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Anisotropic thermal transport in superconductors with coexisting spin density waves
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Thermal conductivity measurements can provide key and experimentally verifiable insight into the electronic
transport of unconventional superconductors. In this paper, electronic thermal transport of two-dimensional tight-
binding metallic systems with coexisting d-wave superconducting (SC) and antiferromagnetic spin density wave
(SDW) orders with nesting vector Q = (π/2, π/2) or (π, 0) are considered. The coexisting SC and SDW orders
are modeled at the mean-field level. Thermal conductivities are numerically calculated within Boltzmann kinetic
theory in the weak impurity scattering (Born) limit. These SDW nesting vectors are chosen for their unique
property of reconstructing the Fermi surface parallel to Q and preserving the metallic FS perpendicular to Q.
This leads to anisotropic electronic thermal conductivities parallel and perpendicular to Q, which also depend
on the presence or absence of additional gapless excitations exclusive to the coexistence phase. It was found that
the Q = (π/2, π/2) and (π, 0) SDW systems exhibit equivalent electron transport relative to Q. These systems
also had equivalent electron transport when coexisting with a d-wave SC gap when �k had the same symmetry
class under translations of Q.

DOI: 10.1103/PhysRevB.108.054503

I. INTRODUCTION

Among the most studied candidates for high-temperature
superconductors (SCs) are cuprates [1], iron pnictides [2], and
iron chalcogenides [3]. A common feature for these families
of materials is that they have quasi-two-dimensional sheets
of transition-metal atoms (either Cu or Fe) in a square lat-
tice resulting in cylindrical Fermi surfaces [4,5] (FSs) that
can be treated as two-dimensional systems (since they are
largely kz independent). Due to the layered structure of these
quasi-two-dimensional sheets, it is possible to grow single
superconducting layers on a substrate and study supercon-
ductivity strictly in two dimensions [6–8]. It is important to
note that many of these high-Tc SCs are unconventional in
nature.

Unconventional SCs often have phase diagrams with multi-
ple broken symmetry phases which depend on material prop-
erties such as electron or hole doping concentration [9,10].
One of the more common broken-symmetry states that super-
conductivity can coexist with is an antiferromagnetic (AFM)
state which couples quasiparticle states in different parts of
the Brillouin zone by a nesting vector, Q, forming a spin
density wave (SDW) state [11–14]. While in this paper only
the interplay between SDW and SC orders will be investi-
gated, the SDW state will often be preceded by a structural
transition from a tetragonal to an orthorhombic [15] or a
monoclinic [16] lattice, thus breaking the fourfold rotational
symmetry [C(4)] of the crystal. This structural transition can
result in an Ising nematic phase [17] and its effects on elec-
tronic thermal transport in SC systems has been previously
discussed [18]. Including effects of a structural transition with
SDW and SC ordering is beyond the scope of this paper. While
it is assumed here that the C(4) symmetry of the underlying
structural square lattice is preserved, the magnetic structure
imposed on the lattice by the existence of striped AFM order-

ing reduces the C(4) symmetry of the unit cell [1] to that of a
twofold rotational symmetry [C(2)] in the magnetic cell. This
broken symmetry is often reflected in the transport properties
of such materials [19].

To better understand these unconventional SCs, thermal
conductivity measurements are an invaluable tool for prob-
ing the transport properties of materials [20,21]. In normal
metals, the electronic thermal conductivity at low tempera-
tures is dominated by electron scattering of impurities and
results in a linear temperature dependence which is well
understood within the framework of semiclassical transport
theory based on the Boltzmann kinetic equation [22]. In
conventional SCs, the entire FS is gapped and the thermal con-
ductivity is known to decrease exponentially [23] as T → 0.
However, in unconventional SCs (such as d-wave SCs) the
thermal conductivity is known to have a linear T depen-
dence at low-T in the limit of weak impurity scattering,
similar to a normal metal due to the existence of zero-energy
quasiparticle excitations (nodes) on the FS [24,25]. The band
topology in the vicinity of these nodes is of utmost impor-
tance as it determines the quasiparticle velocities, which can
drastically change the transport properties of a material. For
example, it has been shown [26] that two types of d-wave
SC (dxy vs dx2−y2 ) have very different thermal conductivi-
ties on tight-binding FSs due to different Fermi velocities
and local densities of states at the nodes. Electron transport
within SDW materials was observed [27] to follow suppressed
Fermi liquid behavior, and as such has an electronic ther-
mal conductivity that is linear in T but diminished from the
normal metallic state thermal conductivity [28,29]. Thermal
transport in d-wave superconducting materials with density
waves, such as charge density waves or SDWs, which reduce
the C(4) rotational symmetry to a C(2) rotational symmetry,
have been shown to exhibit anisotropic thermal transport at
low-T [30,31].
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In the cuprates, the superconducting gap is known to have
d-wave symmetry [32]. Superconductivity can be preceded
by a commensurate SDW order with nesting vector Q =
(π, π ) [11,12,33] (also known as the AFM1 state [34]). This
reconstructs [35,36] the metallic FS with quasiparticle pockets
located at the M points in the BZ [37] while preserving the
d-wave SC symmetry nodes which are the main contributors
to the transport properties in the clean limit [29]. The d-wave
SC state was also found to coexist with the Q = (π, 0) SDW
state in the underdoped region of a two-dimensional Hubbard
model [38], which is often used to model the cuprates. In
thin-film cuprates [6,8], the behavior of the bulk phase was
preserved in monolayers, including the high-Tc value at op-
timal doping, indicating that SC in the cuprates is inherently
a two-dimensional phenomena. Some cuprate materials have
been measured to exhibit anisotropic in-plane electronic ther-
mal conductivities, where electrons preferentially travel along
one crystallogrphic direction over another [39,40] due to elec-
tronic inhomogeneities. Additionally, quasi-one-dimensional
electronic thermal transport mediated by spin fluctuations was
also observed in the cuprates [41].

In the iron pnictides, an unconventional superconducting
gap may emerge out of a commensurate SDW state with nest-
ing vector Q = (π, 0) [16,42–45] (also known as the AFM2
state [34]). This results in a striped AFM which reduces the
C(4) symmetry of the crystal lattice to a magnetic cell with
C(2) symmetry [46]. In such materials, it has been shown
that the DC electric conductivity within the Drude model
is highly anisotropic between the conductivity parallel and
perpendicular to Q (i.e. σxx �= σyy) [19].

While SC often arises out of an AFM state in cuprates and
iron pnictides, iron chalcogenides lack AFM ordering [47] in
bulk. However, FeSe monolayers can exhibit SDW ordering
when grown on substrates that increase the spacing between
Fe atoms due to epitaxial strain [14]. These strained FeSe
monolayers have been measured [7] to have greatly enhanced
transition temperatures (Tc), when compared to those mea-
sured in bulk [3]. High-Tc superconductivity in these strained
FeSe monolayers is likely due to the presence of SDWs
in the material enhancing the SC state [14]. In some iron
chalcogenides, the SDW nesting vector was found to be the
commensurate nesting vector Q = (π/2, π/2) [48,49] (also
known as the AFM3 state [34]).

In this paper, the single band electronic transport properties
of two cases are considered. The first being a collinear com-
mensurate SDW state with nesting vector Q = (π/2, π/2)
(AFM3) coexisting with the d-wave singlet pairing SC states:
dx2−y2 and dxy. The second case is a similar collinear com-
mensurate SDW state, but with a nesting vector of Q = (π, 0)
(AFM2) coexisting with the same d-wave singlet SC pair-
ing states. The effects arising from the multiplicity of bands
were not considered and therefore orbital degrees of freedom
were neglected. Thus, the present analysis is not directly
applicable to iron-based SCs (where orbital mixing plays a
significant role) but is more relevant for cuprate SCs which
can be accurately modeled with a single band model [50,51].
Nevertheless, the analysis given below provides important
insights regarding the interplay of SC and SDW orders and
their impact on thermal transport properties of such systems,
particularly in the coexistence phase.

II. MODEL AND FORMALISM

A. Hamiltonian

In this paper, the normal-state metallic tight-binding
Hamiltonian will be considered,

H0 =
∑
k,σ

ξkâ†
kσ âkσ , (1)

with the 2D inversion-symmetric (ξk = ξ−k) dispersion rela-
tions

ξ
(1)
k = μ − t1(cos 2kx + cos 2ky) − t2 cos 2kx cos 2ky

ξ
(2)
k = μ − t1( cos(kx − ky) + cos(kx + ky))

− t2 cos(kx − ky) cos(kx + ky), (2)

where μ is the chemical potential, t1 is the nearest-neighbor
hopping, and t2 is the next-nearest-neighbor hopping on a two-
dimensional square lattice of the spacing one (a = 1), all of
which are in units of the Néel temperature (TN ). The chemical
potential was set to zero (μ = 0) and the hopping parameters
were set to t1 = 100 TN and t2 = 10 TN for both dispersion
relations, consistent with previous calculations [52,53] and
experiments [54,55] in literature. For ξ

(1)
k , this results in the

weak metallic FS (ξ (1)
k = 0) with quasiparticle pockets cen-

tered at the � and M points in the first Brillouin zone (FBZ)
which can be seen as the black curves in Fig. 1(a). For ξ

(2)
k , this

results in a metallic FS (ξ (2)
k = 0) with a quasiparticle pocket

centered around the � point in the FBZ which can be seen
as the black curve in Fig. 1(b). The first dispersion relation,
ξ

(1)
k , represents a system where the FS is translated by the

SDW nesting vector Q = (π/2, π/2) and overlaps with the
original FS at the edge of the reduced Brillouin Zone (RBZ)
as can be seen in Fig. 1(a). The second dispersion relation,
ξ

(2)
k , represents a SDW nesting vector Q = (π, 0), as can be

seen in Fig. 1(b).
The emergence of SDW ordering in these metallic systems

occurs below the Néel temperature and is the result of a striped
AFM system. This broken symmetry is also reflected in the
shape of the RBZ which can be seen as the blue dashed lines
in Fig. 1. Due to this reduced rotational symmetry, the ξk and
ξk+Q FSs only overlap in the direction parallel to the nesting
vector Q, leading to a FS reconstruction parallel to Q while
preserving the normal state tight-binding FS perpendicular to
Q. This reconstructed FS can be seen by the black curve in
Fig. 2.

To begin studying thermal transport in a system with coex-
isting SDW and SC orders, the Hamiltonian is modeled at the
mean-field level [52]:

H = H0 + HSDW + HSC,

HSDW = 1

2

∑
k,σ

σM(â†
k,σ âk+Q,σ + H.c.),

HSC = 1

2

∑
k,σ

σ�Yk(â†
k,σ â†

−k,−σ + H.c.), (3)
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FIG. 1. Fermi surface nesting between tight-binding FSs (black
curves) and the FSs translated by Q (red curves) for SDW orders with
the nesting vector: (a) Q = (π/2, π/2) and (b) Q = (π, 0), where
the FS reconstruction due to SDW ordering occurs in the gray regions
and the normal state FS is preserved in the white regions. These SDW
states also result in magnetic cells which are larger than the unit cells
of the underlying lattice; this results in the periodicity in k space
being reduced from the square FBZ to the reduced Brillouin zone
seen as the blue dashed curves.

where the mean-field order parameters are defined by

M = −VSDW

2

∑
k,σ

σ 〈â†
k+Q,σ âk,σ 〉,

� = −VSC

∑
k

Yk〈â†
−k,↓â†

k,↑〉. (4)

These order parameters were found self-consistently by a
method outlined in Appendix A and superconductivity was as-
sumed to arise out of the SDW ordering (TN > Tc), consistent
with phase diagrams for iron-based [56,57] and cuprate [58]
SCs. The results of these self-consistency calculations for
the order parameters can be seen in Fig. 8. Here a collinear
sinusoidal SDW system was considered with a spatial mag-

FIG. 2. FSs reconstructed by SDW ordering (solid black curves)
when M = 2TN for the nesting vectors (a) Q = (π/2, π/2) and
(b) Q = (π, 0). The d-wave nodal lines are represented with dotted
cyan and orange lines for dx2−y2 and dxy respectively. Cyan and
orange points represent the locations of the dx2−y2 and dxy nodes,
respectively, when their nodal lines cross the reconstructed FS. Red
X’s show the locations of additional mixing nodes that occur only
when the SC gap is even under translations of Q (�k+Q = �k).

netization of m(r) = 2Mẑ cos Q · r. SDW ordering couples
electron states of parallel spins whose momenta differ by
the nesting vector Q. For the SC order, only singlet electron
pairing is considered and �k = �Yk, where Yk is a basis
function compatible with the square symmetry inherent to
the lattice. The basis functions considered were dx2−y2 (Yk ∝
cos kx − cos ky) and dxy (Yk ∝ sin kx sin ky), and qualitative
illustrations of these SC gap structures can be seen in Fig. 3
on the two normal state FSs.

The mean-field Hamiltonian for T < Tc and � �= 0 can be
written in matrix form in the Nambu basis as

H (σ ) = 1

2

∑
k

(
�̂n

k

)†Ĥ(σ )
k �̂n

k,
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FIG. 3. Qualitative illustration of the amplitude and sign of the
superconducting gap along the normal state tight-binding FSs (band
parameters t1 = 100TN and t2 = 10TN ) to show the symmetry of the
SC gap under translations of the Q vector. (a) dx2−y2 SC pairing on
the ξ

(1)
k FS, (b) dxy pairing on the ξ

(1)
k FS, (c) dx2−y2 SC pairing on the

ξ
(2)
k FS, and (d) dxy pairing on the ξ

(2)
k FS.

the spin-dependent Hamiltonian matrix in the regions of the
RBZ where the FS reconstructs due to SDW ordering (see
gray shaded regions in Fig. 1) can be written as

Ĥ(σ )
k =

⎛
⎜⎜⎜⎜⎝

ξk σ�k σM 0

σ�k −ξk 0 σM

σM 0 ξk+Q σ�k+Q

0 σM σ�k+Q −ξk+Q

⎞
⎟⎟⎟⎟⎠, (5)

and reduces to a pure SC Hamiltonian in regions where the
normal state FS is preserved (see unshaded regions in Fig. 1),

Ĥ(σ )
k =

⎛
⎜⎜⎜⎜⎝

ξk σ�k 0 0

σ�k −ξk 0 0

0 0 ξk+Q σ�k+Q

0 0 σ�k+Q −ξk+Q

⎞
⎟⎟⎟⎟⎠, (6)

where (�̂n
k )

† = (â†
k,σ , â−k,−σ , â†

k+Q,σ , â−k−Q,−σ ) is the

Nambu vector for the normal state. The eigenvalues of Ĥk in
the shaded regions when SC and SDW orders coexist are the
quasiparticle energies ±E (1,2)

k ,

E (1)
k =

√
�k + 2�k, E (2)

k =
√

�k − 2�k,

�k = (ξ+
k )2 + (ξ−

k )2 + (�+
k )2 + (�−

k )2 + M2, (7)

�k =
√

(ξ+
k ξ−

k + �+
k �−

k )2 + M2((ξ+
k )2 + (�+

k )2),

TABLE I. Symmetry class of the SC basis function, Yk, under
translations of the SDW nesting vector Q.

Q d (O) wave d (E ) wave

(π/2, π/2) dx2−y2 dxy

(π, 0) dxy dx2−y2

where ξ±
k = (ξk ± ξk+Q)/2 and �±

k = (�k ± �k+Q)/2. In
the regions where the normal state FS is preserved perpen-
dicular to Q, the eigenvalues reduce to the typical pure SC
eigenvalues:

E (1)
k =

√
ξ 2

k + �2
k, E (2)

k =
√

ξ 2
k+Q + �2

k+Q. (8)

When T > Tc and � = 0, the eigenvalues in the regions
where the ξk and ξk+Q FSs overlap and the FS reconstructs
reduce to the pure SDW eigenvalues:

E (1)
k = E (α)

k = ξ+
k +

√
(ξ−

k )2 + M2,

E (2)
k = E (β )

k = ξ+
k −

√
(ξ−

k )2 + M2. (9)

The eigenvalues in the region where the normal-state FS is
preserved reduce to E (1)

k = ξk and E (2)
k = ξk+Q. Furthermore,

the FS of this system is reconstructed from the black curves in
Fig. 1 to the black curves in Fig. 2 when T < TN , where it can
be seen that sections of the FS parallel to Q become gapped
by the SDW order.

B. Symmetry classes of the SC order parameters

The coexistence of the SDW and SC order parameters M
and � depends on the symmetry of the SC order parameter
translated by the SDW nesting vector. If translations of the
SC order parameter by Q are even (�k+Q = �k), denoted
by (E ), then the order parameters are competitive with each
other and the existence of SC order suppresses the SDW order
and the SC transition temperature (Tc) [52], which can be
seen from the orange curves in Fig. 8. Whereas if the SC
order parameter is odd under translations of the nesting vector
(�k+Q = −�k), denoted by (O), then the order parameters
are cooperative with each other and the existence of SC order
enhances the SDW on-site magnetization and Tc [52], which
can be seen from the cyan curves in Fig. 8.

As can be seen from Fig. 3, for the SDW state with nesting
vector Q = (π/2, π/2), the SC gap is even under translations
of Q for dxy and odd for dx2−y2 . However, for the SDW state
with Q = (π, 0), the dx2−y2 SC pairing state is even under
translations of Q and dxy is odd under these same transla-
tions (these symmetry classifications are listed in Table I).
This switching between the d-wave symmetry classes under
translations of Q is a direct result of both the Q vectors and
the dx2−y2 and dxy SC basis functions (Yk) being rotated by
θk = π/4 relative to each other. Therefore, to maintain the
same symmetry in �k under translations of Q, the d-wave
basis functions are switched when Q is rotated.

The nature of the zero-energy excitations critically depends
on the symmetry of the SC gap under translations of the
nesting vector [26]. When this symmetry is even, �k+Q = �k
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FIG. 4. (a) Band paths relative to the ξ
(1)
k FS for the Q = (π/2, π/2) SDW systems both parallel to Q (green) and perpendicular to Q

(magenta). (b) Band paths relative to the ξ
(2)
k FS for the Q = (π, 0) SDW systems both parallel to Q (green) and perpendicular to Q (magenta).

(c) Band structure for the d-wave SC gap which is odd under translations of Q plotted along the band paths parallel to Q for both nesting vectors
(green paths). (d) Band structure for the d-wave SC gap which is odd under translations of Q plotted along the band paths perpendicular to
Q for both nesting vectors (magenta paths). (e) Band structure for the d-wave SC gap which is even under translations of Q plotted along the
band paths parallel to Q for both nesting vectors (green paths). (f) Band structure for the d-wave SC gap which is even under translations of Q
plotted along the band paths perpendicular to Q for both nesting vectors (magenta paths).

so �+
k = �k and �−

k = 0. Similarly, when this symmetry is
odd, �k+Q = −�k so �+

k = 0 and �−
k = �k. This simplifies

the eigenvalues when both � and M are nonzero in Eq. (7) to

E (1,2;E ,O)
k =

√
�k ± 2�

(E ,O)
k ,

�k = (ξ+
k )2 + (ξ−

k )2 + �2
k + M2,

�
(E )
k =

√
(ξ+

k ξ−
k )2 + M2

(
(ξ+

k )2 + �2
k

)
,

�
(O)
k =

√
(ξ+

k ξ−
k )2 + M2(ξ+

k )2. (10)

For even symmetry, nodal points exist in addition to the
SC symmetry nodes near the edge of the RBZ where ξ−

k = 0

and when E (2;E )
k = M −

√
(ξ+

k )2 + �2
k = 0. The locations of

these nodes can be seen as the red crosses in Fig. 2. In
the odd symmetry cases, these additional nodes are absent.
Furthermore, two of the d-wave symmetry nodes with odd
translational symmetry are gapped by the SDW order due
to their nodal lines aligning with Q. This can be seen from
the cyan dx2−y2 and orange dxy nodal lines parallel to Q in
Figs. 2(a) and 2(b), respectively.

The resulting band structures are shown in Fig. 4, where
the first two panels, Figs. 4(a) and 4(b), illustrate the band
paths relative to the normal state FSs. The middle two panels,
Figs. 4(c) and 4(d), display the calculated band structure for
both SDW states coexisting with the d-wave SC gaps which

are odd under translations of Q along the indicated paths. The
final two panels, Figs. 4(e) and 4(f), display the calculated
band structure for both SDW states coexisting with the d-wave
SC gaps which are even under translations of Q again along
the indicated paths. For Q = (π/2, π/2), the odd d-wave
state is the dx2−y2 pairing and for Q = (π, 0) the odd state is
the dxy pairing state. In Fig. 4(c), the bands shown are those in
the region where SDW ordering reconstructs the FS parallel
to Q along the green paths. The SC node typically present
in the vicinity of k = (π/4, π/4) [for Q = (π/2, π/2)] or
near k = (π/2, 0) [for Q = (π, 0)] becomes gapped by the
SDW. This again corresponds to the cyan dx2−y2 and orange
dxy nodal lines in Figs. 2(a) and 2(b), respectively. In Fig. 4(d),
the bands determined along the magenta paths in Figs. 4(a)
and 4(b) are shown where the normal state FS is preserved
perpendicular to Q, resulting in the pure SC bands and the
d-wave symmetry nodes in the vicinity of k = (π/4,−π/4)
[for Q = (π/2, π/2)] or near k = (0, π/2) [for Q = (π, 0)]
are preserved.

In Figs. 4(e) and 4(f), the band structure is shown for the
SDW states coexisting with the d-wave SC gaps with even
symmetry when translated by Q. For the Q = (π/2, π/2)
SDW state, this is the dxy pairing state and for the Q = (π, 0)
SDW state this is the dx2−y2 pairing state. The quasiparticle
bands parallel to Q along the green paths in Figs. 4(a) and 4(b)
are shown in Fig. 4(e). The typical d-wave nodes occurring
in the vicinity of k = (π/2, 0) [for Q = (π/2, π/2)] or k =
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(π/2, π/2) [for Q = (π, 0)] remain intact when both SC and
SDW coexist. In addition to the d-wave symmetry nodes,
additional nodes appear parallel to Q near k = (π/4, π/4)
[when Q = (π/2, π/2)] or near k = (π/2, 0) [when Q =
(π, 0)]. These additional nodes correspond to the red crosses
in Fig. 2. Figure 4(f) displays the band structure along the
magenta band paths in Figs. 4(a) and 4(b), where the normal
state FS is preserved, again resulting in the pure SC bands.

C. Kinetic method for heat conductivity

From these band structures, the electronic thermal con-
ductivity was calculated using the Boltzmann kinetic equa-
tion similar to calculations for the thermal conductivities of
both s-wave and unconventional SCs. Within the Boltzmann
kinetic approach, the thermal conductivity tensor is given by
the equation [59]

κi j = − 2

T

2∑
n=1

∫
d2k

(2π )2

(
E (n)

k

)2(
v(n)

k

)
i

(
v(n)

k

)
j

∂ f 0
k

∂E

× (
τ−1

n1 + τ−1
n2

)−1
, (11)

where f 0
k = 1

eEk/T +1
is the equilibrium Fermi-Dirac distribu-

tion function, v(n)
k = ∇kE (n)

k is the quasiparticle velocity, and
τnm is the quasiparticle relaxation time defined as

τ−1
nm (k) = NimpV

2 2π

h̄

∫
d2k′

(2π )2
|Cnm(k, k′)|2δ(E (n)

k − E (m)
k′

)
,

(12)

where Cnm(k, k′) is known as the coherence factor and is
the amplitude for a single impurity to scatter a quasiparti-
cle from the state with momentum k and energy E (n)

k to a
state with momentum k′ and energy E (m)

k′ within the Born
limit [26]. Nimp is the density of impurities and V is the
isotropic scattering amplitude, where NimpV � 1 in the limit
of weak impurity scattering. The quasiparticle relaxation time
integral was calculated numerically with the unknown NimpV 2

eliminated in favor of the normal-state quasiparticle relaxation
times; τ−1

n = NimpV 2 2π
h̄ NF , where NF is the density of states

(DOS) at the Fermi level in the normal state. Furthermore, τ−1
n

cancels out for the choice of normalization used in this paper,
κ (T )/κ (TN ).

The coherence factors can be calculated from the impurity
scattering Hamiltonian:

Himp = V
∑

k,k′,σ

â†
k′,σ âk,σ =

∑
k,k′,σ

(
�̂n

k′
)†Ĥimp

k �̂n
k, (13)

where Ĥimp
k is the impurity scattering Hamiltonian in the

Nambu basis, and can be written as

Ĥimp
k = V

4

⎛
⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎠, (14)

which can be rewritten in the basis of the coexistence state
Nambu vector to reveal the matrix of coherence factors:

Himp =
∑

k,k′,σ

�̂†
k′D̂(k, k′)�̂k, (15)

where �̂†
k = (ĉ†

1,k,σ
, ĉ1,−k,−σ , ĉ†

2,k,σ
, ĉ2,−k,−σ ) is the Nambu

state vector for the coexistence quasiparticle bands (this can
be generalized to accommodate Nambu vectors for the SDW
and SC quasiparticles since M and � aren’t always nonzero
depending on T and k). Quasiparticles occupying states in
the E (1)

k band with momentum k are defined by ĉ†
1,k,σ |0〉

and quasiparticles occupying states in the E (2)
k band with

momentum k are defined by ĉ†
2,k,σ |0〉, where |0〉 is the vacuum

state with no quasiparticles. Performing the Bogoliubov trans-
formation on the impurity scattering Hamiltonian yields the
matrix of coherence factors for the quasiparticle and quasihole
bands, D̂(k, k′),

D̂(k, k′) = B̂k′Ĥimp
k B̂†

k, (16)

where B̂k is the Bogoliubov transformation matrix, the struc-
ture of which depends on whether or not � and/or M is
nonzero and the symmetry class of the SC gap function. The
details of the Bogoliubov transformation matrices have been
worked out in Appendix B. The intraband quasiparticle band
coherence factors are

C11(k, k′) = D11(k, k′), C22(k, k′) = D33(k, k′) (17)

and the interband quasiparticle band coherence factors are

C12(k, k′) = D13(k, k′), C21(k, k′) = D31(k, k′), (18)

where the −E (1)
k and −E (2)

k bands have been neglected due to
quasiparticle-quasihole symmetry in the model. The calcula-
tion of the coherence factors from Ĥimp

k and the Bogoliubov
transformation matrices was performed numerically.

A more simple case to consider analytically is that of
superconductivity in the absence of a coexistence state, such
as SDWs. In the Born limit, the coherence factor is known [59]
to be

|CSC(k, k′)|2 = 1

2

(
1 + ξkξk′ − �k�k′

EkEk′

)
, (19)

where the quasiparticle energy for a SC is defined as Ek =√
ξ 2

k + �2
k. The ξkξk′ term in this coherence factor integrates

to 0 by symmetry in Eq. (12). For a d-wave SC gap, the �k�k′

term also integrates to 0 due to having symmetric positive and
negative �k values on the bare tight-binding FS. Thus, the
quasiparticle lifetimes of the d-wave state in the Born limit
is inversely proportional to the DOS of the superconducting
quasiparticle states [59,60], N (Ek ); τ d

k = τnNF /N (Ek ). How-
ever, on symmetry-broken tight-binding FSs this term doesn’t
necessarily integrate to 0, as was the case when integrated
on a distorted FS due to nematicity [18]. Another case which
can be discussed analytically is that of the SDW state in the
absence of superconductivity. The intraband coherence factors
of this state can be written [26] as

∣∣CSDW
11 (k, k′)

∣∣2 = ∣∣CSDW
22 (k, k′)

∣∣2 = 1

2

(
1 + ξ−

k ξ−
k′ + M2

ζkζk′

)
(20)
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and the interband coherence factors can be written [26] as

|CSDW
12 (k, k′)|2 = |CSDW

21 (k, k′)|2 = 1

2

(
1 − ξ−

k ξ−
k′ + M2

ζkζk′

)
,

(21)

where ζk =
√

(ξ−
k )2 + M2. While in the limit of a perfectly

nested SDW state (t2 = 0), the ξ−
k ξ−

k′ can be shown to
integrate to 0 and the quasiparticle lifetimes become τ SDW

11 =
τnNF /N (E (α)

k )(1 + M2/(E (α)
k )2)−1, τ SDW

22 = τnNF /N (E (β )
k )

(1 + M2/(E (β )
k )2)−1, and τ SDW

12 = τ SDW
21 = 0 [26], however,

such symmetry arguments cannot be made away from perfect
nesting and the lifetimes need to be calculated numerically.

III. NUMERICAL RESULTS AND DISCUSSION

The Cartesian components of the thermal conductivity
tensor κxx(T ), κyy(T ), and κxy(T ) [κyx(T ) = κxy(T )] were
numerically calculated in the RBZ. However, the frame-of-
reference of the nesting vector Q diagonalizes the thermal
conductivity tensor, and is therefore the more natural frame
to study thermal transport. This is straightforwardly accom-
plished by rotating the coordinate system by θ = π/4 for the
case when Q = (π/2, π/2). The rotated conductivity tensor
κ̂ ′ = R̂(θ = π/4)κ̂R̂T (θ = π/4) is(

κ⊥ 0

0 κ‖

)
= 1

2

(
1 −1

1 1

)(
κxx κxy

κxy κxx

)(
1 1

−1 1

)
, (22)

which was simplified by using the inherent symmetries (κxx =
κyy, κyx = κxy) in the case when Q = (π/2, π/2), and leads
to the diagonalized thermal conductivity components κ⊥ =
κxx − κxy and κ‖ = κxx + κxy. In the SDW system with Q =
(π, 0), no rotation is needed and κxy integrates to 0, resulting
in a diagonal thermal conductivity tensor.

Appropriately integrating the band structure generates the
electronic DOS for both SC + SDW coexistence states. One
important aspect of the nodal structures is the variation in the
DOS just above the Fermi level (which occurs when E = 0)
for the two SC + SDW coexistence states (shown in Fig. 5).
The enhancement occurring just above the Fermi level has
important consequences for the low-T behavior of the thermal
conductivity elements.

The electronic thermal conductivity calculated on the
normal state tight-binding FS was found to have a lin-
ear dependence on temperature. To accentuate the deviation
from the normal state thermal conductivity, the conductivity
elements in Figs. 6 and 7(a) had their linear T -dependence re-
moved by plotting κ (T )/T and were normalized by κ (TN )/TN .
In Fig. 7(b), the conductivity elements were normalized by
κ (TN ) on a log-log scale to emphasize which conductivity
elements preserve this linear T dependence and which ones
deviate from it as T → 0.

A. Pure d-wave SC thermal conductivity

The thermal conductivity of a d-wave SC in the absence
of a coexistence state on a tight-binding electronic dispersion
(ξk = μ − t1 cos kx − t1 cos ky − t2 cos kx cos ky) has been pre-
viously calculated in literature [18,26]. This has also been

FIG. 5. Density of states normalized by the normal state DOS
at the Fermi level (NF ) for SDW + d-wave SC order with odd
symmetry under translations of Q (cyan) and SDW + d-wave SC
order with even symmetry under translations of Q (orange) plotted
versus energy normalized by the SC gap maxima on the FS (�).

calculated in this paper (see Fig. 6) to compare the thermal
conductivity of the SC + SDW coexistence states to. Since the
C(4) rotational symmetry of the tight-binding FS is preserved
for the pure superconducting state, κxx = κyy and κxy = κyx =
0 by symmetry.

For d-wave SCs, the quasiparticle lifetimes can be shown
to only depend inversely on the quasiparticle DOS [59,60]
[τ d

k = τnNF /N (Ek )]. The quasiparticle lifetimes for the dx2−y2

FIG. 6. Thermal conductivity κxx (T )/T calculated for a tight-
binding dispersion ξk = μ − t1 cos kx − t1 cos ky − t2 cos kx cos ky

(where μ = 0, t1 = 100Tc, and t2 = 10Tc) with dx2−y2 (cyan) and
dxy (orange) SC gaps normalized by κxx (Tc )/Tc to remove the T
linearity.
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FIG. 7. Diagonalized thermal conductivity tensor elements par-
allel (dashed curves) and perpendicular (dotted curves) to the SDW
nesting vector Q in the pure SDW state (black), SDW + d-
wave SC state with odd translational symmetry (cyan), and SDW
+ d-wave SC state with even translational symmetry (orange).
(a) κ (T )TN/κ (TN )T plotted to remove linear T dependence and em-
phasize deviations from normal state conductivity. (b) κ (T )/κ (TN )
plotted on a log-log scale to emphasize low-T linearity.

and dxy states are very different due to the difference in the
local DOS of their respective nodal quasiparticle states. The
difference in the local DOS at the nodes of these d-wave SC
states is due to the curvature of the FS where these nodes
occur; flat regions of the FS result in a low local DOS and
curved regions of the FS result in a high local DOS. The
dx2−y2 SC gap has nodal quasiparticle states with a low local
DOS, and therefore longer lifetimes, and high Fermi velocities
whereas, the dxy SC gap leads to nodal quasiparticle states
with a high local DOS, and therefore short lifetimes, and low
Fermi velocities. Therefore, the low-T thermal transport of
these d-wave states is profoundly different, as the dx2−y2 SC
gap has nodal quasiparticles which are both long-lived and
high velocity, while the dxy SC gap has nodal quasiparticles
which are both short-lived and low-velocity. This leads to

the low-T thermal conductivity for the dx2−y2 SC gap being
slightly enhanced relative to the normal state, and the low-T
thermal conductivity for a dxy SC gap being greatly dimin-
ished relative to the normal state (see Fig. 6).

B. Pure SDW thermal conductivity

In the pure SDW case, the electronic thermal conductiv-
ities were calculated numerically in the directions parallel
and perpendicular to the nesting vector Q (see the black
curves of Fig. 7). Parallel to the nesting vector, the thermal
conductivity κSDW

‖ (T ) falls sharply when compared to that of
the normal state, which is often seen in thermal conductivity
measurements of SDW antiferromagnets [27,28,61]. This fall
in conductivity can be attributed to a growing gap in the
reconstructed FS as T decreases from TN , which can be seen
in Fig. 2. As the on-site magnetization, M(T ), reaches its
maximum value, κSDW

‖ (T )/T becomes a constant, diminished
from the normal-state conductivity. This result is comparable
to the pure SDW thermal conductivity for the case when
Q = (π, π ) with a nearly half electron filling for similar band
parameters [26]. Perpendicular to Q in these SDW systems,
the normal state tight-binding FS is preserved and κSDW

⊥ (T ) is
essentially that of the normal state thermal conductivity. How-
ever, as T → 0, this thermal conductivity becomes slightly
enhanced due to the gap in the FS generated by the SDW
order, which reduces the available states at the Fermi level,
increasing the quasiparticle lifetimes resulting in a slightly
enhanced thermal conductivity.

C. SDW + d-wave SC thermal conductivity

When the propagation direction of the SDW is aligned
(parallel case) with a d-wave nodal line, the FS reconstruc-
tion destroys two of the d-wave symmetry nodes [e.g., this
occurs for the Q = (π/2, π/2) SDW and the dx2−y2 SC gap
or Q = (π, 0) SDW and the dxy SC gap], while the symmetry
nodes perpendicular to the SDW propagation direction are
unaffected. This can be seen by the cyan lines in Fig. 2(a)
and the orange lines in Fig. 2(b), where the remaining nodes
occur on the low local DOS regions (flat regions) of the FS.
These two coexistence phases have SC gaps which are odd
under translations of their respective Q vectors (i.e., �k+Q =
−�k) [see Figs. 3(a) and 3(d)]. More so, these systems have
equivalent band structures along their respective band paths
[see Figs. 4(c) and 4(d)]. Due to these similarities these co-
existence states have equivalent transport properties relative
to their Q vectors, which will be referred to as the d (O)-wave
state (odd symmetry state).

The Q = (π/2, π/2) SDW state coexisting with the dxy SC
gap and the Q = (π, 0) SDW state coexisting with the dx2−y2

SC gap have symmetry nodes on the high local DOS regions
(curved regions) of their respective normal state FSs, all of
which remain unchanged by the FS reconstruction [note the
orange points in Figs. 2(a) and the cyan points in Fig. 2(b)].
These coexistence states both have SC gaps which are even
under translations of Q [see Figs. 3(b) and 3(c)]. Due to
this translational symmetry, additional mixing nodes appear
near the FS reconstruction, which can be seen as the red
crosses in Fig. 2. Furthermore, these coexistence states have
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equivalent band structures along their respective band paths
[see Figs. 4(e) and 4(f)] which lead to them having equivalent
transport properties relative to Q. These states will be referred
to as the d (E )-wave state (even symmetry state).

1. SDW + d (O)-wave SC thermal conductivity

Perpendicular to Q, this system behaves like a pure d-wave
SC system, similar to the previously discussed dx2−y2 SC gap
on a tight-binding FS. However, only half the symmetry nodes
typically present in similar d-wave SC systems survive the FS
reconstruction, so the DOS just above the Fermi level (E = 0)
is approximately half that of the pure d-wave system with
the same band parameters (note the reduction in the DOS
just above the Fermi level for d (O) in Fig. 5). With half the
available states to scatter just above the Fermi level, there
is a doubling in the quasiparticle lifetimes at the remaining
nodes relative to the lifetimes of quasiparticles occupying
nodal states in similar d-wave SCs without coexisting SDWs.
Since the remaining symmetry nodes contain quasiparticles
with Fermi velocities purely perpendicular to Q with lifetimes
approximately twice that of their pure SC counterparts, the
residual κ⊥(T → 0)/T is therefore roughly twice the residual
κ (T → 0)/T for a pure d-wave SC with nodes located on the
flat parts of a tight-binding FS [26] [compare cyan curves in
Figs. 6–7(a)]. The thermal conductivity perpendicular to Q is
linear in T [see Fig. 7(b)], and therefore behaves like a SC
with line nodes in this direction [25]. The thermal conductiv-
ity parallel to Q decreases exponentially as T → 0 since the
nodal quasiparticle states which would have Fermi velocities
parallel to Q for SCs with similar nodal lines have been
gapped by the FS reconstruction, and therefore the system
behaves like a fully gapped SC in this direction [23].

2. SDW + d (E )-wave SC thermal conductivity

Since none of these d-wave symmetry nodes become
gapped by the FS reconstruction and additional mixing nodes
appear due to the SC gap being even under translations of
Q, the DOS just above the Fermi level for d (E ) is relatively
large (see Fig. 5) and results in short-lived quasiparticles.
The majority of the states just above the Fermi level are
located in the vicinity of the d-wave symmetry nodes rather
than the mixing nodes, which results in the symmetry nodes
dominating low-T thermal transport. Quasiparticles occupy-
ing states at the symmetry nodes have Fermi velocities with
equal magnitude components perpendicular and parallel to Q
and contribute equally to the low-T transport in both direc-
tions. However, quasiparticles occupying states at the mixing
nodes have Fermi velocities parallel to Q and only contribute
to κ‖, thus leading to a system with weakly anisotropic thermal
transport where κ‖(T → 0) > κ⊥(T → 0) [see the orange
curves in Fig. 6(a)].

The residual κ (T → 0)/T thermal conductivity elements
in these cases are much smaller than κ⊥(T → 0)/T in the
previously discussed d-wave system due to the quasiparticles
at these d-wave symmetry nodes having significantly lower
Fermi velocities and lifetimes. Furthermore, these residual
κ (T → 0)/T values both parallel and perpendicular to Q
are nearly identical to those for the similar dxy SC gap on
a tight-binding FS [compare orange curves in Figs. 6–7(a)].

This is due to the fact that the d-wave symmetry nodes for
the d (E )-wave case are largely unaffected by their coexistence
with the SDW state, but this does introduce additional mixing
nodes which slightly enhance κ‖(T )/T above the pure SC
value. While the quasiparticles occupying the states at the
mixing nodes have high Fermi velocities parallel to Q, the
relative dearth of available states means they don’t play a
significant role in thermal transport. This d-wave SC state
decreases linearly with T at low T as can be seen in Fig. 7(b)
both parallel and perpendicular to Q, and therefore behaves
like a SC with line nodes in both directions [25].

IV. CONCLUSION

While this paper ignores the effects of band multiplicity,
these results are still useful in determining the nodal structures
of commensurate SDW systems with nesting vectors Q =
(π/2, π/2) and Q = (π, 0) coexisting with singlet d-wave
SC pairings. Commensurate SDW systems of type AFM3
and AFM2 were considered on two-dimensional tight-binding
square lattices and found to have equivalent transport prop-
erties within Boltzmann kinetic theory in the weak impurity
scattering (Born) limit relative to their nesting vectors. Parallel
to their nesting vectors these systems behave similar to a
suppressed metal, where the electronic thermal conductivity
is linear in T but diminished from the normal state thermal
conductivity. However, perpendicular to their nesting vectors,
the transport properties of these systems are almost identical
to that of the normal metallic state, except they are slightly
enhanced as T → 0 due to the FS reconstruction parallel to Q
creating a gap in the FS and reducing NF , thus enhancing the
quasiparticle lifetimes.

The d-wave SC states coexisting with the Q = (π/2, π/2)
and Q = (π, 0) nesting vectors have equivalent transport
properties, with the dx2−y2 and dxy states swapped between
the nesting vectors. The d-wave symmetry nodes are located
on regions of the tight-binding FS with the same relatively
small local DOS and have equivalent band structures when
the Q = (π/2, π/2) SDW state coexists with the dx2−y2 SC
gap and the Q = (π, 0) SDW state coexists with the dxy SC
gap (these are the odd-symmetry d (O)-wave states in this
paper). Similarly, the d-wave nodes occur on regions of the
tight-binding FS with the same relatively large local DOS and
have equivalent band structures when the Q = (π/2, π/2)
SDW state coexists with the dxy SC gap and the Q = (π, 0)
SDW state coexists with the dx2−y2 SC gap (these are the
even-symmetry d (E )-wave states in this paper).

The electron transport properties of these commensurate
SDW systems were also studied when SC singlet pairing
arises (TN > Tc) out of it. The electronic thermal conductivity
for a d (O)-wave SC gap measured parallel to Q was found
to decrease exponentially with T , consistent with results for
fully gapped SCs [23]. Perpendicular to Q, the conductivity
was found to decrease linearly with T , consistent with SCs
with line nodes [25]. Furthermore, the residual κ⊥(T → 0)/T
value was found to be roughly twice that of pure d-wave
SCs containing nodal quasiparticle states situated on the flat
regions of a tight-binding FS. Therefore, the effect of SDW
states with C(2) rotational symmetry on d-wave SC states
such as these is that it gaps the nodal quasiparticle states
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in the direction of SDW propagation, greatly reducing ther-
mal transport in that direction, and doubles the lifetimes of
quasiparticles traveling perpendicular to the SDW propaga-
tion direction, thus greatly enhancing thermal transport in that
direction. This results in a system with highly anisotropic
electron transport where fast long-lived quasiparticles tend to
travel perpendicular to Q.

When the d-wave SC gap is even under translations of Q
(d (E ) wave), the SC symmetry nodes are preserved as none of
them appear in the region of the FS which is reconstructed
by the SDW order. Due to the translational symmetry of
the SC gap, additional mixing nodes appear in the vicinity
of the FS reconstruction parallel to Q. The electronic ther-
mal conductivity both parallel and perpendicular to Q were
found to decrease linearly with T . In fact, κ‖(T → 0)/T
and κ⊥(T → 0)/T were nearly identical due to quasiparticles
occupying states at the d-wave symmetry nodes contribut-
ing equally to thermal transport in both directions. However,
thermal transport parallel to Q was slightly enhanced since
quasiparticles occupying states at the mixing nodes enhanced
transport in that direction. The coexistence of SDW states with
C(2) d-wave SC gaps such as these leaves thermal transport of
such systems largely unaffected due to the nodal quasiparticle
states remaining mostly unchanged by the FS reconstruction,
however, it does introduce additional mixing nodes which
slightly enhance thermal transport in the direction of SDW
propagation. Therefore, this results in a system with weakly
anisotropic thermal transport, where slow short-lived quasi-
particles travel both parallel and perpendicular to Q, but
slightly prefer to travel parallel to Q.

These results could be relevant in determining the nature
of the d-wave gap in cuprates with commensurate SDW or-
ders of nesting vectors: Q = (π/2, π/2) or Q = (π, 0). If
the thermal conductivity is measured both parallel and per-
pendicular to Q and the nesting vector is known, weakly or
strongly anisotropic thermal transport at low T could be used
to determine whether the SC gap is dx2−y2 or dxy in nature.
Additionally, these results could be relevant to understanding
the nature of anisotropic in-plane electronic thermal transport

measured in some cuprate samples [39–41]. One study found
quasi-one-dimensional electronic thermal transport at low T
mediated by spin excitations [41], similar to the d (O) wave
result in this paper which had a residual thermal conductivity
perpendicular to Q as T → 0, but not parallel to Q. However,
other studies [39,40] found that electronic thermal transport
was supported in both directions, but still favored a particular
direction due to electronic inhomogeneities. This effect could
either be due to the fact that these samples weren’t monolayers
and the SDW nesting vectors for each layer weren’t all paral-
lel, or the anisotropic transport in these materials is due to a
nematic phase which was discussed in a previous work [18].
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APPENDIX A: ORDER PARAMETER SELF-CONSISTENCY

The mean-field order parameters M and � can be
self-consistently solved for from the Green’s function
method [26,52,62–64]. This can be obtained from the bare
Matsubara Green’s function which can be found from the
Dyson equation

Ĝk(ωn) = (iωnÎ − Ĥk )−1, (A1)

where ωn = 2πT (n + 1/2) is the Matsubara frequency. The
relevant Green’s functions for � are contained in the diago-
nal blocks, whereas the relevant Green’s functions for M are
contained in the off-diagonal blocks. Calculating the relevant
Green’s functions from the Dyson equation and substituting
them into the definitions of the mean-field order parameters
� and M yields two systems of equations for when the SC
gap is odd or even under translations of Q. When the SC gap
is odd under translations of Q, 1/VSC and 1/VSDW when � and
M are nonzero can be written as

1

VSC
= T

Ec∑
ωn

∑
k

Y2
k

D(O)
k (ωn)

(
ω2

n + (ξ−
k )2 + (ξ+

k )2 + M2 + �2
k

)
,

1

VSDW
= T

EB∑
ωn

∑
k

1

D(O)
k (ωn)

(
ω2

n + (ξ−
k )2 − (ξ+

k )2 + M2 + �2
k

)
,

D(O)
k = (

ω2
n + (ξ−

k )2 + (ξ+
k )2 + �2

k + M2
)2 − 4(ξ+

k )2
(
(ξ−

k )2 + M2
) = (

ω2
n + (

E (1;O)
k

)2)(
ω2

n + (
E (2;O)

k

)2)
, (A2)

and 1/VSC and 1/VSDW when the SC gap is even under translations of Q when both � and M are nonzero can be written as

1

VSC
= T

Ec∑
ωn

∑
k

Y2
k

D(E )
k (ωn)

(
ω2

n + (ξ−
k )2 + (ξ+

k )2 − M2 + �2
k

)
,

1

VSDW
= T

EB∑
ωn

∑
k

1

D(E )
k (ωn)

(
ω2

n + (ξ−
k )2 − (ξ+

k )2 + M2 − �2
k

)
,

D(E )
k = (

ω2
n + (ξ−

k )2 + (ξ+
k )2 + �2

k + M2
)2 − 4(ξ+

k )2
(
(ξ−

k )2 + M2
) − 4M2�2

k = (
ω2

n + (
E (1;E )

k

)2)(
ω2

n + (
E (2;E )

k

)2)
, (A3)
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FIG. 8. Self-consistently calculated M and � order parameters
in the absence of superconductivity (black), when spin density waves
coexist with a d-wave SC gap which is odd under translations of Q
(cyan), and when spin density waves coexist with a d-wave SC gap
which is even under translations of Q (orange).

where Ec = 2πT (nc + 1/2) and EB = 2πT (nB + 1/2) are the
cutoff energies for the SC and SDW Matsubara sums, respec-
tively; nc = 30TN/T and nB = 175TN/T were used in this
paper. The natural choice of energy scale for these equations is
TN , since Tc depends on the value of M. To self-consistently
solve for the order parameters, � and M, the SC and SDW in-
teraction potentials can be eliminated by subtracting Eq. (A4)
from Eq. (A2) or Eq. (A3),

1

VSC
= T 0

c

Ec∑
ωn

Y2
k

(
ω2

n + (ξ−
k )2 + (ξ+

k )2
)

(
ω2

n + (ξ−
k )2 + (ξ+

k )2
)2 − 4(ξ−

k ξ+
k )2

,

1

VSDW
= TN

EB∑
ωn

(
ω2

n + (ξ−
k )2 + (ξ+

k )2
)

(
ω2

n + (ξ−
k )2 + (ξ+

k )2
)2 − 4(ξ−

k ξ+
k )2

, (A4)

and T 0
c is the superconducting transition temperature in the

absence of SDWs. In this paper, T 0
c = .35TN was used for

both symmetry classes, but the actual superconducting transi-
tion temperatures were found to be T (O)

c = .47TN and T (E )
c =

.32TN from self-consistency. The order parameters � and M
can be seen as a function of temperature for both the odd and
even symmetry classes in Fig. 8.

APPENDIX B: TWO-STEP DIAGONALIZATION

A two-step process can be employed to simplify the
calculation of the Bogoliubov transformation which diago-
nalizes the Hamiltonian when M and � are simultaneously
nonzero [65]. The first step in this procedure is to diagonalize
the Hamiltonian when M �= 0 and � = 0. It can be shown that
the Bogoliubov transformation matrix in this case is B̂SDW

k ,
which can be used to define the states for the E (α)

k and E (β )
k

quasiparticle bands, respectively, as α̂
†
k,σ |0〉 and β̂

†
k,σ |0〉,

�̂SDW
k = B̂SDW

k �̂n
k =

⎛
⎜⎜⎜⎜⎝

α̂k,σ

α̂
†
−k,−σ

β̂k,σ

β̂
†
−k,−σ

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

uk 0 vk 0

0 uk 0 −vk

−vk 0 uk 0

0 vk 0 uk

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

âk,σ

â†
−k,−σ

âk+Q,σ

â†
−k−Q,−σ

⎞
⎟⎟⎟⎟⎠, (B1)

where uk =
√

1
2 (1 + ξ−

k
ζk

), vk =
√

1
2 (1 − ξ−

k
ζk

), and ζk =√
(ξ−

k )2 + M2. The transformation matrix B̂SDW
k is used to

calculate the coherence matrix in Eq. (16) when T > Tc in
the regions of k space in which the FS reconstruction occurs.
However, this transformation matrix can also be used to
rewrite the Hamiltonian, Ĥk, when both M and � are nonzero
in the basis of the SDW Nambu vector, �̂SDW

k , as Ĥ′
k:

H = 1

2

∑
k

(
�̂SDW

k

)†Ĥ′
k�̂

SDW
k . (B2)

Performing this change of basis on the coexistence Hamil-
tonian without loss of generality results in a Hamiltonian
with intraband coupling terms, which couple the E (α,β )

k bands
with the −E (α,β )

k bands, and interband coupling terms, which
couple the E (α,β )

k bands with the −E (β,α)
k bands:

Ĥ′
k = B̂SDW

k Ĥk
(
B̂SDW

k

)†

=

⎛
⎜⎜⎜⎜⎜⎝

E (α)
k �k|uk|2 − �k+Q|vk|2 0 2�+

k ukvk

�k|uk|2 − �k+Q|vk|2 −E (α)
k −2�+

k ukvk 0

0 −2�+
k ukvk E (β )

k −�k|vk|2 + �k+Q|uk|2
2�+

k ukvk 0 −�k|vk|2 + �k+Q|uk|2 −E (β )
k

⎞
⎟⎟⎟⎟⎟⎠. (B3)

Analytically diagonalizing the general equation for the
Hamiltonian in the �̂SDW

k basis is a difficult task, however,
it can be simplified in the cases of SC gaps with even and odd
symmetries under translations of Q. The simplest case to con-

sider is the odd case, where �k+Q = −�k, which simplifies
the intraband coupling terms to ±�k(|uk|2 + |vk|2) = ±�k.
This also reduces the interband coupling terms to 0, decou-
pling the E (α)

k and E (β )
k SDW bands entirely. Therefore, the

054503-11



PETERSON, CHOUDHURY, AND IDZERDA PHYSICAL REVIEW B 108, 054503 (2023)

Hamiltonian in the �̂SDW
k basis when the SC gap is odd under

translations of Q reduces to

Ĥ′
k =

⎛
⎜⎜⎜⎜⎜⎝

E (α)
k �k 0 0

�k −E (α)
k 0 0

0 0 E (β )
k −�k

0 0 −�k −E (β )
k

⎞
⎟⎟⎟⎟⎟⎠, (B4)

which can be diagonalized by two separate Bogoliubov trans-
formations with dispersion relations ε

(1;O)
k =

√
(E (α)

k )2 + �2
k

and ε
(2;O)
k =

√
(E (β )

k )2 + �2
k, which can be shown [26] to be

equivalent to E (1;O)
k and E (2;O)

k . These Bogoliubov transforma-
tions can also be used to define the states for the E (1)

k and
E (2)

k as ĉ†
1,k,σ |0〉 and ĉ†

2,k,σ |0〉, respectively, by performing the
transformation on �̂SDW

k ,

�̂
(O)
k =B̂(O)

k �̂SDW
k =

⎛
⎜⎜⎜⎜⎜⎝

ĉ1,k,σ

ĉ†
1,−k,−σ

ĉ2,k,σ

ĉ†
2,−k,−σ

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

u(1;O)
k v

(1;O)
k 0 0

−v
(1;O)
k u(1;O)

k 0 0

0 0 u(2;O)
k −v

(2;O)
k

0 0 v
(2;O)
k u(2;O)

k

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

α̂k,σ

α̂
†
−k,−σ

β̂k,σ

β̂
†
−k,−σ

⎞
⎟⎟⎟⎟⎠, (B5)

where u(1,2;O)
k =

√
1
2 (1 + E (α,β )

k

E (1,2;O)
k

) and v
(1,2;O)
k =√

1
2 (1 − E (α,β )

k

E (1,2;O)
k

). B̂(O)
k = B̂(O)

k B̂SDW
k is used to calculate

the coherence factor in Eq. (16) when k is in the region
where the FS becomes reconstructed, � �= 0, and �k is
odd under translations of Q. The B̂(O)

k transformation matrix

calculated here is consistent with previous calculations in
literature for the cuprates [66] if the order of the Nambu
vector elements are properly accounted for. When the
SC gap is even under translations of Q, Ĥ′

k can’t be
simplified generally beyond setting �k+Q = �k, and
Ĥ′

k needs to be diagonalized numerically to calculate
B̂(E )

k .
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