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Condensation of elastic pseudogauge fields and quantized response in the condensates
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The parallels between the models of the weakly interacting Bose gas and elastic pseudogauge fields coupled
to the massive Dirac fermions in two spatial dimensions reveal an intricate property of the Berry term in the
former as compared to the Chern-Simons term of the latter. Guided by the Bogoliubov theory of superfluidity,
we discuss the measurable consequences for the Berry term, which manifest themselves in a quantized response
in any spatial dimension and distinguishes between both time directions. We argue that the same basic principles
lay behind the topological d-wave superconductivity in two spatial dimensions. The same ideas applied to the
model with elastic pseudogauge fields reveal a plethora of possible condensed phases, both with preserved and
violated spatial isotropy and, consequently, different topological responses. The ground state of these phases
is degenerate, hence all of them are equally probable. The spectral anisotropy raises parallels to the Lifshitz
transitions, which occur due to static strain.
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I. INTRODUCTION

The model of weakly interacting nonrelativistic bosons
is arguably one of the most thoroughly studied theoretical
models [1–3] and one may ask why further studies are worth
pursuing. A hand-waving way to answer it is to point to the
case of its relativistic cousin, the φ4 model, which despite
several decades of the most intense research still remains
the first choice model when new ideas have to be developed
or examined. Here one can think of both the classical work
[4,5] or much more recent studies [6,7]. As with the rela-
tivistic case, the model of the weakly interacted Bose gas
still deserves attention, since it suggests numerous parallels
to other physical systems and reveals quite unexpected prop-
erties, which might be helpful for better understanding of the
interconnection between established theories with seemingly
very different origins.

Intriguing aspects of the physics of the weakly interacting
Bose gas model might be guessed from two of its fundamental
properties: (1) The instability of the ground state, which leads
to the emergence of the off-diagonal long-range order, usually
attributed to the Bose-Einstein condensation of interacting
bosons and (2) its original manifest Galilean invariance. Be-
cause of the first property, the low-energy excitations in the
condensed phase are gapless sound waves with linear disper-
sion, propagating through the condensate. In this regard, the
original Galilean invariance of the model is broken but leaves
traces of its existence behind, namely, the time derivative in
the Lagrangian connects the gapped with the gapless modes
and forms the so-called Berry term [8]. This term is anti-
symmetric and intriguingly similar to the Chern-Simons term
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known from the 2+1-dimensional electrodynamics taken in a
particular gauge.

If this similarity is noted, then the natural questions to
ask are: (1) Can one measure this term and, if so, does it
yield a quantized response, and what does this quantization
mean in concrete terms? (2) Can one obtain a model in 2+1
dimensions, which shares several properties of the weakly
interacting bosons, starting with the system of massive Dirac
fermion coupled to a gauge field in a particular gauge? We
know that this model is prototypical for the topological field
theories [9,10] and quantum Hall effects [11]. If so, what is the
nature and the features of the condensation of the respective
bosonic fields?

In this paper, we are doing just that. It is indeed possible
to construct the correlation function which measures only
the Berry term in the model of weakly interacting Bose gas.
Mainly because of the gapless spectrum in the condensed
phase, the result indeed turns out to be quantized, taking
only values ±1, irrespective of the space-time dimension. We
argue that this exact quantization is actually the consequence
of the coexistence of collective modes propagating forwards
(advanced) and backwards (retarded) in time and that it is
indeed possible to distinguish both in a measurement. Then,
constructing the effective interacting Chern-Simons theory
from the initial fermionic model, we recognize term by term
all ingredients of the bosonic model, only with a different
but still gapless dispersion. The interaction term appears due
to the finite bandwidth of the lattice fermions and only dis-
appears if this is taken to infinity. The condensation of the
gauge fields stabilizes the model. While it makes little sense
to speculate on the condensation of the gauge fields related to
the electromagnetism in the electrodynamics, it is possible to
associate them with the pseudogauge fields of the elastic fields
[12] or phonons [13–17]. We identify several distinct con-
densed phases of the pseudogauge fields and corresponding

2469-9950/2023/108(5)/054501(12) 054501-1 ©2023 American Physical Society

https://orcid.org/0000-0002-7408-8303
https://orcid.org/0000-0002-3417-7299
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.054501&domain=pdf&date_stamp=2023-08-01
https://doi.org/10.1103/PhysRevB.108.054501


ANDREAS SINNER AND ZEINAB RASHIDIAN PHYSICAL REVIEW B 108, 054501 (2023)

symmetry-breaking patterns. The quantized response of the
Chern-Simons term in analogy to the Berry term in the model
of the weakly interacting Bose gas turns out to be possible if
the condensation of the pseudogauge fields occur in one par-
ticular spatial direction. In this case, the spectrum of collective
excitations reveals a high degree of anisotropy specific to
the Lifshitz transitions observed on honeycomb lattices under
constant strain [18–21]. As in the case of weakly interacting
bosons, the deeper meaning of the quantized response is our
ability to distinguish between both time directions.

Structurally, the paper is organized as follows: In Sec. II,
we recapitulate the model of the weakly interacting Bose
gases in the usual framework of the Bogoliubov approach.
We introduce the correlator which detects the presence of
the Berry term in the Lagrangian and carry out the explicit
evaluation. In Sec. III, we start out searching for the similar
physics as suggested by the model of weakly interacting Bose
gas. We consider the system of massive Dirac electrons in
2D coupled to the effective or pseudogauge fields and carry
out asymptotic expansions in powers of inverse quasiparticle
mass. Different symmetry-breaking patterns, i.e., the conden-
sation mechanisms for the pseudogauge fields are considered
in Sec. IV. In Sec. V, we discuss the result of the Berry
term correlation for each symmetry-breaking possibility and
compare it with the respective results from the Kubo formula
and discuss the consequences in the Conclusions, Sec. VI.

II. QUANTIZED CORRELATIONS OF THE BERRY TERM
IN THE MODEL OF WEAKLY INTERACTING BOSE GAS

We start with the consideration of the action of weakly
interacting Bose gas in continuum in 2+1d space-time. In the
notation we adopt, it reads (h̄ = 1), cf. Appendix A,

S = ϕ̄ ·
[
∂τ − ∇2

2m
− μ

]
ϕ + g

2
(ϕ̄ · ϕ)2, (1)

where the three parameters of the model, the boson mass
m, the chemical potential μ, and the interaction strength g
are all positive quantities. The effect we are interested in is
easier to understand in the real field representation. To do this,
we introduce the two-component Bogoliubov bosonic spinors.
Then, by a simple reordering of all terms, we get

S = 1

2

(
ϕ̄

ϕ

)T

·
(

∂τ − ∇2

2m − μ 0
0 −∂τ − ∇2

2m − μ

)(
ϕ

ϕ̄

)

+ g

8

[(
ϕ̄

ϕ

)T

·
(

ϕ

ϕ̄

)]2

. (2)

The Bogoliubov spinors are introduced to capture the emer-
gence of the off-diagonal long-range order [22] that appears
in form of the anomalous ϕϕ or ϕ̄ϕ̄ terms, which violate
the particle number conservation. The sign change in front
of the time derivative in the quadratic part is a consequence
of the partial integration and bosonic statistics of the fields
ϕ, which is the main difference in the fermionic counterpart,
the Bogoliubov-deGennes model of superconductors [23,24].
Ultimately, this sign difference is due to the Galilean invari-
ance of the model Eq. (1) and does not occur in this form in
relativistic φ4 models, as it does not for the kinetic energy

∇2/2m. Formally, both channels in the quadratic part of the
action, i.e., ϕ̄ϕ and ϕϕ̄, can be identified as channels with
opposite (forward and backward) time directions. It is possible
to imagine a measurement which distinguishes between both
time directions. Introducing the real valued fields occurs by
rotating the Bogoliubov spinors. In this way, we map the
U (1)-invariant action Eq. (1) on the O(2)-invariant action of
the real-valued longitudinal (A1) and transversal (A2) fields
[13,25]: (

ϕ̄

ϕ

)T

=
(

A1
A2

)T 1√
2

(
1 1
i −i

)
,

(
ϕ

ϕ̄

)
= 1√

2

(
1 −i
1 i

)(
A1
A2

)
. (3)

The action Eq. (1) changes to

S = 1

2

(
A1
A2

)T

·
(

−∇2

2m − μ −i∂τ

i∂τ −∇2

2m − μ

)(
A1
A2

)

+ g

8

[(
A1
A2

)T

·
(

A1
A2

)]2

. (4)

Introducing the vector notation �A = (A1, A2)T and performing
a partial integration in the kinetic energy term, we further
simplify this notation to

S = − i

2
εαβAα · ∂τ Aβ + 1

4m
(∂α

�A) · (∂α
�A)

− μ

2
�A · �A + g

8
( �A · �A)2, (5)

where εαβ represents the 2D totally antisymmetric tensor. The
first term is sometimes referred to as the Berry term [8] and
is similar in appearance to the topological Chern-Simons term
of the 2+1D electrodynamics taken in a special gauge [9,10].
The Berry term has this form in any spatial dimension, though.
The potential term of the action

Veff [ �A] = μ

2
�A · �A − g

8
( �A · �A)2 (6)

has a typical double-well form, characteristic for massive
particles. For positive μ and g, the functional integral with
action Eq. (5) does not converge. The convergence issue is
cured if one assumes that the longitudinal field component
acquires a nonvanishing vacuum expectation value A1 → ρ +
A1, cf. Appendix A. Lengthy calculations lead to the usual
Bogoliubov action, with the quadratic part

Seff = 1

2

(
A1
A2

)T

·
(

−∇2

2m + 2μ −i∂τ

i∂τ −∇2

2m

)(
A1
A2

)
. (7)

The determinant of the matrix (i.e., the product of the eigen-
values) is non-negative and hence the functional integral
converges. From Eq. (7), the Green’s function follows:

G(X, X ′) =
∫

d3Q

(2π )3
e−iQ·(X−X ′ ) G(Q),

G(Q) = 2

q2
0 + E2

Bog(q)

(
q2

2m −q0

q0
q2

2m + 2μ

)
, (8)
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where

EBog =
√

q2

2m

(
q2

2m
+ 2μ

)
(9)

represents the Bogoliubov spectrum. The Bogoliubov spec-
trum is gapless, which is crucially important for the further
discussions. The poles of elementary excitations to therefore
reside at the points given by

q2
0 + E2

Bog = (−iq0 + EBog)(iq0 + EBog), (10)

which suggests the following low-energy action:

S ≈ � f · [∂τ + c|∇|]�p + �p · [−∂τ + c|∇|]� f , (11)

which resembles the expressions for edge modes propagat-
ing along extended stringlike defects, which were proposed
for gapped Dirac electron gases in graphene [26]. Micro-
scopically, this action is obtained by a suitable Bogoliubov
transformation. Here we restrict to the low-energy regime,
where EBog ≈ cq with the sound wave velocity given by c ≈√

μ/m. The first term corresponds manifestly to a particle
propagating from a state �p, which lies in the past, to the state
�̄ f , which lies in the future, while the second term to a particle
moving in the opposite direction. The obvious solutions of
the extremal equations would be given by a family of radial
symmetric functions of the kind φ(r ∓ ct ), with the radial
variable constrained by |∇|r = 1.

To detect the Berry term in the action Eq. (5), we need
to consider the correlator of longitudinal (A1) and transversal
(A2) fields,

Kμν (ω) = 1

i

∫
dX e−iω(τ−τ ′ )〈∂τ Aμ,X Aν,X ′ 〉, (12)

where the variable X contains the imaginary time τ and the
spacial variable x, X = (x, τ ), and dX = dd xdτ . The aver-
age operator in Eq. (12) is defined as the bosonic functional
integral:

〈· · · 〉 = 1

Z

∫
D �A · · · e−SA , Z = 〈1〉. (13)

The evaluation of the Berry term correlator, cf. Appendix B,
yields an expression proportional to the Bogoliubov propaga-
tor taken at zero momentum, i.e., in the large-scale limit:

Kμν (ω) = ω

2
Gμν (ω). (14)

From Eq. (8) follows

Gμν (ω) = εμν

ω
, (15)

which eventually yields for the Berry term correlation func-
tion Eq. (12):

Kμν (ω) = 1

i

∫
dX e−iω(τ−τ ′ )〈∂τ Aμ,X Aν,X ′ 〉 = εμν. (16)

The correlator gives an exactly quantized result with the value
±1. The actual meaning of this result is the detection of the
collective modes propagating either forward (advanced) or
backward (retarded) in imaginary time. This effective time
direction discrimination is in some sense reminiscent of the
notion of the broken time-reversal invariance, since only one

particular direction is picked at a time. It is therefore clear
that this should be observable in any spatial dimension. In
principle, this result should be measurable in thin superfluid
He4 films or in 2D bosonic ultracold gases in optical lattices.

To obtain this result, two ingredients are crucial. First, the
system has to be Galilean invariant, which in combination
with the bosonic statistics of the quantum fields is the ultimate
reason for the existence of the Berry term, and, second, the
spectrum of elementary excitations has to be gapless. There-
fore, the measurement of the quantized response of the type
Eq. (12) may be considered as a tool for proving the protection
of the gaplessness of the spectrum in the condensed phase.
From the semirigorous renormalization group analysis of the
model Eq. (1) in Refs. [27,28], we know that it is asymp-
totically free in the infrared in all spatial dimensions d � 2.
Hence, in infinitely large systems the Bogoliubov approxima-
tion becomes exact and with this Eq. (16) as well.

From what was just said it follows that such effective
time direction discrimination is not possible in conventional
superconductors. Although they are Galilean invariant, the
fermionic statistics of Grassmann fields would negate the sign
change due to the integration by parts in the time derivative.
Furthermore, the spectrum of elementary excitations in super-
conductors is gapped and the limit ω → 0 in the fermionic
analog of Eq. (16) would always be zero. To the contrary,
the effect discussed in this section is in many ways related
to the nontrivial topological properties of the d-wave super-
conductivity in two spacial directions [29], which is known
to capture the main phenomenology of the fractional quan-
tum Hall effect. Here, the order parameter has nodes on
the Fermi surface, which are approximated by the Dirac-like
Hamiltonian. The effect of the Galilean invariance and
fermionic statistics in the particle-hole channel put together
then culminate in the different signs of the chemical potential
for each of the spin projections, which plays the role of the
effective Dirac mass. Nonetheless, even here the spectrum of
quasiparticles is gapped and, hence, the appropriate version of
Eq. (16) would vanish for ω → 0.

III. CONDENSATION OF THE ELASTIC PSEUDOGAUGE
FIELDS COUPLED TO THE MASSIVE

TWO-DIMENSIONAL DIRAC FERMION GAS

The proposed parallels between the Berry and
Chern-Simons terms in particular dimensions suggests the
existence of other analogies going in the opposite direction.
We can imagine a model which comprises the massive lattice
Dirac fermions [30] and the elastic lattice fields in two spatial
dimensions. The latter are known to couple minimally to the
lattice electrons [12], which makes it possible to consider
them as the effective pseudogauge fields. The dynamics of the
pseudogauge fields is extremely slow, such that the interaction
between them can be ignored completely. In this regard, they
are different from the phonons, where the interaction has
to be fully accounted for [13–17,31]. The fermionic mass
breaks the time-reversal symmetry, bears the topological
charge, and is responsible for the finite Hall conductivity
[11]. By coupling fermions to the gauge fields and integrating
the fermions, the topological charge passes through into the
effective bosonic theory, where it appears in the form of the
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Chern-Simons term. Such an effective low-energy theory
might have a structure similar to the model of the weakly
interacting Bose gas with its intrinsic singularities. If this is
the case, then one should consider the condensation of the
pseudogauge as the physically reliable means to cure them.
Ultimately, we can conclude on direct parallels on Berry
versus Chern-Simons terms. Our starting point is the usual
action

SF [ψ†, ψ, �A] = ψ† · [G−1 + �A · �σ ]ψ, (17)

where the inverse Green’s function of the massive Dirac
fermion is

G−1 = ∂τσ0 + i �∇ · �σ + mσ3, (18)

with the kinetic energy operator i �∇ · �σ = ∑
α=1,2 i∂ασα, and

the two-component gauge field

�A · �σ = A1σ1 + A2σ2, (19)

which can be thought of as the gauge field taken in the so-
called axial gauge A0 = 0. The Fourier transformed for the
fermionic Green’s function reads

G−1(Q) = iq0σ0 + q · σ + mσ3. (20)

The way the gauge field couples to the fermions can be inter-
preted as a z component of the magnetic field, since A depends
on time and space coordinates only, i.e., the derivatives with
respect to the z coordinate are zero. Hence, only the z compo-
nent of �∇ × �A (i.e., effectively the magnetic field) would be
finite.

To calculate the correlation function of the type of Eq. (12),
we introduce the partition function

Z =
∫

D �A
∫

Dψ†Dψ e−SF [ψ†,ψ, �A], (21)

which is the function of the two-models parameter, the
fermion mass m and the finite bandwidth �. The calculation
of the correlation function of the type of Eq. (12) requires
evaluation of the functional integral:

〈∂τ Aμ,X Aν,X ′ 〉

= 1

Z

∫
D �A ∂τ Aμ,X Aν,X ′

∫
Dψ†Dψ e−SF [ψ†,ψ, �A]. (22)

The action is quadratic in fermionic fields and the integration
of the fermions can be done exactly,

e−S̄[ �A] =
∫

Dψ†Dψ e−SF [ψ†,ψ, �A] = det[G−1 + �A · �σ ], (23)

or, consequently,

S̄[ �A] = −tr log[G−1 + �A · �σ ]. (24)

Then the expression for the correlation function changes to

〈∂τ Aμ,X Aν,X ′ 〉 =
∫
D �A ∂τ Aμ,X Aν,X ′ e−S̄[ �A]∫

D �A e−S̄[ �A]
, (25)

which allows us to factorize out the field-independent parts of
the action:

S̄[ �A] = −tr log[1 + G �A · �σ ]. (26)

The tr operator denotes the functional trace, which includes
the integration over all continuous summations over all dis-
crete degrees of freedom. Expansion to the fourth order in
powers of (G �A · �σ ) formally reads

S̄[ �A] ≈ −tr
[
(G �A · �σ ) − 1

2 (G �A · �σ )2 + 1
3 (G �A · �σ )3

− 1
4 (G �A · �σ )4 + · · · ]. (27)

By assuming the lattice regularization, one cannot neglect
the quatric terms, which describe the interaction between the
gauge fields. The correlator of the type of Eq. (12) should then
be renormalizedto account for the factors appearing due to the
particular regularization [32],

Kμν (ω) = N
i

∫
dd xdτ e−iω(τ−τ ′ )〈∂τ Aμ,X Aν,X ′ 〉, (28)

where N is such a counterterm, which will be specified at a
later stage.

The evaluation of each term from Eq. (27) was partially
carried out in Ref. [13]. We present it with some additional
information in Appendix C. In the explicit form, the action
becomes

S̄[ �A] = −V [ �A] − s�

8π
εμνAμ · i∂τ Aν

− 1

24π |m|
(

A1
A2

)T

·
(

∂2
2 ∂1∂2

∂1∂2 ∂2
1

)(
A1
A2

)
, (29)

with the effective potential

V [ �A] = �

8π
�A · �A − 1

128π�
( �A · �A)2, (30)

and � denotes the bandwidth. The quantity s� is defined in
Appendix C and appears as an artifact of the lattice regu-
larization. The linear and cubic terms do not appear in this
expansion, since they are either traceless or not rotationaly
invariant, but not because of the infinite cutoff.

IV. DIFFERENT PSEUDOGAUGE FIELDS
CONDENSING PATTERNS

Structurally, the action obtained in Eq. (29) is similar to the
model of the weakly interacting Bose gas defined in Eq. (5).
Both models differ in the important point, though, that in the
model of weakly interacting Bose gas only the longitudinal
component can condense. For the pseudogauge fields, each
of the components can condense separately or both together.
In the case with only one of the components condensing, the
system arrives in the state with a selected spatial direction,
and the condensate breaks the spatial isotropy. If both com-
ponents of the pseudogauge field condense, then the spatial
isotropy is not violated and the system remains isotropic as a
whole. Hence, generally we should consider both possibilities.
We may estimate the stability of the phases by calculating the
ground-state energy. The phase with the smaller ground-state
energy would be the physical one. Introducing the Bogoliubov
shift

�A → √
αê + �A, (31)

where ê is a vector, which distinguishes between the
anisotropic and symmetric symmetry-breaking patterns which
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we specify later. The condensate α of the pseudogauge field
�A reflects the change in the topography of the initially flat
two-dimensional sheet in which the Dirac fermions and the
pseudogauge fields reside. Therefore, the Bogoliubov shift
represents the zero temperature formation mechanism of the
lattice defects. In the other words, α should be related to the
order parameter of the rippled phase. Plugging this into the ex-
pression for the potential and retaining only terms containing
only the condensate, we get the expression for the mean-field
potential,

V [α] = �
�

8π
ê · ê

(
α − α2

16�2
ê · ê

)
, (32)

where � = ∫
d2x

∫
dτ is the space-time volume of the sys-

tem. For the anisotropic phase, ê = (1, 0) or ê = (0, 1) and
ê · ê = 1. The minimum of the potential is then obtained for
α = 8�2, which then becomes

VA[α] = �
�3

2π
. (33)

For the isotropic phase ê = (1, 1) and the minimum of the
potential is obtained for α = 4�2, which leads to the very
same value of the ground-state energy:

VS[α] = �
�3

2π
. (34)

From the point of view of the smallest ground-state energy,
both symmetry-breaking patterns are equally probable. Al-
though the value of the condensed fraction is twice as high
in the anisotropic phase, this does not seem to be a suffi-
cient argument why this phase should be less probable. If we
strengthen the requirements on the vectors ê by demanding
them to be always normalized to the unity, then also this
difference disappears and both states become energetically
indistinguishable. The discovered degeneracy of the ground
state mimics similar degeneracy in the ground state, which
occurs when the system of 2D Dirac fermions interacts with
the longitudinal monochromatic phonons reported in Refs.
[15,16].

The stability investigation of each phase should be com-
plemented by the fluctuation analysis. Lengthy calculations
presented in Appendices D and E lead us to the quadratic parts
of the action in each case. The considered anisotropic case
assumes that A1 condenses. The quadratic action becomes

S̄A[ �A] = �A · �−1
A

�A, (35)

where this inverse propagator reads

�−1
A (P) =

⎛
⎝ � + p2

2
12|m|

s�

4 p0 + p1 p2
12|m|

− s�

4 p0 + p1 p2
12|m|

p2
1

12|m|

⎞
⎠. (36)

The inversion of the matrix Eq. (36) reveals the structure of
the spectrum to the leading order

EA(P) = |p1|
√

�

12|m| + O(p3). (37)

The spectrum Eq. (37) combines phenomenological features
which are specific to two distinct classes of critical systems.
First, they are gapless, which is typical for the superfluids

and, in particular, for the Bogoliubov spectrum. Second, they
reveal a striking anisotropy, which is typical for the so-called
Lifshitz transition [19–21,33]. In terms of the effective Dirac
description of graphene, the phenomenology of the Lifshitz
transition is understood as follows: the in-plane strain act-
ing on both sublattices in opposite directions changes the
distance between the nearest lattice atoms within each layer
and correspondingly increases the electronic hopping ampli-
tude between them. This creates an additional term which
resembles the pseudogauge field considered here [12]. The
difference is that this field is static, while the ones considered
here possess a full space-time dependence. The action of this
field displaces the Dirac points from their original positions
until the system arrives at a Lifshitz transition point at some
critical value of the pseudogauge-field amplitude, character-
ized by a fusion of the Dirac points with resulting anisotropic
spectrum of the kind of Eq. (37). Finally, such anisotropy of
the spectrum is typical for directed edge modes propagating
along the artificially created channels (edge domain walls) on
the boundary between regions with different properties, e.g.,
in gapped monolayer graphene [26] or in strained and twisted
bilayer graphene [34]. In the latter case, these emerging edge
domain walls separate domains with different vorticity, i.e.,
local topology, of the lattice [35].

In the isotropic case, where both components of the pseu-
dogauge field condense, we obtain the following inverse
propagator:

�−1
I (P) =

(
� + p2

2
3|m| s� p0 + � + p1 p2

3|m|
−s� p0 + � + p1 p2

3|m| � + p2
1

3|m|

)
. (38)

The inversion of the propagator reveals the structure of the
elementary excitations

EI (P) =
√

�

3|m| |p1 − p2| + O(P2), (39)

which looks as a generalization of Eq. (37).
The main result of these calculations suggests that both

possibilities of condensates do essentially occur due one and
the same mechanism. There is no clear energetic argument
which favors the isotropic case. The only difference in the
ground state is the smaller value of the condensate α, but it
is not clear whether this is a sufficient criterion to dismiss the
anisotropic case, since it can be cured by a trivial redefinition
of the variables. Perhaps the solution of this problem could
be achieved by renormalization group analysis by coupling
minimally both quadratic actions to each other and looking
at the competition between them. We leave this for the future
activities.

V. BERRY TERM VERSUS KUBO CORRELATORS
IN BOTH PHASES

Although both phases do not differ much from the spec-
tral point of view, they have quite different behaviors in the
Berry term correlator. Going through the formal evaluation of
Eq. (28), we get a result similar to Eq. (14),

KA;μν (ω) = 2πN ω

2
�A;μν (ω), (40)
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where the prefactor appears due to the rescaled pseudogauge
fields. In the anisotropic phase, we obtain

�μν (ω) = εμν

4

C�

sgn(m)

ω
. (41)

With the choice of the renormalization factor, N = C�

4π
then

follows

KA;μν (ω) = εμνsgn(m), (42)

which is essentially the familiar topological Chern number of
the 2D massive Dirac electron gas. Things are different in the
isotropic case. Here, the off-diagonal term does not vanish
as the frequency and momentum are taken to zero. At zero
momenta and small frequencies, we obtain a diverging result:

KI;μν (ω) ∼ −�

ω
. (43)

Since ω is a Matsubara frequency, this divergence is on the
imaginary axis and there is no response on the real axis. We
therefore notice that the two phases react differently to the
measurement of the topological order, rendering the isotropic
phase topologically trivial.

To bring this argumentation on more formal footing, we
evaluate the Hall conductivity of the massive 2D Dirac elec-
tron gas from the Kubo formula [11]

σμν (ω) = 2π

ω

∫
dX e−iω(τ−τ ′ ) 〈 jμ(X ) jν (X ′)〉, (44)

with the fermionic current operators

jμ(X ) = (ψ†σμψ )X , (45)

and the averaging operator denoting the Grassmann functional
integration over the fields ψ . Introducing the sources in the
form of the pseudogauge fields, the Kubo formula changes to

σμν (ω) = 2π

ω

∫
dX e−iω(τ−τ ′ ) δ(2)

δAμ,X δAν,X ′

∣∣∣∣∣ �A=0

〈e− �A· �j〉, (46)

where the functional integration now runs over the action
Eq. (17). To obtain the Hall conductivity, it is sufficient to ex-
pand the fermionic determinant up to the Chern-Simons term
and then perform the functional derivatives. But our intention
is to verify to what extend the nontrivial topology of the
model persists in each of the condensed phases. No functional
integration over pseudogauge fields is required at any step of
the derivation up until Eqs. (36) and (38). Therefore, we can
perform all the calculations from the previous sections until
we arrive at

σμν (ω) = 2π

ω

∫
dX e−iω(τ−τ ′ ) δ(2)

δAμ,X δAν,X ′

∣∣∣∣∣ �A=0

e− �A·�−1 �A,

(47)

where �−1 is either Eq. (36) or Eq. (38). Performing the
Fourier transform and diagonalizing the expression in the
momentum space yields

σμν (ω) = 2π

ω

∫
d3Q

(2π )3
e−i �q·�x′

e−iτ ′(q0+ω)

×
∫

dX e−i �q·�xe−iτ (q0+ω)�−1
μν (Q). (48)

The remaining integrals are trivial and we therefore obtain

σμν (ω) = 2π

ω
�−1

μν (ω). (49)

For the Hall conductivity μ �= ν. Hence, using Eqs. (36) and
(38), we obtain results almost identical with the Berry term
correlator, which is especially striking for the anisotropic case.

VI. CONCLUSIONS

This similarity between the Kubo and Berry term correla-
tors gives a hint that the latter measures the topological order
in the model Eq. (17). Then, by analogy it also means that
the Berry term of the model of the weakly interacting Bose
gas Eq. (5) measures something similar and represents some
kind of space-time topological invariant, which is present
in all spatial dimensions. The different sign for each of the
index combinations corresponds in the original action to the
direction of the imaginary time, hence what the Berry term
correlator actually detects is the temporal propagation direc-
tion of either advanced and/or retarded sound mode through
the condensate. The possibility to distinguish between both
temporal directions in a measurement, i.e., picking of one
particular time direction, may be interpreted as an effective
time reversal breaking.

Importantly, this effective time direction discrimination is
not measurable and therefore principally absent in supercon-
ductors. The reason is that the Berry term does not appear
in the Bogolibov-de Gennes Lagrangian due to the fermionic
statistics of the Grassmann fields. Because of the additional
minus sign due to the commutation of Grassmann numbers,
the sign of the time derivative in both advanced and re-
tarded channels would be exactly the same, hence an analog
of the Berry term correlator (if such can be formulated for
Grassmann fields at all, we did not check it) would always be
positive. Moreover, the spectrum of collective excitations in
superconductors is gapped. Therefore, in the limit ω → 0, the
result of the Berry term correlator evaluation would be exactly
zero. Things are different for the case of the d-wave conduc-
tivity in two spatial dimensions, as pointed out in the main
text. Here too, the combined effect of the Galilean invariance
in the particle-hole channel, fermionic statistics and gapless
nodal order parameter also results in nontrivial topology of
the superconducting state with charge fractionalization [29].
One can attempt a speculation on a potential duality between
the fermionic and bosonic theories. Even then, the spectrum of
quasiparticles remains gapped and the infrared limit obscures
the observation of the quantized response from the correlator
of the type of Eq. (16).

The analogy to the weakly interacting bosons suggests a
similar interpretation for the case of condensed pseudogauge
fields as well. Here we have detected additional constrains,
though. For these fields, two different symmetry-breaking
mechanisms have been found, with and without the preser-
vation of the spatial isotropy. From the point of view of the
smallest ground-state energy, both symmetry-breaking pat-
terns are equally likely, hence none of them can be neglected
as such. The breaking of the spatial isotropy by the condensate
seems to preserve the topological properties of the model,
while the spatially isotropic condensate seems to negate the
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effect of the time-reversal symmetry broken by the presence
of the mass gap. The spectrum of collective excitations on the
condensed phase is linear and therefore represents a kind of
sound wave. However, it also reveals a selected direction in the
momentum space, which means that whose sound waves are
directed. This phenomenological picture is specific to various
Lifshitz transitions, which occur under the static strain at crit-
ical strain values also related to the bandwidth [18–21]. The
spatial anisotropy of the spectrum in Eqs. (37) and (39) is typ-
ical for directed edge modes propagating along the artificially
created channels [26]. These two crucial observations provide
a strong phenomenological support that the condensation of
the elastic pseudogauge fields reported in this paper results
in the formation of quasi-one-dimensional stringlike defects
of the lattice, similar to the edge domain walls, which separate
domains with different lattice topologies reported recently in
a different context [34,35]. It is left to future activities to study
the thermodynamics and transport at the critical point and of
the corresponding phases.

Talking about the spontaneous symmetry breaking of the
effective model in terms of pseudogauge fields is meaningless
unless we have an interaction between them. If the model
Eq. (17) is taken in continuum, i.e., with an infinite ultraviolet
cutoff �, then the interaction term in the effective potential
in Eq. (A7) is totally suppressed, while the formally infinite
and negative mass term is eliminated from the considerations
by means of the specially invented dimensional regularization
technique [36], which therefore eliminates all sources of insta-
bility in the effective model. Things are different on the lattice,
though, especially if the ratio gap size m to ultraviolet cutoff �

is not negligible anymore. This constrain produces the quatric
interaction term, which then triggers the mechanism of the
spontaneous symmetry breaking.
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APPENDIX A: THE WEAKLY INTERACTING BOSE GAS
MODEL IN THE CONDENSED PHASE

We use the following notation in this paper: The dot
product operations implies the integration of the correspond-
ing terms over the position coordinates and the imaginary
time, e.g.,

a · b =
∫

dτ

∫
dd x a(x, τ )b(x, τ ), (A1)

(a · b)2 =
∫

dτ

∫
dd x a2(x, τ )b2(x, τ ). (A2)

The condensate is split off the longitudinal field as its homo-
geneous part by the Bogoliubov shift:

A1 → √
ρ + A1, A2 → A2. (A3)

Shifting the fields changes the first and second terms of the
effective potential Eq. (6) as

�A · �A → �ρ + 2
√

ρê · �A + �A · �A, (A4)

( �A · �A)2 → �ρ2 + 4ρ
3
2 ê · �A + 4ρ �A · P↑ �A + 2ρ �A · �A

+ 4
√

ρ(ê · �A �A · �A) + ( �A · �A)2, (A5)

where ê = (1, 0)T, � = ∫
dτ

∫
dd x being the formally infi-

nite integral measure (space-time volume),

P↑ =
(

1 0
0 0

)
, ê · �A =

∫
dτ

∫
dd x A1, and

(ê · �A �A · �A) =
∫

dτ

∫
dd x A1

(
A2

1 + A2
2

)
. (A6)

Thus, as a whole, the potential term in Eq. (6) changes as

Veff [ �A] = μ

2
�A · �A − g

8
( �A · �A)2 → −1

8
�ρ[gρ − 4μ]

− 1

2
√

ρ[ρg − 2μ](ê · �A)

− 1

4
[ρg − 2μ] �A · �A − g

2
ρ �A · P↑ �A

− g

2
√

ρ(ê · �A �A · �A) − g

8
( �A · �A)2. (A7)

The stability criterion of the model corresponds to the minimal
ground-state energy with respect to the condensate

0 = �

8

∂

∂ρ
[gρ2 − 4μρ], (A8)

which fixes the condensate density to

ρ = 2μ

g
, (A9)

and annihilates the linear term in Eq. (A7). The remaining
terms of the effective potential become

Veff [ �A] = −μ �A · P↑ �A −
√

μg

2
(ê · �A �A · �A) − g

8
( �A · �A)2,

(A10)

truncating the action to quadratic order in A’s (with support
of the renormalization group argument, by which the interac-
tion strength parameter g scales down to zero in the infrared
[25,27,28]), we get the quadratic effective Bogoliubov action:

Seff [ �A] = − i

2
εαβAα · ∂τ Aβ + 1

4m
(∂α

�A) · (∂α
�A) + μ �A · P↑ �A.

(A11)

In conventional fashion, Eq. (A11) becomes Eq. (7).
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APPENDIX B: EVALUATION OF THE CORRELATOR
EQ. (12) IN GENERAL FORM

Integrating by parts in Eq. (12) in the time integral first
gives

Kμν (ω) = ω

∫
dX e−iω(τ−τ ′ )〈Aμ,X Aν,X ′ 〉.

Fourier transforming and diagonalizing in the momentum
space gives

Kμν (ω) = ω

∫
dX e−iω(τ−τ ′ )

∫
d3Q

(2π )3

∫
d3P

(2π )3
δ(Q + P)

× e−iQ·X e−iP·X ′ 〈Aμ,QAν,−Q〉.
The functional integral over the quadratic part of the action is
evaluated by introducing the auxiliary sources:

〈AνAμ〉 = δ2

δJμδJν

∣∣∣∣∣ �J=0

1

Z

∫
D �A exp{− �A · M �A − �J · �A}. (B1)

Shifting the integration variables as �A → �A − 1
2 M−1 �J , one

separates �A and �J ,

�A · M �A + �J · �A → �A · M �A − 1
4
�J · M−1 �J, (B2)

which then reduces the calculation of the correlator to a simple
functional derivative:

〈AνAμ〉 = δ2

δJμδJν

∣∣∣∣∣ �J=0

exp

[
1

4
�J · M−1 �J

]
= 1

2
M−1

μν . (B3)

Integrating one of the momenta gives

Kμν (ω) = ω

2

∫
d3Q

(2π )3
eiτ ′(q0+ω)eix′ ·q

∫
dτ e−iτ (q0+ω)

×
∫

d2x e−ix·qM−1
μν (Q)

= ω

2

∫
d3Q

(2π )3
δ(q0 + ω)δ(q)M−1

μν (Q) = ω

2
M−1

μν (ω),

i.e., with the propagator matrix taken at zero momentum.

APPENDIX C: EVALUATION OF THE ACTION EQ. (27)

Below we evaluate each term in the expansion Eq. (27).
The leading order term vanishes:

tr(G �A · �σ ) = Tr
∫

d3X GXX
�AX · �σ

= Tr
∫

d3X
∫

d3Q

(2π )3

∫
d3P

(2π )3
e−iQ·(X−X )e−iP·X G(Q) �AP · �σ (C1)

=
∫

d3P

(2π )3
Aμ

P

∫
d3X e−iP·X Tr

∫
d3Q

(2π )3
G(Q)σμ (C2)

=
∫

d3P

(2π )3
Aμ

Pδ(P) Tr
∫

d3Q

(2π )3
G(Q)σμ = Tr �A0 · �σ

∫
d3Q

(2π )3
G(Q). (C3)

Using the fermionic Green’s function Eq. (20), we recognize

Tr �A0 · �σ
∫

d3Q

(2π )3
G(Q) = Tr Aμ

0 σμ

∫
d3Q

(2π )3

1

Q2 + m2
[−iq0σ0 + qνσν + mσ3] (C4)

= 2δμνAμ
0

∫
d3Q

(2π )3

qν

Q2 + m2
= 0 (C5)

by angular integration. The quadratic term has to be evaluated up to second order in gradient expansion:

−1

2
tr(G �A · �σ )2 = −

∫
d3P

(2π )3
Aμ

PAν
−P · 1

2
Tr

∫
d3Q

(2π )3
G(Q)σμG(Q + P)σν. (C6)

Employing the Feynman-parameter trick,

1

AB
=

∫ 1

0
dx

1

[(1 − x)A + xB]2
, (C7)

we first may write

−1

2
Tr

∫
d3Q

(2π )3
G(Q)σμG(Q + P)σν

= −1

2
Tr

∫ 1

0
dx

∫
d3Q

(2π )3

[/Q + mσ3]σμ[/Q + /P + mσ3]σν

[(1 − x)(Q2 + m2) + x((Q + P)2 + m2)]2
, (C8)
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where Q2 = q2
0 + q2

1 + q2
2 and /Q = −iq0σ0 + q1σ1 + q2σ2. We symmetrize the numerator by shifting Q → Q − xP, which then

yields

→ −1

2
Tr

∫ 1

0
dx

∫
d3Q

(2π )3

[/Q − x/P + mσ3]σμ[/Q + (1 − x)/P + mσ3]σν

[Q2 + m2 + x(1 − x)P2]2
. (C9)

To the second order in gradient expansion, we get

−1

2
tr(G �A · �σ )2 ≈ −1

2
Tr

∫
d3Q

(2π )3

[/Q + mσ3]σμ[/Q + mσ3]σν

[Q2 + m2]2
(C10)

− 1

2
Tr

∫ 1

0
dx

∫
d3Q

(2π )3

m/P[(1 − x)σνσ3σμ − xσμσ3σν]

[Q2 + m2]2
(C11)

+ 1

2
Tr

∫ 1

0
dxx(1 − x)

∫
d3Q

(2π )3

[
2P2

[/Q + mσ3]σμ[/Q + mσ3]σν

[Q2 + m2]3
+

/Pσμ
/Pσν

[Q2 + m2]2

]
. (C12)

The mass term becomes

−1

2
Tr

∫
d3Q

(2π )3

[/Q + mσ3]σμ[/Q + mσ3]σν

[Q2 + m2]2
= −1

2
Tr

∫
d3Q

(2π )3

/Qσμ /Qσν + m2σ3σμσ3σν

[Q2 + m2]2

= 1

2
Tr

∫
d3Q

(2π )3

δμν (q2
0 + m2)σ0 − q · σσμq · σσν

[Q2 + m2]2 = δμν

∫
d3Q

(2π )3

q2
0 + m2

[Q2 + m2]2
,

where we subsequently dropped terms vanishing by the an-
gular integration. Integrating over q0 from −∞ to +∞ (zero
temperature) and over q up to a cutoff �, we further get

δμν

∫
d3Q

(2π )3

q2
0 + m2

[Q2 + m2]2
= δμν

1

8π

�2

√
�2 + m2

≈ δμν

�

8π
,

(C13)

and the corresponding term in the action becomes

≈ �

8π
�A · �A. (C14)

The Chern-Simons term is evaluated as

−1

2
Tr

∫ 1

0
dx

∫
d3Q

(2π )3

m/P[(1 − x)σνσ3σμ − xσμσ3σν]

[Q2 + m2]2

= i

2
mp0Tr{σ3σμσν}

∫
d3Q

(2π )3

1

[Q2 + m2]2 (C15)

= − p0

8π
εμν

[
m

|m| − m√
�2 + m2

]
= −εμνsgn(m)

p0

8π
C�,

(C16)

where

C� =
[

1 − 1√
1 + (�/m)2

]
, (C17)

i.e., the correction to the Chern number due the lattice regu-
larization, which then becomes not an exact integer ∼sgn(m)
but rather a nonuniversal number [32]. We finally acquire the
Chern-Simons term in the action

≈ s�

8π
εμνAμi∂τ Aν, (C18)

where s� = C�sgn(m). For the evaluation of the term to
second order in gradient expansion, we notice

1

2

∫ 1

0
dx x(1 − x) = 1

12
, (C19)

such that the term becomes

S̄[ �A] ≈ − 1

24π |m|
(

A1
A2

)T

P

·
(

p2
2 p1 p2

p1 p2 p2
1

)(
A1
A2

)
−P

(C20)

= 1

24π |m|
(

A1
A2

)T

·
(

∂2
2 ∂1∂2

∂1∂2 ∂2
1

)(
A1
A2

)
= �A · K �A,

(C21)

where we introduced the kinetic energy matrix in the last
expression. Therefore, we have obtained the quadratic part of
the action in the form

S̄2[ �A] = − �

8π
�A · �A − sgn(m)

8π
C�εμνAμi∂τ Aν − �A · K �A.

(C22)

It is sufficient to determine the qubic and quartic terms only to
the momentum-independent order of the gradient expansion.
There is no qubic term to local order, i.e.,

1
3 tr(G �A · �σ )3 ≈ 0. (C23)

The quartic term reads to local order

S̄4[ �A] = −1

4
tr(G �A · �σ )4 ≈ −A4

1 + 2A2
1A2

2 + A4
2

128π�

= − 1

128π�
( �A · �A)2. (C24)

To the leading order in gradients, we obtain Eq. (29).
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APPENDIX D: PROPAGATOR OF THE PSEUDOGAUGE
FIELD IN THE ANISOTROPIC CONDENSED PHASE

Since the pseudogauge fields A are bosonic, the corre-
sponding functional integration converges if the real part of
the action is positive. The Matsubara frequency appears in the
free propagator with an imaginary unit i in front of it, i.e.,
it represents the oscillating part in the integrand and cannot
influence the convergence. The condition for the functional
integral to converge implies both the real part of the quadratic
term and the amplitude of the interaction term to be posi-
tive numbers. But this condition is not given for momenta
smaller than the cutoff �. This is fixed by the Bogoliubov
shift �A → √

αê + �A. As pointed out in the main text, there are
two possibilities to introduce the order parameter: with and
without preservation of the spatial isotropy. Here we consider
the latter case and the former in the next paragraph. Then
ê = (1, 0) or ê = (0, 1), and ê · ê = 1 and the local quadratic
part transforms as

�

8π
[
√

αê + �A] · [
√

αê + �A] = �

8π
[�α + 2

√
α(ê · �A)+ �A · �A],

(D1)
while the quartic part as

1

128π�
([

√
αê + �A] · [

√
αê + �A])2

= 1

128π�
[α(ê · ê) + 2

√
α(ê · �A) + �A · �A]2 (D2)

= 1

128π�
[�α2 + 4α(ê · �A)2 + ( �A · �A)2 + 4α3/2(ê · �A)

+ 2α �A · �A + 4
√

α(ê · �A �A · �A)], (D3)

which leads us to the zeroth term of the effective potential

V0(α) = �
α�

8π

(
1 − α2

16�2

)
, (D4)

the linear term

V1(A) = √
α

�

4π

(
1 − α

8�2

)
(ê · �A), (D5)

the quadratic term

V2(A) = �

8π
�A · �A − 2α

128π�
�A · �A − 4α

128π�
(ê · �A)2, (D6)

and the higher terms

V3/4(A) = − 1

128π�
[4

√
α(ê · �A �A · �A) + (A · A)2]. (D7)

The stability criterion condition requires the linear term to
vanish, which is analogous to the minimum of the ground-
state energy considered in the main text in Eq. (33) and
leads to

α = 8�2. (D8)

Then the quadratic term becomes

V2(A) = − �

2π
(ê · �A)2, (D9)

i.e., only one component of the pseudogauge field acquires a
gap. The higher order terms

V3/4(A) = −
√

2

16π
(ê · �A �A · �A) − 1

128π�
( �A · �A)2. (D10)

Rescaling the pseudogauge fields, the frequency and the mo-
menta are as follows:

�A →
√

2π�− 3
2 �A, (D11)

p0 → � p0, (D12)

pi → �
1
2 pi, (D13)

and, correspondingly, for the frequency-momentum integrals,
we obtain

SA[ �A] = (ê · A)2 − s�

4
εμνAμi∂τ Aν − �A · K �A

+
√

π

4�
5
2

(ê · �A �A · �A) + π

32�5
( �A · �A)2. (D14)

As the dimensional analysis shows, the remnants of the in-
teraction term are indeed negligible in comparison to the
scale-invariant quadratic part and can be omitted from further
considerations. The kinetic energy matrix changes to

K = 1

12|m|
(

∂2
2 ∂1∂2

∂1∂2 ∂2
1

)
→ − 1

12|m|
(

p2
2 p1 p2

p1 p2 p2
1

)
,

(D15)

the last relation being the result of the Fourier transformation.
In its explicit form, the quadratic part of the action is shown
in Eq. (36).

The field rescaling procedure does also affect the correla-
tion functions Eq. (22) as

〈∂τ Aμ,X Aν,X ′ 〉 → 2π〈∂τ Aμ,X Aν,X ′ 〉, (D16)

as only the integration kernel are not compensated by the
normalization. The inversion of the matrix Eq. (36) gives

�A(P) = 1

det
[
�−1

A (P)
]
⎛
⎝ p2

1
12|m| − s�

4 p0 − p1 p2
12|m|

s�

4 p0 − p1 p2
24π |m| � + p2

2
12|m|

⎞
⎠,

(D17)

and the det[�−1(P)] is factorized in terms of the elementary
excitation poles

det
[
�−1

A (P)
] = −

[C�

4
ip0 + E (P)

][C�

4
ip0 − E (P)

]
,

(D18)

with the gapless anisotropic spectrum defined in Eq. (37).
The factor sgn(m) is lost in the determinant calculation and,
correspondingly, in its factorization.
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APPENDIX E: PROPAGATOR OF THE PSEUDOGAUGE
FIELD IN THE ISOTROPIC CONDENSED PHASE

In the isotropic condensed phase, both field components
contribute equally to the condensate:(

A1
A2

)
→ √

α

(
1
1

)
+

(
A1
A2

)
= √

αê + �A, (E1)

i.e., ê = (1, 1)T and ê · ê = 2. The local quadratic part trans-
forms as

�

8π
[
√

αê + �A] · [
√

αê + �A]

= �

8π
[2�α + 2

√
α(ê · �A) + �A · �A], (E2)

while the quartic part as

1

128π�
([

√
αê + �A] · [

√
αê + �A])2

= 1

128π�
[α(ê · ê) + 2

√
α(ê · �A) + �A · �A]2 (E3)

= 1

128π�
[4�α2 + 4α(ê · �A)2 + ( �A · �A)2 + 8α3/2(ê · �A)

+ 4α �A · �A + 4
√

α(ê · �A �A · �A)], (E4)

which leads us to the zeroth term of the effective potential

V0(α) = �
α�

4π

(
1 − α

8�

)
, (E5)

the linear term

V1( �A) = �
√

α

4π

(
1 − α

4�2

)
(ê · �A), (E6)

which vanishes at α = 4�2, the quadratic term

V2( �A) = �

8π
�A · �A − 4α

128π�
(ê · �A)2 − 4α

128π�
�A · �A (E7)

→ − �

8π
(ê · �A)2 = − �

8π

(
A1
A2

)T

·
(

1 1
1 1

)(
A1
A2

)
, (E8)

and the higher terms:

V3/4( �A) = − 1

16π
(ê · �A �A · �A) − 1

128π�
( �A · �A)2. (E9)

Combining all terms to the action and rescaling the fields �A →√
8π �A, we get

SI [ �A] = −s�εμνAμi∂τ Aν − �A · K �A + �(ê · �A)2

+
√

2π (ê · �A �A · �A) + π

2�
( �A · �A)2, (E10)

the rescaled kinetic energy term being

K = 1

3|m|
(

∂2
2 ∂1∂2

∂1∂2 ∂2
1

)
. (E11)

The quadratic part of the action then becomes

S̄I [ �A] = �A · �−1
I

�A. (E12)

The propagator in the isotropic phase reads

�I (P) = 1

det[�−1
I (P)]

×
⎛
⎝ � + p2

1
3|m| −s� p0 − � − p1 p2

3|m|

s� p0 − � − p1 p2
3|m| � + p2

2
3|m|

⎞
⎠.

(E13)

The determinant of the inverse propagator matrix is

det
[
�−1

I (P)
] = (C� p0)2 + �

3|m| (p1 − p2)2, (E14)

which can be factorized in terms of the poles of the
propagator:

det
[
�−1

I (P)
] = −[C�ip0 − EI (P)][C�ip0 + EI (P)]. (E15)
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