

L − x

3L/4

)−Kc
]
,

where Ā is the value of A(r) at r = r0. Consequently

�αβ (r, r′) ∼ Sαβ |r − r0|−Ksc [a1 + a2A(x, y) cos(Q · (r − r0)

+ θ (r))] + · · · . (B4)

In Eq. (B4), θ (r) = Q · r0 + φ(r). Inspecting Fig. 2(a) appar-
ently neither A(x, y) nor θ (r) varies appreciably with r in the
range of r plotted. If we replace these two quantities with
constant, Eq. (B4) implies a uniform SC component (the term
proportional to α1) and an oscillatory SC component (the term
proportional to α2). Importantly both components decay with
the exponent Ksc. Note that the amplitude of the oscillatory
component is proportional to Ā that vanishes as the finite size
induced density oscillations vanish in the L → ∞ limit.

The higher order terms represented by · · · in Eq. (B4) all
decay with larger power-laws - including, for instance, an os-
cillatory term (which should persist even in the L → ∞ limit)
with wave vector Q but which decays with power Ksc + Kcdw.
It is probably not feasible to extract such terms from presently
achievable numerical data.

APPENDIX C: SITE-CHARGE DENSITY CORRELATIONS

Figure 9 shows the log-log plot of |D(r)| [defined in
Eq. (4)] versus r for N = 24 × 8 cylinders with J2 = 0.5 at
δ = 1/12, J2 = 0.5 at δ = 1/8, and J2 = 0.55 at δ = 1/12.
Following similar procedure as �(r), the extrapolated D(r) in
the limit m → ∞ is obtained using a second-order polynomial
fit to the four data points associated with the largest m. As
indicated by the dashed lines, the charge density-density cor-
relations are consistent with a power-law decay D(r) ∝ r−Kc .
To exclude the short-distance behavior and the boundary ef-
fects due to finite L, the data points with the smallest and the
largest r were omitted in obtaining this fit. For the W = 8
cylinders with J2 = 0.5, δ = 1/12, δ = 1/8, and J2 = 0.55,
δ = 1/12, the “best fit” values of Kc all exceeds 2. As dis-
cussed in the main text, under such conditions, the asymptotic
behavior of D(r) is expected to be governed by the fluctua-
tions of the acoustic modes. Following the same procedure,
the “best fit” Kc for N = 72 × 4, 64 × 4 and 48 × 6 at various
J2 and δ are given in Table I.

In addition to D(r), the exponent Kc can also be extracted
from the charge density oscillation n(x) as shown in the main
text. The values of Kc extracted this way for N = 72 × 4, 64 ×
4, and 48 × 6 cylinders for various J2 and δ are also shown
in Table I. Although the values of Kc extracted from D(r) is
slightly different from that extracted from n(x) (which may be

FIG. 9. Log-log plots of |D(r)| for N = 24 × 8 cylinder at (a)
δ = 1/12 with J2 = 0.5, (b) δ = 1/8 with J2 = 0.5, and (c) δ = 1/12
with J2 = 0.55, where r is the distance between two sites in the x̂
direction. The dashed lines denote a power-law fit D(r) ∼ r−Kc . Here
filled symbols represent the sign of D(r) being–.

caused by the boundary and finite-size effects), importantly
they are all consistent with Kc > Ksc.

APPENDIX D: GROUND-STATE ENERGY

In this section, we present the results of the ground state
energy per site, denoted as e0 = E0/N , for the square cylin-
ders and doping concentrations investigated in our study
after performing truncation error extrapolation. For J2 = 0.5
and δ = 1/8, we find the ground state energy per site to
be e0 = −2.3341(1) for the N = 64 × 4 cylinder and e0 =
−2.2145(6) for the N = 24 × 8 cylinder. For J2 = 0.5 and
δ = 1/12, the ground state energy per site is e0 = −1.8968(3)
for the N = 18 × 8 cylinder and e0 = −1.9056(4) for the
N = 24 × 8 cylinder. For J2 = 0.55 and δ = 1/12, the ground
state energy per site is e0 = −2.03379(1) for the N = 72 × 4
cylinder, e0 = −1.97512(1) for the N = 48 × 6 cylinder, and
e0 = −1.9369(1) for the N = 24 × 8 cylinder.
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