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Multipolar interactions and magnetic excitation gap in d3 spin-orbit Mott insulators
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In Mott insulators with a half-filled t2g shell the Hund’s rule coupling induces a spin-3/2 orbital-singlet ground
state. The spin-orbit interaction is not expected to qualitatively impact low-energy degrees of freedom in such
systems. Indeed, d3 cubic double perovskites (DP) of heavy transition metals are believed to exhibit conventional
collinear magnetic orders. However, their inelastic neutron scattering spectra feature large gaps of unclear origin.
Here we derive first-principles low-energy Hamiltonians for the cubic DP Ba2YB′O6 (B′ = Os, Ru) and show that
they include significant multipolar—dipole-octupolar—intersite exchange terms. These terms break continuous
symmetry of the spin-3/2 Hamiltonian opening an excitation gap. The calculated gap magnitudes are in good
agreement with experiment. The dipole-octupolar intersite exchange is induced due to excited states of the t3

2g

manifold that are admixed by the spin-orbit interaction into the spin-3/2 ground state.
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I. INTRODUCTION

Mott insulators of heavy transition metals (TM) exhibit
a rich variety of unusual intersite interactions and ordered
phases [1,2], like Kitaev physics in d5 irridates [3], multipolar
orders [4–11] and valence-bond glasses [12,13] in d1 and
d2 DP, or excitonic magnets in d4 perovskites [14]. These
exciting phenomena originate in large spin-orbit (SO) entan-
gling the orbital momentum L with spin S thus splitting the
ground-state (GS) LS multiplet. The resulting SO GS is then
characterized by the total (pseudo)angular momentum Jeff that
depends on the d-shell occupancy and determines the space of
low-energy local degrees of freedom [2].

The physics of d3 Mott insulators is expected to be more
conventional and less interesting. In the presence of a large
octahedral or tetrahedral ligand field, the t2g shell is half-filled.
The Hund’s rule thus forces Jeff = S = 3/2 and L = 0, i.e.,
a spin-3/2 orbital singlet GS. The local TM moments are
then, to a first approximation, spins-3/2 with their coupling
described by a gapless isotropic Heisenberg model. Excited t3

2g
states are separated by a large Hund’s rule gap [15] and pertur-
batively admixed into the spin-3/2 GS by SO. No remarkable
qualitative effects have been theoretically shown to stem from
this admixture. In contrast to the exotic orders of the spin-
entangled SO Mott insulators, the d3 systems usually exhibit
conventional antiferromagnetism (AFM). In particular, for a
number of d3 DP with the formula A2BB′O6, where B′ is a
heavy magnetic TM, a simple collinear type-I AFM has been
inferred from neutron diffraction [16–20].

All these d3 DP systems feature, however, surprisingly
ubiquitous large gaps in their inelastic neutron scattering
(INS) spectra [17–19,21,22]. The gaps are found in mono-
clinic DP as well as in the cubic DP Ba2YOsO6 (BYOO) and
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Ba2YRuO6 (BYRO). In the monoclinic case, an excitation
gap could be explained by a single-ion anisotropy induced
by the spin-orbit admixture to the spin-3/2 GS. Its origin
is much less clear in the cubic systems, where, for the GS
quadruplet, the single-ion anisotropy is negligible [23], but the
measured excitation gap, ∼17 meV in BYOO and 5 meV in
BYRO [17,18], is still large. The observed gaps can be fitted
by tetragonal single-ion or two-ion anisotropy terms [19,21],
which are, however, not consistent with the absence of any
distortions of the cubic symmetry. In all measured systems,
the gap is consistently several times larger in the 5d system as
compared to its 4d equivalent. In BYOO, a significant SO ad-
mixture into the d3 GS was confirmed with x-ray scattering by
Taylor et al. [24]. They suggested this admixture to induce the
observed excitation gap without providing a concrete physical
mechanism relating them.

In this paper, we calculate low-energy effective Hamil-
tonians for BYOO and BYRO in the framework of den-
sity functional+dynamical mean-field theory (DFT+DMFT)
[25–28] by using an ab initio force-theorem (FT) method [29].
These calculations predict unexpectedly large multipolar—
dipole-octupolar (DO)—intersite exchange interactions (IEI)
that lift a continuous symmetry of the Hamiltonian thus
opening an excitation gap. Our calculation also predict, for
both compounds, a noncollinear 2k transverse magnetic order,
which is consistent with the propagation vector detected by
neutron diffraction. The calculated INS intensities reproduce
the experimental spin gap in BYOO as well as its significant
reduction in BYRO. These ab initio results are supported
by analytical calculations within a simplified tight-binding
model predicting leading multipolar IEI to be of the DO type
and to scale as a square of SO coupling strength. Overall
the present theory provides a consistent explanation for the
excitation gaps in cubic d3 SO Mott insulators; the same
mechanism is shown to enhance the gap in lower symmetry
phases.
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FIG. 1. (a) Color map of the ab initio IEI matrix V QQ′
KK ′ for the [1/2,1/2,0] Os-Os pair in BYOO. The dipole-dipole interactions are scaled

down by 0.1 in order not to mask other IEI. (b) BYOO mean-field total energy vs temperature calculated from ab initio HIEI is shown for the
2k-P (lower right corner) and LC (upper left corner) AFM structures by red and blue curves, respectively. In the structure cartoons (plotted
by VESTA [30]), the light brown, turquoise, green, and small red balls are Os, Y, Ba, and O atoms; the directions of dipole and �5 octupole
moments are shown by the thick purple and thinner orange arrows, respectively. The first-order discontinuity in the blue curve is a spin-flop
transition to the TC AFM (M||[110]); the part of the curve corresponding to this structure is dashed. (c) Map of the IEI matrix calculated from
the analytical superexchange Hamiltonian. The color scheme is the same as in panel (a).

The paper is organized as follows. In Sec. II we briefly
introduce our ab initio approach (with a detailed description
provided in the Appendix). In Sec. III we present the ab
initio low-energy effective Hamiltonians and analyze their
structure; we subsequently discuss the ordered phases and
excitation spectra of BYOO and BYRO obtained by solving
those Hamiltonians. In Sec. IV we introduce a simplified
tight-binding model of d3 DP and show how the structure of
t2g hopping, in conjunction with the SO coupling, leads to the
emergence of the leading multipolar DO IEI.

II. AB INITIO METHOD

We calculate the electronic structure of BYOO and BYRO
using the DFT+DMFT approach of Refs. [28,31,32] treating
Ru 4d and Os 5d states within the quasiatomic Hubbard-I (HI)
approximation [33]. From the converged DFT+HI electronic
structure we calculate all IEI between the Jeff = 3/2 pseu-
dospins for first several coordination shells using the FT-HI
method of Ref. [29], analogously to its previous applications
to d1 and d2 DP [10,34]. Only nearest-neighbor (NN) IEI are
found to be important, the next-NN ones are almost two orders
of magnitude smaller. See Appendix A 1 for calculational
details and Appendix B for the DFT+HI electronic structure
of BYOO and BYRO.

III. RESULTS

A. Low-energy Hamiltonian

IEI between Jeff = 3/2 GS quadruplets take the following
general form:

HIEI =
∑
〈i j〉

∑
KQK ′Q′

V QQ′
KK ′ (i j)Oi

KQO j
K ′Q′ , (1)

where the on-site multipolar operator Oi
KQ is the normal-

ized Hermitian spherical tensor [35] for Jeff = 3/2 of the
rank K = 1, 2, 3 (for dipoles, quadrupoles, octupoles, respec-
tively) and projection Q acting on the site at the position

Ri. These normalized, Tr[OKQ · OK ′Q′ ] = δKK ′δQQ′ , tensors
are identical, apart from normalization prefactors, to the
usual definitions of multipoles in terms of non-normalized
polynomials of angular momentum operators, e.g., O10 ≡
Oz = Jz/

√
5, O20 ≡ Oz2 = 1

6 (3J2
z − J (J + 1)), O30 ≡ Oz3 =

(5J3
z − 3J (J + 1)Jz + Jz )/

√
45. The IEI V QQ′

KK ′ (i j) couples the
multipoles KQ and K ′Q′ on two magnetic (B′) sites connected
by the lattice vector Ri j = R j − Ri, the first sum is over all
NN bonds 〈i j〉 in the lattice.

The calculated BYOO IEI matrix V̂ (i j) for Ri j =
[1/2, 1/2, 0] is depicted in Fig. 1(a). The leading IEI are
diagonal AFM dipole-dipole (DD) terms V aa

11 , where a =
−1, 0, 1 ≡ y, z, x with an axial anisotropy, V zz

11 > V xx(yy)
11 .

A striking feature of BYOO V̂ (i j) is unexpectedly large
DO terms. The leading DO IEI are about 1/8 of the DD
ones and ferromagnetic (FM). Other multipolar IEI are at
least several times smaller. The picture for BYRO is qual-
itatively similar to that for BYOO. However, while its DD
IEI average of 9.3 meV is close to that in BYOO, both the
DD axial anisotropy and DO IEI are an order of magnitude
smaller (all calculated IEI for the both systems are listed in
Appendix C).

The large DO coupling takes a simple form for the xy bond,∑
Q=−1..1 V QQ

13 Oi
1QO j

3Q, see Fig. 1(a), but is less symmetric in
the yz and xz planes. We thus introduce the operators ÕKQ =
OKQ/〈Jeff ; 3/2|OK0|Jeff ; 3/2〉 to get rid of normalization co-
efficients in subsequent results and transform the octupole
operators into symmetry-adapted octupoles belonging to the
�2, �4, and �5 irreducible representations (IREP) [36]. Keep-
ing only DD and leading DO IEI, one obtains for the xy bond,

H ′
xy = V Õ

i
1Õ

j
1 + δV Õi

1zÕ
j
1z + [

V ||
�4

Õ
i
�4

Õ
j
1 − V ⊥

�4
Õi

�4zÕ
j
1z

+ V�5

(
Õi

�5xÕ j
1x − Õi

�5yÕ j
1y

) + (i ↔ j)
]
, (2)

where the DO term is in the square brackets, the octupole
operators are labeled by the IREP subscript, and Õ are 3D
vectors of corresponding operators [37]. Our calculated values
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for V , δV , V ⊥
�4

, V ||
�4

, and V�5 in BYOO are 5.0, 0.40, 0.39, 0.13,
and 0.16 meV, respectively [the formulas for converting the
IEI in Eq. (1) to those in (2) are given Appendix C]. H ′ or
other bonds are given by cyclic permutation of the indices in
(2). As we show below, the DO IEI are at the origin of the spin
gap in spin-orbit t3

2g cubic DP.

B. Magnetic order

Subsequently, we employ the calculated ab initio IEI
Hamiltonian [Fig. 1(a)] to derive, within a mean-field (MF)
approximation [38], magnetic order as a function of tem-
perature (see Appendix A 2 for relevant methodological
details). In the both systems we obtain a planar non-
collinear 2k AFM order (2k-P), depicted in Fig. 1(b), as
the GS. The dipole (magnetic) moments in 2k-P are Mx(y) =
(M/

√
2) exp[iky(x)R], where the propagation vectors kx =

[1, 0, 0] and ky = [0, 1, 0] in the units of 2π/a. The M direc-
tion thus flips by 90◦ between adjacent layers. The calculated
Néel temperatures, TN = 146 K in BYOO and 108 K in
BYRO, are about twice larger than experimental 69 and 47 K
respectively [17,18]; such systematic overestimation by the
present MF-based approach was previously observed for other
face-centered cubic (fcc) frustrated magnets [10,39,40]. An-
other metastable MF solution—a longitudinal collinear type-I
AFM structure (LC) with k = [0,0,1]—is found in BYOO
at zero temperature to be about 0.8 meV above the 2k-P GS
[Fig. 1(b)].

Experimentally, a transverse collinear type-I AFM struc-
ture (TC) with k = [0,0,1] and moments lying in the xy plane
was initially assigned to both BYRO and BYOO by neutron
diffraction [16–18], although the exact order type—single k
vs multi k —is still debated [22,41]. The predicted GS 2k-P
order cannot be distinguished from the TC one on the basis
of neutron diffraction only, since the both structures are trans-
verse and feature propagation vectors of the same star. The 1k
LC order is not consistent with (100) magnetic Bragg peak
observed in the both compounds [17,18].

One may estimate MF total energies for these compet-
ing structures, LC, TC, and 2k-P, which are degenerate in
an isotropic Heisenberg model, by keeping only the leading
anisotropic IEI terms (2). Assuming fully saturated dipole
moments [42] in all structures, we find the anisotropic con-
tribution to MF total energy (per f.u.) of 2δV − 4V ⊥

�4
−

4V ||
�4

, −2δV + 4V ⊥
�4

− 4V ||
�4

, −2δV + 4V�5 and −2δV − 8V�5

for LC, TC with M||[100], TC with M||[110], and 2k-P,
respectively.

The DD IEI alone thus leave TC and 2k-P degenerated,
while LC is penalized by the δV term due an FM alignment
of the out-of-plane moments in the xy plane [Fig. 1(b)]. With
the DO terms included, the FM coupling for �4 out-of-plane
moments favors, in contrast, the LC order. Finally, the non-
collinear 2k-P GS is stabilized by �5 DO coupling. Notice that
the �5 moment is always orthogonal to the saturated dipole
one and reaches its maximum for the 〈110〉 dipole-moment
direction [see Fig. 2(c)]. Hence, the �5 DO IEI tend to favor
90◦ angles between dipole moments that are oriented along
〈110〉. The GS magnetic structure in d3 cubic DP is thus de-
termined by a delicate balance between the DD IEI anisotropy
and DO coupling.

FIG. 2. Magnitude of the octupolar �4 and �5 moments as a
function of the saturated dipole moment direction M̂ = M/M. (a) �4

component along M, |〈Õ�4 〉 · M̂|. (b) �4 component orthogonal to
M, |〈Õ�4 〉 × M̂|; c) |〈Õ�5 〉|, �5 octupole is always orthogonal to M.

For the 1k metastable state we obtain a first-order transition
LC → TC at T ≈ 0.65TN [Fig. 2(b)]. The difference in MF
free energy between 2k-P and high-T TC is then rather small
(see Supplemental Material, SM [43] Sec. III) and may be
affected by beyond-MF corrections. One may thus suggest
that this TC 1k order sets in at TN , with a first-order transition
from TC to 2k-P at lower T . Such a first-order transition
below TN was experimentally observed in the order-parameter
evolution of BYOO [18].

We note that the DO IEI lift any degeneracy between
ordered states that are related by a continuous rotation of
dipole moments. The �4 and �5 (as well as �2) octupole
moments possess only discrete cubic symmetry. As one sees
in Fig. 2, the dipole moment rotation leads to a change in the
relative magnitude of associated �4 and �5 octupoles, since
they are mixed by any rotation that is not a cubic symmetry
operation. Their IE couplings to dipoles (2) are distinct and
not related by any symmetry in a cubic crystal; therefore, such
rotation will change the energy of dipole order. For example,
with only anisotropic DD terms included, the TC k = [0, 0, 1]
orders are degenerate with respect to a rotation of the ordered
moment in the xy plane. With DO IEI (2) included, rotat-
ing from M||[100] to M||[110] induces a �5 octupole and
diminishes the �4 one, thus leading to a change in the DO
contribution to the ordering energy. This property of DO IEI
has profound implications for magnetic excitations, as shown
below.

C. Magnetic excitations

We calculate the INS intensity S(q, E ) of the 2k-P GS
using an approach previously applied to d2 DP in Ref. [10].
Namely, the dynamical susceptibility χ (q, E ) is calculated in
RPA [45] for the MF GS; the zero-temperature INS intensity
is then obtained through the fluctuation-dissipation theorem
(see, e.g., Ref. [46]) as

S(q, E ) =
∑

ab

q⊥
ab

∑
μμ′ττ ′

Faμ(q)Fbμ′ (q)Imχττ ′
μμ′ (q, E ), (3)
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FIG. 3. Spherically-averaged INS intensity S(|q|, E ) calculated from the ab initio IEI for (a) BYOO; (b) BYRO; (c) BYOO S(|q|, E )
calculated from the simplified Hamiltonian (2) with DO IEI scaled down by f = 0.2. (d) Excitation gap at |q| = 0.75 1/Å as a function of
scaling factor f for DO IEI in (2). Red dashed line is the ∝ f 0.48 fit to the onset of main spectral weight (circles), the blue squares are the
position of a weak resonance appearing at small f ; the star is the gap value calculated with the full ab initio IEI. (e) Calculated BYOO INS
intensity for the initial neutron energy Ei = 120 meV integrated over the |q| range [0.5:1.5] 1/Å compared to the corresponding experimental
data [44] from Ref. [18]. (f) Calculated BYRO INS intensity for Ei = 11 meV integrated over the |q| range [0.6:0.9] 1/Å compared to the
corresponding experimental data [44] from Ref. [17].

where q⊥
ab = δab − q̂aq̂b, τ and μ ≡ KQ label sites in the

magnetic unit cell and multipoles, respectively [47]. See Ap-
pendix A 3 for further details.

The spherically-averaged INS intensities S(|q|, E ) for
BYOO and BYRO calculated in the 2k-P GS structure using
the ab initio IEI exhibit a clear excitation gap [Figs. 3(a) and
3(b)]. In Figs. 3(e) and 3(f) we compare our theoretical |q|-
integrated INS intensities with experimental low-temperature
ones [17,18] employing the same |q|-integration ranges as
in those studies [48]. We find a nearly perfect quantitative
agreement for BYOO.

The excitation gap is somewhat underestimated in BYRO
with Hund’s rule coupling JH = 0.3 eV that we adopted
for both compounds; using smaller JH = 0.23 eV we obtain
a good agreement for the gap. In Fig. 4 we compare the
INS intensity for BYRO integrated around |q| = 0.75 Å−1

with very recent experimental data from Ref. [22]. The com-
parison is displayed for two choices of JH , 0.3 eV and
0.23 eV. One observes a rather good agreement with ex-
periment, which is overall better for the smaller JH value.
The excitation gap is seen to be enhanced with decreasing
JH due to the corresponding enhancement of the DO IEI as
∼(λ/JH )2, where λ is the SO coupling parameter, see Sec. IV
below.

Thus the experimental picture—of a large excitation gap in
these cubic DP with its magnitude being several times larger
in BYOO as compared to BYRO—is fully reproduced by
the present theory. We note that the position of low-energy
intensity peak in the vicinity of the (100) Bragg reflection,
|q| = 0.75 Å−1, is also reproduced in both compounds; the
high-energy intensity peak at |q| about 0.5 Å−1 is outside of
the experimental range in Refs. [17,18].

The origin of this excitation gap is DO IEI, which
break continuous rotation symmetry of the intersite exchange
Hamiltonian, leading to disappearance of Goldstone modes.
To demonstrate this explicitly, we employ the simplified
Hamiltonian H ′ (2) of BYOO with the DO IEI scaled by a
factor f . The 2k-P GS is stable in the f range we explore. At
f = 1 the gap value calculated with H ′ is very close to that
obtained with the full Hamiltonian (1), see Fig. 3(d). With
f = 0.2, the gap is reduced to about 4 meV as compared to
≈10 meV at f = 1 [Figs. 3(c) and 3(e)]. We carried out this

0 1 2 3 4 5 6 7
Energy transfer (meV)

In
te

n
si

ty
 (

ar
b
. 
u
n
it
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J
H

=0.23 eV

J
H

=0.3 eV

FIG. 4. Calculated INS intensity in BYRO integrated around
|q| = 0.75 Å−1 (in the range |q| = [0.7275 : 0.7625] Å−1) together
with the corresponding experimental data from Ref. [22]. The the-
oretical curves are calculated for the experimental neutron energy
of 11.8 meV and convoluted with a Lorentzian with the width of
0.27 meV corresponding to the experimental instrumental resolution.
The experimental error bars are estimated from Fig. 4(b) of Ref. [22].
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calculation for a set of f values; the resulting gap magnitude
[Fig. 3(d)] exhibits a power dependence ∝ f α , where α ≈ 0.5.
A very weak resonance also appears below the onset of main
spectral weight at f < 0.5, see SM [43] Sec. VI for details.
With the gap scaling as a square-root of the DO IEI strength
f and the latter behaving as f ∼ (λ/JH )2, one finds ∼1/JH

dependence for the gap; this agrees with the numerical results
for BYRO displayed in Fig. 4.

IV. DIPOLE-OCTUPOLAR INTERSITE EXCHANGE
IN A TIGHT-BINDING MODEL

In order to clarify the origin of large DO IEI terms, in this
section we derive superexchange interactions in a simplified
tight-binding model relevant for the SO DP.

We start with analyzing the impact of SO on the GS of a
t3
2g shell. In the absence of SO, the Hund’s rule coupling splits

20 states of the t3
2g manifold into three energy levels, which

are the GS 4A2 quadruplet, 10 degenerate levels belonging to
a 2E quadruplet and a 2T1 sextet, and an upper 2T2 sextet. The
energies of two excited levels are 3JH and 5JH, respectively,
with respect to the GS [15]. All these wave functions are listed
as Slater determinants in Ref. [15]. Introducing the notation
x, y, z ≡ yz, xz, xy for the t2g orbitals, one may write the 2T2

states in the second-quantization notation as

| 2T2(x); 1/2〉 = 1√
2

(y†
↓z↑ − z†

↓y↑)| 4A2; 3/2〉,

| 2T2(y); 1/2〉 = 1√
2

(z†
↓x↑ − x†

↓z↑)| 4A2; 3/2〉, (4)

| 2T2(z); 1/2〉 = 1√
2

(x†
↓y↑ − y†

↓x↑)| 4A2; 3/2〉,

where | 2T2(a); 1/2〉 are the 2T2 wave functions for the orbital
projection a = x, y, z and spin projection M = 1

2 ; | 4A2; 3/2〉
is the wave function of the GS quadruplet with M = 3

2 . We
also introduced the corresponding creation/annihilation oper-
ators for each one-electron orbital x, y, z and spin.

The SO operator for the t2g shell is −λ
∑

i l isi, where the
SO coupling parameter λ > 0. The spin-off-diagonal (spin
lowering) part of this operator reads

−λ

2
l+s− = λ

2
[(x†

↓z↑ − z†
↓x↑) + i(y†

↓z↑ − z†
↓y↑)],

where s−/+(l−/+) is the spin(pseudo-orbital) lowering/raising
ladder operator.

Hence, one sees that in the first-order perturbation theory
(PT), the SO coupling admixes 2T2 states to the pseudospin
quadruplet, leading to the following expression for the M = 3

2
state:∣∣∣∣Jeff ;

3

2

〉
=

∣∣∣∣4A2,
3

2

〉
+ εSO√

2

(∣∣∣∣2T2(y);
1

2

〉
− i

∣∣∣∣2T2(x);
1

2

〉)
,

(5)

where εSO = λ/(5JH). Other Jeff = 3/2 quartet states are ob-
tained from (5) by a successive application of the j− = s− −
l− operator.

By directly diagonalizing the self-consistent DFT+HI t2g

Os atomic Hamiltonian, we obtain the GS state with the

largest SO admixture from 2T2, but also non-negligible con-
tributions of two other IREP. Hence, other excited levels,
which contribute in the second-order PT (∼ε2

SO), also ad-
mix non-negligibly to the Jeff = 3/2 GS. The normalized GS
quadruplet states read

|Jeff ; M〉 =
∑

R∈IREP

C[R]|R; M〉, (6)

where C[R] is the total contribution due to a given IREP R.
With the numerical diagonalization (in which the ab initio
value of λ = 0.294 eV), we obtain the exited level admix-
tures C[2E ] = 0.052, C[2T1] = 0.063, and C[2T2] = 0.220,
compared to the first-order PT result shown above, with only
C[2T2] = (1 + ε−2

SO )−1/2 = 0.192 being nonzero. Our magni-
tudes for the admixture of excited t3

2g levels to the Os 5d3 GS
agree well with estimations from RIXS measurements [24].
As shown below, the second-order 2Eg contribution to the GS
is crucial for the DO IEI.

Subsequently, we employ the GS wave functions (6) to
calculate BYOO superexchange (SE) analytically within a
simplified tight-binding model for the hopping. We assume
the hopping H12 between Os t2g shells 1 and 2 that are
connected by the R = [1/2, 1/2, 0] fcc lattice vector to be
given by

∑
σ t ′(x†

1σ y2σ + x†
2σ y1σ ) − tz†

1σ z2σ + H.c., see, e.g.,
Ref. [2]. The hopping t between the orbitals (z) that lie in
the bond plane is dominating, t > t ′. We further simplify
analytical calculations by assuming the same energy for all
two-site atomic excitations, E0(d2d4) = Ū . Though the lat-
ter approximation is rather crude quantitatively, it does not
affect qualitative conclusions with respect to the origin of
multipolar IEI. The model SE Hamiltonian is then given by
HSE = −H2

12/Ū = Ht ′t ′ + Htt + Htt ′ , where the three terms in
right-hand side (RHS) arise due to the hopping involving only
out-of-plane (x, y) orbitals (t ′t ′), only in-plane (z) orbitals
(tt) and their mixture (tt ′). Omitting unimportant single-site
contributions, Ht ′t ′ and Htt read

Ht ′t ′ = 2(t ′)2

Ū

∑
σσ ′

a=x,y

[(a†
2σ a2σ ′ )(ā†

1σ ′ ā1σ ) + (ā†
2σ a2σ ′ )(ā†

1σ ′a1σ )],

(7)

Htt = 2t2

Ū

[∑
σσ ′

(z†
2σ z2σ ′ )(z†

1σ ′z1σ )

]
, (8)

where x̄ = y, ȳ = x. All the terms in Htt an Ht ′t ′ are seen to
have the same general structure, X1X2, where both on-site
operators X in a given term are of the same type (i.e., spin
and orbital diagonal, either spin or orbital off-diagonal, both
spin and orbital off-diagonal). The mixed term Htt ′ does not
contribute to leading multipolar IEI in the Jeff = 3/2 space.

We then calculate all Jeff = 3/2 SE matrix elements
〈M1

1 ; M2
2 |HSE|M1

3 ; M2
4 〉, where the superscript of M is the site

label, and convert them to the coupling V QQ′
KK ′ (R) between

on-site moments using Eq. (A2).
In the zeroth order in εSO, i.e., |Jeff ; M〉 = | 4A2, M〉, one

obtains an isotropic AFM Heisenberg coupling between spins-
3/2, 5J

∑
Q=x,y,z O1Q(1)O1Q(2) ≡ J �S1 �S2, where J = (4t2 +

8(t ′)2)/9Ū .
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In order to evaluate the relative importance of SO-admixed
excited states for the SE, we calculate the SE matrix
elements with the corresponding wave functions |R; M〉.
The largest nonvanishing SE contributions stemming from
the SO admixtures are of O(ε2

SO). They are of the types
〈 4A1

2; 2E2 |HSO| 4A1
2; 4A2

2〉 and 〈 4A1
2; 2T 2

2 |HSO| 4A1
2; 2T 2

2 〉,
where we omit the M quantum number for brevity. [Note that
matrix elements of the type 〈 4A1

2; 2T 2
2 |HSO| 4A1

2; 4A2
2〉, which

would contribute in O(εSO), are all zero, since a nonzero
matrix element 〈 4A2 |X1| 2T2〉〈 4A2 |X2| 4A2〉 requires orbitally
off-diagonal X1 and orbitally diagonal X2.] The largest O(ε2

SO)
terms are due to Htt ; they contribute to DO and anisotropic
DD IEI.

The fact that SE contributions like〈 4A1
2; 2E2

∣∣Htt

∣∣ 4A1
2; 4A2

2

〉
∝

∑
σσ ′

〈 4A2 |z†
σ zσ ′ | 4A2〉〈 2E |z†

σ ′zσ | 4A2〉, (9)

map within the Jeff = 3/2 space into a DO coupling can
be shown explicitly by expanding those on-site matrices
into multipole moments. Namely, with the magnetic
quantum number written explicitly, those 4 × 4 matrices
are X AA

MM ′ (σσ ′) = 〈4A2; M|z†
σ zσ ′ | 4A2; M ′〉 and X EA

MM ′ (σ ′σ ) =
〈2E ; M|z†

σ ′zσ | 4A2; M ′〉. By expanding them as X =∑
KQ Tr[X · OKQ]OKQ one finds that the X AA matrices

map only to dipole moments, as expected. In contrast,
the X EA ones map, apart from dipoles, also to octupoles
and quadrupoles. The contribution of the latter (which would
result in a symmetry-forbidden dipole-quadrupole interaction)
is canceled out between Hermitian-conjugated terms in
Htt ; hence, only DD and DO SE terms remain. A similar
analysis is applicable for the second ∼ε2

SO contribution,
〈4A2; 2T2 |HSO| 4A2; 2T2〉, since the matrices X T T

MM ′ (σσ ′) =
〈2T2; M|z†

σ zσ ′ | 2T2; M ′〉 also map into dipoles and octupoles.
The corresponding matrix elements of Ht ′t ′ also contribute

in O(ε2
SO) to both the DO and anisotropic DD couplings, as

well as to quadrupole-quadrupole (QQ) ones; these contribu-
tions are smaller by the hopping anisotropy factor (t ′/t )2 as
compared to the Htt ones. Hence, this analysis confirms that
in t3

2g SO double perovskites, the DO couplings are expected
to be the largest IEI besides the conventional DD ones.

Employing a reasonable set of parameters (t = 0.1 eV and
t ′ = 0.3t , Ū = 2 eV) in and the ab initio GS wave functions
(6) in the simplified model described above, we obtain the IEI
matrix V̂ [Fig. 1(c)] that is in a good qualitative agreement
with the ab initio one [Fig. 1(a)]. The contribution due to
the 2E admixture is dominant determining an axial anisotropy
of DD IEI with Vzz > Vxx = Vyy (the 2T2 contribution favors
a planar anisotropy). The DO IEI are ferro-coupled pairs
of the corresponding moments with Q = −1, 0, 1(= y, z, x);
they are an order of magnitude smaller than DD IEI. The QQ
and octupole-octupole terms are insignificant.

V. SUMMARY AND OUTLOOK

In summary, our ab initio calculations of the low-energy
effective Hamiltonians in the d3 spin-orbit double perovskites
Ba2YOsO6 and Ba2YRuO6 predict significant multipolar in-
tersite exchange interactions (IEI). Such significant multipolar

IEI are quite unexpected in the case a half-filled t3
2g shell. The

leading multipolar IEI are of a dipole-octupole (DO) type.
Namely, they couple the conventional total angular-moment
operators Ja (a = x, y, z) acting on a magnetic site (Os or Ru)
with octopolar operators, which are time-odd cubic polyno-
mials of Ja, acting on its nearest-neighbor magnetic sites. The
DO IEI lift continuous symmetry of the effective Hamiltonian
resulting in a gaped excitation spectra. The multipolar IEI are
thus at the origin of the large excitation gaps that were previ-
ously observed in inelastic neutron scattering spectra (INS) of
d3 spin-orbit double perovskites [17,18,22]. The theoretical
INS spectra calculated from the effective Hamiltonians are
in a good quantitative agreement with those measurements.
These ab initio results are further supported by analysis in the
framework of a simplified analytical model, which predicts
the DO terms to be leading IEI, besides the conventional
Heisenberg terms, in d3 cubic double perovskites. Usually, bi-
quadratic (quadrupole-quadrupole) IEI ∼(Ji

aJ j
a′ )2 are assumed

to be the most significant multipolar IEI in such d3 systems
[22,41]. Our results contradict this assumption. Moreover,
the DO IEI are also predicted to stabilize a noncollinear 2k
transverse structure, which propagation vector k = 〈1, 0, 0〉
agrees with experiment [17,18].

On the basis of our analysis, the leading dipole-octupolar
IEI are expected to scale as (λ/JH )2, where λ is the spin-
orbit coupling strength and JH is the Hund’s rule coupling.
Since JH is weakly changing along the 4d and 5d TM series
and between them, the dipole-octupolar IEI magnitude f is
effectively controlled by λ2. The numerical RPA calculations
for the excitation gap vs f [Fig. 3(d)] find that the gap scales
as

√
f ∝ λ thus explaining the fact that the measured gap

in 5d systems is several times larger compared to that in
equi-electronic 4d systems.

Moreover, the DO IEI can also be expected to provide a
major contribution to the excitation gap in noncubic spin-orbit
d3 Mott insulators. To estimate this contribution, we have
also evaluated for Ba2YOsO6 the excitation gap in the LC
magnetic structure [shown in Fig. 1(b)] stabilized by 1% of
tetragonal compression (see SM [43] Sec. IV for details). A
tetragonal compression εt > 0.5% is predicted by our calcula-
tions to stabilize it against 2k-P due to an easy-axis single-site
anisotropy. With yet larger compression, εt = 1%, the LC
structure is stable even with DO IEI put to zero. Calculating
the LC excitation spectra of this tetragonal structure with and
without the DO IEI block, we find that the DO IEI double the
magnitude of the excitation gap. This confirms that the effect
of DO IEI on the gap is still significant even in systems with a
large single-ion anisotropy.
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APPENDIX A: METHODOLOGICAL DETAILS

1. Ab initio calculations

Our DFT+HI calculations are based on the full-potential
LAPW code Wien2k [31] and include the SO interaction with
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the standard second-variation approach. Projective Wannier
orbitals [32,49] representing Os (Ru) d orbitals are con-
structed from the Kohn-Sham (KS) bands in the energy range
[–1.4:4.8] ([–1.4:4.1]) eV relative to the KS Fermi level; this
energy window includes all t2g and most of eg states but not
the oxygen 2p bands (see SM [43] for plots of the KS density
of states in BYOO and BYRO).

A rotationally invariant Coulomb vertex for the full d
shell is constructed using the parameters U d = F 0 and Jd

H =
(F 2 + F 4)/14 together with the standard additional approxi-
mation [50] for the ratio of Slater parameters F 4/F 2 = 0.625.
Some test calculations for BYOO were carried out using a
“small window” including only Os t2g states and the Kanamori
rotationally invariant t2g Hamiltonian with the corresponding
parameters U = U d + 8Jd

H/5 and JH = 0.77Jd
H . In all cal-

culations of BYOO, unless specified otherwise, we employ
F 0 = U d = 2.6 eV and Hund’s rule Jd

H = 0.39 eV. For the
t2g Kanamori Hamiltonian they correspond to U = 3.05 eV,
which is within the accepted range for 5d DP [13,34,51], and
JH = 0.30 eV inferred for BYOO from measurements in Ref.
[24]. For BYRO, unless noted otherwise, we employ the same
value of JH as in BYOO and the larger value of U d = 3.6 eV
to account for a stronger localization of 4d states.

All calculations are carried out for the experimental cu-
bic lattice structures of BYRO [52] and BYOO [18]. We
employ the local density approximation as the DFT exchange-
correlation potential, 400 k points in the full Brillouin
zone, and the Wien2k basis cutoff RmtKmax = 8. The double-
counting correction is evaluated using the fully-localized limit
with the nominal d shell occupancy of 3. Extensive bench-
marks demonstrate the robustness of our qualitative results
with respect to varying JH (see Fig. 4), DFT calculational
parameters, double-counting correction or employing the t2g

Hamiltonian instead of the full d shell, see SM [43] Sec. II.
Calculations of IEI V QQ′

KK ′ (i j) acting within the Jeff = 3/2
space are carried out using the FT-HI approach of Ref. [29],
analogously to previous applications of this method to ac-
tinide dioxides [39,40] as well as to d1 and 2 double
perovskites [10,34]. This approach is similar to other mag-
netic force theorem methods for symmetry-broken phases
(Refs. [53,54], see also Ref. [55] for a recent review) but
is formulated for the paramagnetic state. Within the FT-HI
method, the matrix elements of IEI V (i j) coupling Jeff = 3/2
quadruplets on two B′ sites read

〈M1M3|V (i j)|M2M4〉 = Tr

[
G〈i j〉

δ�at
j

δρ
M3M4
j

G〈 ji〉
δ�at

i

δρ
M1M2
i

]
,

(A1)

where 〈i j〉 ≡ R j − Ri is the lattice vector connecting the two
sites, M = −3/2, ..., 3/2 is the magnetic quantum number,
ρ

M1M2
i is the corresponding element of the Jeff -quadruplet

density matrix on site i, δ�at
i

δρ
M1M2
i

is the derivative of atomic

(Hubbard-I) self-energy �at
i over a fluctuation of the ρ

M1M1
i el-

ement, G〈i j〉 is the intersite Green’s function. The self-energy
derivatives are calculated from atomic Green’s functions using
analytical formulas derived in Ref. [29], where the FT-HI
method is described in detail. The method is applied as a
post-processing on top of DFT+HI; hence, all quantities in

the RHS of Eq. (A1) are evaluated from a fully converged
DFT+HI electronic structure.

Once all matrix elements (A1) are calculated, we make use
of the orthonormality property Tr[OKQ · OK ′Q′ ] = δKK ′δQQ′ of
the Hermitian multipolar operators OKQ (which are defined in
accordance with Eq. 10 of Ref. [35]) to map them into the IEI
V QQ′

KK ′ (i j) between on-site moments,

V QQ′
KK ′ (i j) =

∑
M1M2
M3M4

〈M1M3|V (i j)|M2M4〉[OKQ]M2M1 [OK ′Q′ ]M4M3 .

(A2)

To have a correct mapping into the Jeff pseudospin ba-
sis, the phases of the |Jeff ; M〉 states are chosen such that
〈Jeff ; M|J+|Jeff ; M − 1〉 is a positive real number.

2. Mean-field (MF) solution of the effective Hamiltonian

We employ the MCPHASE package [38] in conjunction
with an in-house module implementing multipolar operators
in the MCPHASE framework to solve the effective Hamil-
tonian HIEI in mean field. As initial guesses of the MF
procedure we employ all 1k structures realizable within sin-
gle fcc unit cell; these calculations converge to the 2k-P
order. In order to obtain a metastable 1k solution we start
with the corresponding initial guess switching off the random
Monte Carlo flips implemented in the MCPHASE. With this
procedure the LC structure is obtained at low T independently
of whether it or the TC one is used as the initial guess.

3. Inelastic neutron scattering (INS) intensities

We evaluated the generalized dynamical susceptibility
χ (q, E ) for the MF ground state using a generalized random
phase approximation (RPA), see Ref. [45]. The INS intensity
is calculated from χ (q, E ) by Eq. (3) using the form factors
Faμ(q) for Jeff = 3/2 multipole μ ≡ KQ, where a = x, y, z.
Our approach for evaluating these form factors is based on
analytical expressions for the one-electron neutron scatter-
ing operator Qa(q) from Ref. [46], which matrix elements
in the d3 Jeff space are calculated with the HI eigenstates
of the Jeff = 3/2 quadruplet. The resulting matrices are then
expanded in multipole operators [56] as

〈Jeff ; M|Qa(q)|Jeff ; M ′〉 =
∑

μ

Faμ(q)[Oμ]MM ′

to obtain the form factors.
The method is described in detail in Supplemental Material

of Ref. [10]. The radial integrals 〈 jL(q)〉 for the Os5+ 5d
shell, which enter into the formulas for one-electron matrix
elements of Qa(q), were taken from Ref. [57]. For Ru5+, the
full set of 〈 jL(q)〉 has not been given in the literature, to our
awareness. We thus use an estimate for Ru5+ 〈 j0(q)〉 from Ref.
[58]; for L = 2, 4 we assume the same values of 〈 jL(q)〉 as in
Os5+.

The spherically averaged INS intensities S(|q|, E ) are cal-
culated for each |q| by averaging over 642 q points on an
equidistributed icosahedral mesh.
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FIG. 5. DFT+HI spectral function of BYOO (a) and BYRO (b).
The partial t2g spectral function is shaded in red.

APPENDIX B: ELECTRONIC STRUCTURE
OF BYOO AND BYRO

The IEI calculations by the FT-HI method were carried out
starting from the converged DFT+HI electronic structure of
BYOO and BYRO.

In Fig. 5 we display the converged DFT+HI spectral
functions of the both compounds obtained with the full-d cor-
related subspace [59]. Both systems are predicted by DFT+HI
to be correlated insulators with the gap of about 2.4 eV and
1.9 eV in BYOO and BYRO respectively. The insulating gap
in BYOO is between the Os t2g lower and upper Hubbard
bands (HB); hence, this compound is predicted to be a Mott
insulator. In contrast, BYRO is a charge-transfer insulator,
since the gap is between the upper edge of O 2p valence
band and the Ru upper HB. DFT+HI predictions for the gap
magnitude are not expected to be quantitatively accurate, since
the HB width is known to be underestimated in this approxi-
mation [60] leading to the gap being overestimated as noted,
e.g., in the case of rare-earth sesquioxides [61]. There are no
published experimental data on the gap magnitude or trans-
port in BYOO and BYRO, to our awareness. The DFT+HI
electronic structure compares qualitatively well with previous
DFT-based calculations (which used somewhat different pa-
rameters). In particular, Refs. [41,62] also predicted a Mott
gap in BYOO to open between t2g HB, although those calcu-
lations had to be made in a magnetically ordered phase due
to the well-known limitation of standard DFT(+U) methods
in capturing local-moment paramagnetism. They employed
smaller values of U, correspondingly, their calculated gap was
also smaller than the one we find. Reference [63] employing
DFT+U and DFT+DMFT predicted both paramagnetic and
antiferromagnetic BYRO to be insulating for the values of U
and JH employed in the present paper.

TABLE I. Calculated IEI V QQ′
KK ′ . First two columns list Q and Q′,

respectively. Third and fourth columns list Cartesian labels for the
KQ and K ′Q′ tensors. The last three columns display the values of
all IEI for BYOO and BYRO (meV) with magnitude above 0.05 meV
(for BYRO we list IEI calculated using two values of JH ).

BYOO BYRO BYRO
JH = 0.3 eV 0.3 eV 0.23 eV

Dipole-dipole
−1 −1 y y 11.22 9.27 9.67
0 0 z z 12.12 9.34 9.79
1 1 x x 11.22 9.27 9.67

Dipole-octupole
−1 −1 y yz2 −1.38 −0.11 −0.17
−1 1 y xz2 0.10
−1 3 y x(3x2–y2) 0.16
0 −2 z xyz 0.21
0 0 z z3 −1.78 −0.13 −0.21
1 −3 x y(x2–3y2) −0.16
1 −1 x yz2 0.10
1 1 x xz2 −1.38 −0.11 −0.17

Quadrupole-quadrupole
−2 −2 xy xy −0.50
−1 −1 yz yz −0.22
0 −2 z2 xy 0.23
0 0 z2 z2 −0.10
1 −1 xz yz 0.19
1 1 xz xz −0.22
2 2 x2–y2 x2–y2 −0.51

Octupole-Octupole
−2 −2 xyz xyz −0.07
−1 −1 yz2 yz2 0.16
0 −2 z3 xyz −0.06
0 0 z3 z3 0.28
1 −1 xz2 yz2 −0.06
1 1 xz2 xz2 0.16
2 2 z(x2–y2) z(x2–y2) −0.09

For the sake of reproducibility, we also plot the auxiliary
noninteracting Kohn-Sham densities of states of BYOO and
BYRO in SM [43] Sec. I.

APPENDIX C: INTERSITE EXCHANGE INTERACTIONS

In Table I we list all calculated IEI in BYOO and BYRO
with magnitude above 0.05 meV. The IEI are given for the
[0.5,0.5,0.0] nearest-neighbor fcc lattice vector.

We also list below the formulas to convert these IEI into
the IEI of the simplified Hamiltonian [Eq. (2)],

V = 9

20
V 11

11 , (C1)

δV = 9

20

(
V 00

11 − V 11
11

)
, (C2)

V ⊥
�4

= − 3

20

(
V 00

13 +
√

3

8
V 11

13

)
, (C3)
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V ||
�4

= − 3

20

√
3

8
V 11

13 , (C4)

V�5 = − 3

20

√
5

8
V 11

13 , (C5)

where the overall prefactors (9/20 and 3/20) are due to the
change of operators normalization from O to Õ, and the
square-root factors are due to the transformation to the cubic
IREP.

[1] W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents, Annu.
Rev. Condens. Matter Phys. 5, 57 (2014).

[2] T. Takayama, J. Chaloupka, A. Smerald, G. Khaliullin, and
H. Takagi, J. Phys. Soc. Jpn. 90, 062001 (2021).

[3] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205
(2009).

[4] G. Chen, R. Pereira, and L. Balents, Phys. Rev. B 82, 174440
(2010).

[5] G. Chen and L. Balents, Phys. Rev. B 84, 094420 (2011).
[6] L. Lu, M. Song, W. Liu, A. P. Reyes, P. Kuhns, H. O. Lee, I. R.

Fisher, and V. F. Mitrovic, Nat. Commun. 8, 14407 (2017).
[7] D. D. Maharaj, G. Sala, M. B. Stone, E. Kermarrec, C. Ritter,

F. Fauth, C. A. Marjerrison, J. E. Greedan, A. Paramekanti, and
B. D. Gaulin, Phys. Rev. Lett. 124, 087206 (2020).

[8] D. Hirai, H. Sagayama, S. Gao, H. Ohsumi, G. Chen, T.-h.
Arima, and Z. Hiroi, Phys. Rev. Res. 2, 022063(R) (2020).

[9] A. Paramekanti, D. D. Maharaj, and B. D. Gaulin, Phys. Rev. B
101, 054439 (2020).

[10] L. V. Pourovskii, D. F. Mosca, and C. Franchini, Phys. Rev. Lett.
127, 237201 (2021).

[11] G. Khaliullin, D. Churchill, P. P. Stavropoulos, and H.-Y. Kee,
Phys. Rev. Res. 3, 033163 (2021).

[12] M. A. de Vries, A. C. Mclaughlin, and J. W. G. Bos, Phys. Rev.
Lett. 104, 177202 (2010).

[13] J. Romhányi, L. Balents, and G. Jackeli, Phys. Rev. Lett. 118,
217202 (2017).

[14] A. Jain, M. Krautloher, J. Porras, G. H. Ryu, D. P. Chen, D. L.
Abernathy, J. T. Park, A. Ivanov, J. Chaloupka, G. Khaliullin
et al., Nat. Phys. 13, 633 (2017).

[15] S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of
Transition-Metal Ions in Crystals (Academic Press, New York,
1970)

[16] P. Battle and C. Jones, J. Solid State Chem. 78, 108 (1989).
[17] J. P. Carlo, J. P. Clancy, K. Fritsch, C. A. Marjerrison, G. E.

Granroth, J. E. Greedan, H. A. Dabkowska, and B. D. Gaulin,
Phys. Rev. B 88, 024418 (2013).

[18] E. Kermarrec, C. A. Marjerrison, C. M. Thompson, D. D.
Maharaj, K. Levin, S. Kroeker, G. E. Granroth, R. Flacau, Z.
Yamani, J. E. Greedan, and B. D. Gaulin, Phys. Rev. B 91,
075133 (2015).

[19] A. E. Taylor, R. Morrow, R. S. Fishman, S. Calder, A. I.
Kolesnikov, M. D. Lumsden, P. M. Woodward, and A. D.
Christianson, Phys. Rev. B 93, 220408(R) (2016).

[20] C. M. Thompson, C. A. Marjerrison, A. Z. Sharma, C. R.
Wiebe, D. D. Maharaj, G. Sala, R. Flacau, A. M. Hallas, Y. Cai,
B. D. Gaulin, G. M. Luke, and J. E. Greedan, Phys. Rev. B 93,
014431 (2016).

[21] D. D. Maharaj, G. Sala, C. A. Marjerrison, M. B. Stone,
J. E. Greedan, and B. D. Gaulin, Phys. Rev. B 98, 104434
(2018).

[22] J. A. M. Paddison, H. Zhang, J. Yan, M. J. Cliffe, S.-H. Do, S.
Gao, M. B. Stone, D. Dahlbom, K. Barros, C. D. Batista, and
A. D. Christianson, arXiv:2301.11395.

[23] X. Liu, D. Churchill, and H.-Y. Kee, Phys. Rev. B 106, 035122
(2022).

[24] A. E. Taylor, S. Calder, R. Morrow, H. L. Feng, M. H. Upton,
M. D. Lumsden, K. Yamaura, P. M. Woodward, and A. D.
Christianson, Phys. Rev. Lett. 118, 207202 (2017).

[25] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.
Mod. Phys. 68, 13 (1996).

[26] V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin,
and G. Kotliar, J. Phys.: Condens. Matter 9, 7359 (1997).

[27] A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 57, 6884
(1998).

[28] M. Aichhorn, L. Pourovskii, P. Seth, V. Vildosola, M. Zingl,
O. E. Peil, X. Deng, J. Mravlje, G. J. Kraberger, C. Martins et
al., Comput. Phys. Commun. 204, 200 (2016).

[29] L. V. Pourovskii, Phys. Rev. B 94, 115117 (2016).
[30] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272

(2011).
[31] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, R.

Laskowski, F. Tran, and L. D. Marks, WIEN2k, An augmented
Plane Wave + Local Orbitals Program for Calculating Crys-
tal Properties (Karlheinz Schwarz, Techn. Universität Wien,
Austria, 2018).

[32] M. Aichhorn, L. Pourovskii, V. Vildosola, M. Ferrero, O.
Parcollet, T. Miyake, A. Georges, and S. Biermann, Phys. Rev.
B 80, 085101 (2009).

[33] J. Hubbard, Proc. R. Soc. A 276, 238 (1963).
[34] D. Fiore Mosca, L. V. Pourovskii, B. H. Kim, P. Liu, S. Sanna,

F. Boscherini, S. Khmelevskyi, and C. Franchini, Phys. Rev. B
103, 104401 (2021).

[35] P. Santini, S. Carretta, G. Amoretti, R. Caciuffo, N. Magnani,
and G. H. Lander, Rev. Mod. Phys. 81, 807 (2009).

[36] R. Shiina, H. Shiba, and P. Thalmeier, J. Phys. Soc. Jpn. 66,
1741 (1997).

[37] In terms of the operators of Ref. [36]: Õ1a = 2Ja/3, Õ�4a =
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