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Nonlinear dynamics near exceptional points of synthetic antiferromagnetic spin-torque oscillators
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We consider a synthetic antiferromagnetic spin-torque oscillator (STO) with anisotropic interlayer exchange
coupling. This system exhibits exceptional points (EPs) in its linearized dynamics. We find the nonlinear
dynamics and the dynamical phase diagram of the system both analytically and numerically. Moreover, we
show that, near one of the EPs, the power of the oscillator depends extremely sensitively on the injected spin
current. Our findings may be useful for designing sensitive magnetometers and for other applications of STOs.
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I. INTRODUCTION

For the design of many applications, such as magne-
tometers, converters, and amplifiers, a strong response to
perturbations is preferred. One way to achieve this strong
response is to make use of the existence of exceptional points
(EPs) [1–3]. EPs are characterized by a square-root depen-
dence of the imaginary part of the eigenfrequencies on some
system parameters, which enables a large dynamic response
as a result of a small change in a parameter. Mathematically,
EPs correspond to the coalescence of different eigenvalues
and eigenvectors in parameter space [4,5]. EPs are studied
intensely since they might lead to better sensors [1–3], yield
a variety of interesting phenomena such as lasing [6] and
spontaneous emission [7], and give rise to geometric phases
when encircling them [8]. Examples of physical systems that
exhibit EPs are optical microcavities [9] and other photonic
systems [3,10], optical lattices with engineered defects [11],
electromechanical systems [12], superconducting resonators
[13], nodal superconductors [9], semimetals [14–16], and
magnetic systems [17–23]. While EPs have been studied in-
tensely in the linear regime, the nonlinear regime remains
relatively unexplored.

In this paper, we consider a synthetic antiferromagnetic
(SAFM) spin-torque oscillator (STO), i.e., a STO that consists
of two magnetic layers that are coupled by Ruderman-
Kittel-Kasuya-Yosida (RKKY) interactions. We consider the
situation that one of the two magnetic layers is driven by
means of the injection of spin current. This could be achieved
by spin-orbit torque or by spin-transfer torque [24]. Gener-
ically, an STO is a magnetic system in which the damping
is compensated by the injection of spin angular momentum
from a spin current to yield precessional magnetic dynamics
[23,25–27]. These oscillators have potential for a wide range
of applications, such as detectors, microwave signal sources
[28,29], microwave-assisted magnetic recording, and neuro-
morphic computation [30,31].
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The SAFM STO that we consider has anisotropic RKKY
coupling and exhibits EPs in its linearized dynamics. We
consider the full nonlinear dynamics analytically and find the
limit cycles of the magnetization dynamics. Moreover, we
show that the dynamics becomes relatively simple close to
the EPs because the power and precessing frequency depend
linearly on the injected spin current. These analytical results
agree with numerical computations and lead to a complete
understanding of the steady-state behavior of the system. Fur-
thermore, we find from our analysis that the magnetization
dynamics is extremely sensitive to small changes in parame-
ters in the sense that the slope of the steady-state power with
respect to injected spin current diverges close to one of the
EPs. This result cannot be obtained from a linear analysis, and
the nonlinear description is therefore needed. A complemen-
tary work to ours is that of Deng et al. [23], who numerically
consider the nonlinear dynamics of an STO near a different
type of EP. Another recent closely related complementary
work is that of Ref. [32].

The remainder of this paper is organized as follows. In the
next section, we present the model and determine the eigen-
frequencies and stability conditions from a linear analysis. In
the second section, we consider the nonlinear dynamics close
to the EPs and find the limit circles of the magnetic dynamics.
In the third section, we consider the magnetization dynamics
numerically and find the dynamical phase diagram. We end
with a brief conclusion and outlook.

II. LINEAR ANALYSIS

We consider a STO composed of two RKKY-coupled
nanomagnets subject to the same external magnetic field and
uniaxial anisotropy, see Fig. 1. For simplicity, we take both
magnetic layers to be identical. Furthermore, spin angular
momentum is injected into the bottom magnetic layer. The
magnetic energy is given by

E = −B(mU,z + mL,z ) − K
(
m2

U,z + m2
L,z

)
2

− J⊥(mU,xmL,x + mU,ymL,y) − JzmU,zmL,z, (1)
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FIG. 1. A synthetic antiferromagnetic spin-torque oscillator in an
external magnetic field Bẑ. Spin angular momentum is injected into
the bottom magnetic layer.

where U denotes the upper and L the lower macrospin, and
mL/U,i the ith Cartesian component of the macrospin. Fur-
thermore, K is the uniaxial anisotropy constant, B > 0 the
external magnetic field directed along the z axis, J⊥ the in-
plane RKKY interaction, and Jz its out-of-plane component.
We take the RKKY interaction to be anisotropic because,
first of all, it will typically be anisotropic, and second, the
anisotropic coupling enriches the phase diagram.

For temperatures below the Curie temperature, the magne-
tization dynamics is well described by the Landau-Lifschitz-
Gilbert (LLG) equation with the inclusion of the injected spin
current:

∂mν

∂t
= −mν × heff,ν + αmν × ∂mν

∂t
+ Is,νmν × (mν × ẑ),

(2)

with the effective field heff,ν = −γ δE/δmν . Here, ν denotes
either the lower (L) or the upper (U ) macrospin, α the di-
mensionless Gilbert damping, and Is,U = 0, Is,L = Is > 0 the
spin current. The sign of the spin current is such that it tends
to align the bottom magnetic layer against the external field.
Since the Gilbert damping is typically small α � 1, we work
in most of what follows to lowest order in α and discard terms
of the order αIs as well. Furthermore, we set γ = 1 so that
B, K, J⊥, and Jz have units of frequency.

For the case that K > 0, the magnetic energy in Eq. (1)
yields four configurations where the torques on the magnetiza-
tion direction in both layers vanish simultaneously: These are
both layers pointing up, both pointing down, and the two an-
tiparallel configurations. Depending on the parameters, these
configurations are energy extrema that are stable or unstable.
For large fields, the configuration with both spins pointing up
is stable. For large spin currents, the bottom layer is forced to
point downward, while depending on the strength and sign of
the RKKY coupling, the top layer may point down or up.

The most interesting configuration for our purposes is the
antiparallel configuration. As we shall see below, the lin-
earized dynamics around this configuration yields an EP. This
may be anticipated because, in the absence of dissipation, i.e.,
when α = 0 and Is = 0, the antiparallel configuration in an
external field is reminiscent of a system of two coupled har-
monic oscillators with one of the oscillators having a potential

energy that is inverted. This latter system is known to yield an
EP [33]. Because Is > 0, we consider the situation where the
bottom magnetic layer is pointing against the field.

We investigate the stability of a given magnetic state by
linearizing the LLG equations for small deviations around
that state. For the reasons mentioned above, we focus on
the antiparallel configuration with the magnetization of the
bottom layer pointing against the external field, which yields
the eigenfrequencies:

(α2 + 1)ω±

= B − iα(K − Jz ) − (i − α)Is

2

±
√[

K − Jz − iαB + (i − α)Is

2

]2

− (α2 + 1)J2
⊥. (3)

From this expression, we find the parameters for which the
system exhibits an EP by setting the expression under the
square root equal to zero. To lowest order in α and Is, this
yields J2

⊥ = (K − Jz )2 and Is = 2αB. Close to this EP and
particularly when the expression underneath the square root
is negative, the imaginary part of the eigenvalues depends
strongly on small changes in parameters. Physically, this im-
plies that a small change in parameters may yield a strong
dynamic response because a positive imaginary part of the
eigenfrequency corresponds to exponential growth of small-
amplitude fluctuations. By determining when the imaginary
part of the above eigenfrequency changes sign, we find that
the antiparallel configuration is stable when

Is

2α
>

−K − Jz + |K − Jz|B/

√
(K − Jz )2 − J2

⊥

1 + |K − Jz|/
√

(K − Jz )2 − J2
⊥

, (4a)

Is

2α
<

−K − Jz − |K − Jz|B/

√
(K − Jz )2 − J2

⊥

1 − |K − Jz|/
√

(K − Jz )2 − J2
⊥.

. (4b)

In the next section, we focus on the nonlinear dynamics out-
side this range of dynamical stability. As we shall see, the
power of the STO is extremely sensitive to small changes in
the current around this EP for K > 0 but not when K < 0.

III. NONLINEAR DYNAMICS

In this section, we discuss the nonlinear dynamics of the
system described in Sec. II and specifically focus on the limit
cycles of the model.

The reactive dynamics is formulated by means of the
Poisson bracket {mα, mβ} = εαβγ mγ . From here, we de-
fine the canonical coordinates pU/L = mU/L,z and θU/L =
arctan(mU/L,y/mU/L,x ) that correspond to the total power and
angle of the oscillator and which have nonzero Poisson brack-
ets {pU/L, θU/L} = 1. We continue performing yet another
coordinate transformation that makes use of the rotational
symmetry around the z axis:

μ = pU + pL

2
, η = pU − pL

2
,

θ = θU + θL, φ = θU − θL, (5)
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where μ ∈ [−1, 1] and η ∈ [−1 + μ, 1 − μ]. The above co-
ordinates have {μ, θ} = 1 and {η, φ} = 1 as nonvanishing
Poisson brackets. In these coordinates, the Hamiltonian (in-
ternal energy) in Eq. (1) becomes

h ≡ E = −2Bμ − K (μ2 + η2) − Jz(μ2 − η2)

− J⊥
√

[1 − (μ + η)2][1 − (μ − η)2] cos(φ), (6)

where the rotation symmetry around the z axis ensures that
the right-hand side does not depend on θ . The Hamiltonian
equations of motion are accordingly given by

μ̇ = {μ, E} = {μ, θ}∂θE = 0, (7a)

θ̇ = 2B + 2(K + Jz )μ − 2J⊥μ(1 + η2 − μ2) cos(φ)√
[1 − (μ + η)2][1 − (μ − η)2]

,

(7b)

φ̇ = 2(K − Jz )η − 2J⊥η(1 + μ2 − η2) cos(φ)√
[1 − (μ + η)2][1 − (μ − η)2]

, (7c)

η̇ = 2J⊥
√

[1 − (μ + η)2][1 − (μ − η)2] sin(φ), (7d)

where the rotation symmetry guarantees that the total power
is conserved. For the limit cycles, we expect φ̇ = η̇ = 0 since
both spins experience the same magnetic field strength and
are thus expected to have equal angular velocity. Using this
ansatz, we find two possible expressions for the difference in
power η in terms of the total power μ for J2

⊥ < K2, which are
given by

η = 0, η2 = 1 + μ2 − 2|K − Jz||μ|√
(K − Jz )2 − J2

⊥
. (8)

In case J2
⊥ > (K − Jz )2, we are only left with η = 0 as a

solution since we require η to be real.
The model under consideration furthermore has dissipative

contributions in the form of Gilbert damping and the injection
of spin angular momentum. Up to first order in the Gilbert
damping, constant α, the dynamics of total power μ, and the
relative power η due to Gilbert damping is given by

μ̇

α
= [B + (K + Jz )μ](1 − μ2 − η2) − 2(K − Jz )η2μ

− J⊥
√

[1 − (μ + η)2][1 − (μ − η)2] cos(φ)μ, (9a)

= B(1 + μ2 − η2) + [h + Jz + K (1 − 2η2)]μ, (9b)

η̇

α
= {−2Bμ + K (1 − 3μ2 − η2) − Jz(1 + μ2 − η2)

− J⊥
√

[1 − (μ + η)2][1 − (μ − η)2] cos(φ)}η, (9c)

= [h + K (1 − 2μ2) − Jz]η. (9d)

The influence of SOT, up to first order in Is, on the dissipative
dynamics is, on the other hand, given by

μ̇

Is
= (μ − η)2 − 1

2
, (10a)

η̇

Is
= 1 − (μ − η)2

2
. (10b)

With this set up, we are in the position to discuss the limit cy-
cles of the model and their stability. Again, for all values of J⊥,

η = 0 will be a solution of φ̇ = η̇ = 0. Furthermore, for J2
⊥ <

K2, we additionally have η2 = 1 + μ2 − 2|K||μ|/
√

K2 − J2
⊥

as a solution. Below, we address limit cycles and stability for
the solution η = 0, which covers, as we shall see, the behavior
near the EP. For completeness, we address the other type of
limit cycles and their stability in Appendixes A–D.

When η = 0, the equation for the total power μ becomes

μ̇

α
=

[
B − Is

2α
+ (K + Jz − |J⊥|)μ

]
(1 − μ2). (11)

This has two solutions:

μ = ±1, μ = B − Is
2α

|J⊥| − Jz − K
, (12)

with μ = mU,z = mL,z. The first solution describes both
macrospins aligning in the ±ẑ direction. The second solution,
on the other hand, describes the limit cycle toward which the
system converges for sufficiently large times. Furthermore,
this limit cycle has a precessional frequency of

θ̇ = Is

α
. (13)

From the fixed point analyses presented in Appendix B, these
fixed points are stable if ∂μμ̇ < 0 and |J⊥|(1 + μ2) > (K −
Jz )(1 − μ2). Alternatively, these limit cycles are unstable if
one of the above constraints is not satisfied. The limit cycle
solution μ = (B − Is/2α)/(|J⊥| − Jz − K ) is thus stable if
max[K + Jz, (K − Jz )(1 − μ2)/(1 + μ2)] < |J⊥|. While the
static solution with μ = ±1, on the other hand, is stable if
∓(B − Is/2α) < K + Jz − |J⊥|.

In conclusion, we find that the power of the SAFM is quite
sensitive to small perturbations around the point |J⊥| � K +
Jz, where the slope of the total power μ = mU,z = mL,z with
respect to Is/2α is given by (|J⊥| − Jz − K )−1 in Eq. (12).
The total power of the oscillator therefore depends sensitively
on injected spin current around this point. Hence, we find an
enhanced sensitivity if K + Jz > 0 for J⊥ > K + Jz.

IV. NUMERICAL RESULTS

In this section, we determine all the dynamical phases of
the SAFM oscillator using numerical solutions. For concrete-
ness, we focus on the case that Jz = 0. We solve the LLG
Eq. (2) numerically for different values of the coupling J⊥
and current Is starting from the antiparallel configuration with
a small initial perturbation. In Fig. 2, we present the long-time
behavior in each region of the dynamical phase diagram, with
the blue spin denoting the magnetic layer that is driven by
spin current. We note that a change in the external magnetic
field B results in a rigid upward or downward shift of the
phase diagram. The black lines in Fig. 2 are the analytically
predicted phase boundaries from Eqs. (4) and (12). We find
very good agreement between the analytic predictions and the
results from numerical solutions.

There are three regions where the spin configuration is
static (I, II, and III), and one region, IV, where the magne-
tization is oscillating. The region in Fig. 2 with J⊥ < K may
be interpreted in the following way. If we start from zero cou-
pling and increase the current, we observe that the configura-
tion is initially parallel with both macrospins aligned upward
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FIG. 2. Dynamical phase diagram for K > 0 as a function of
coupling J⊥ and current Is. The analytical predictions from Eqs. (4)
and (12) are plotted as the black lines. The steady-state configuration
is indicated for each region. Region IV corresponds to oscillations.
The z component of the magnetization in this region depends on the
injected spin current. We took B/K = 1.5 and Jz = 0.

(region I). This is what we expect since, for small values of
the current, the spin current is not large enough to compen-
sate the Gilbert damping, and the two macrospins both align
with the external magnetic field. Increasing the current fur-
ther, the system can keep the initial configuration (region II)
since now the current is enough to compensate for the
damping (light-blue macrospin pointing downward), but
the coupling is too small to make the white macrospin, i.e.,
the magnetic layer into which no spin current is injected, flip.
Indeed for increasing values of the coupling and sufficiently
high current, both macrospins are aligned against the external
field (region III).

When considering the nonlinear behavior beyond the
EP, region IV is of most interest. In this region, the two
macrospins are oscillating, with a frequency Is/α depend-
ing only on the current Is and the damping α. These two
macrospins exhibit nearly parallel orientations for positive
values of the coupling and antiparallel orientations for neg-
ative values. In Fig. 3, we show the z component of the
magnetization as a function of the current Is, in which the
different lines correspond to the vertical dashed lines in Fig. 2.
The numerical simulations confirm that the current and the
macrospin orientation are related in a linear way given by
Eq. (12).

We have focused on the situation that Jz = 0, which is the
most interesting because all four phases (I–IV) meet at one
point. In fact, starting from Fig. 2 and increasing Jz, only
the three regions I, III, and IV meet at the two points since
the antiparallel region progressively shrinks and the points
shift outward. If instead we consider negative values of Jz,
the antiparallel region progressively enlarges, and region I
decreases.

V. DISCUSSION AND CONCLUSIONS

We analytically and numerically explored the nonlinear be-
havior of a synthetic antiferromagnetic STO with anisotropic
RKKY coupling. We found that the EP which is found in
its linearized dynamics leads to enhanced sensitivity of the

FIG. 3. Plot of the z direction of the macrospins in both syn-
thetic layers as a function of the current Is. The three different lines
correspond to different values in the coupling strength (J⊥/K =
1.2, 1.6, 2), with the steeper slope corresponding to decreasing J⊥.
These values are depicted by the dotted lines in Fig. 2. Parameters
taken are B/K = 1.5 and Jz = 0.

power of the oscillator, particularly as a function of injected
spin current. This enhanced sensitivity may be used to engi-
neer magnetometers or sensors of spin current. Furthermore,
recent work shows that it is possible to use spin-torque nano-
oscillators to implement different computing schemes and to
classify waveforms [31]. Moreover, STOs may be used as
tunable spin-wave emitters that excite a specific spin wave
depending on the current. We expect that the enhanced sen-
sitivity we predict is an asset for such applications.

Regarding the experimental realization of our model,
an ingredient is the anisotropic interlayer coupling. This
anisotropic exchange coupling is not essential but makes
the phase diagram much richer. Anisotropic exchange cou-
pling has been proposed and experimentally observed in
Refs. [34,35]. The required anisotropies may be engineered
by interfaces with heavy metals and/or engineering the shape
of the magnetic layers, whereas the interlayer coupling may be
tuned by varying the thickness of the nonmagnetic spacer. In
our approach, we have relied on a macrospin approximation.
This is a good description and is in agreement with micro-
magnetic simulation and experimental results for STOs with
diameters <30 nm [36].

Future work could focus on the inclusion of thermal fluc-
tuations. We expect that these will affect the phase but not
the orientation or the amplitude of the oscillations. Finally,
we hope that our work, together with that of Deng et al.
[23], inspires the operation of STOs near EPs. In fact, while
resubmitting this paper, a recent preprint appeared [37] in
which authors have experimentally observed EPs in STOs,
albeit in a setup that is slightly different from ours.
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APPENDIX A: SECOND TYPE OF LIMIT CYCLES
FOR J2

⊥ < K2 FOR Jz → 0

For J2
⊥ < K2, we also need to consider η2 = 1 + μ2 −

2|K||μ|/
√

K2 − J2
⊥ as a solution to φ̇ = η̇ = 0. Using the

above ansatz, we find that Eqs. (9a) and (10a) give

μ̇

α
=

[
B + Kμ − Is

2α

]⎡
⎢⎣−2μ2 + 2|K||μ|√

K2 − J2
⊥

⎤
⎥⎦

−μ
J2
⊥

K

2|K||μ|√
K2 − J2

⊥
− 2Kμ

⎡
⎢⎣1 + μ2 − 2|K||μ|√

K2 − J2
⊥

⎤
⎥⎦

− Is

α
sgn(η)μ

√√√√1 + μ2 − 2|K||μ|√
K2 − J2

⊥
. (A1)

In the first instance, we note that μ = 0 gives a static solution
to the above equation. This describes the configuration in
Fig. 1, in which two spins point in opposite directions. From
Appendix C, it follows that a requirement for stability of this
phase is ∂μμ̇ < 0 at the fixed point. This requirement for
stability, with sgn(η) = 1, becomes

Is

2α
>

−K + |K|B√
K2−J2

⊥

1 + |K|√
K2−J2

⊥

, (A2a)

Is

2α
<

−K − |K|B√
K2−J2

⊥

1 − |K|√
K2−J2

⊥

. (A2b)

These are precisely the same conditions as in Eq. (4) for
Jz → 0. The fixed point with sgn(η) = −1, on the other hand,
is stable if

Is

2α
>

−K + |K|B√
K2−J2

⊥

−1 + |K|√
K2−J2

⊥

, (A3a)

Is

2α
<

K + |K|B√
K2−J2

⊥

1 + |K|√
K2−J2

⊥

. (A3b)

We see that the configuration with sgn(η) = −1 is always
unstable since there is no interval for stability.

To make progress in the regime where we expect limit
cycles, we rewrite Eq. (A1):

g(Is, μ) = μ̇

α|μ|

= (1 − 2ε|μ|)
[

2K[μ − sgn(μ)ε] +
(

B − Is

2α

)]

− sgn(μ)ε
Is

α
η(μ), (A4)

where ε ≡
√

K2 − J2
⊥/2|K| ∈ (0, 1

2 ). Let us analyze the
above equation in a bit more detail. We assume that μ > 0
at the fixed point. From here, we find that Eq. (A4) implies

Is

2α
= B + 2K (μ − ε)

1 + 2εη

1−2εμ

. (A5)

From Appendix C, we find the stability requirement μ̇ � 0 for
limit cycles of Eq. (A4) to be

Is

2α

1 − 4ε2

(1 − 2εμ)2
+ 2Kη < 0. (A6)

We would like to find the minimal current Is for these
limit cycles to be stable; hence, we would like to find
the current for which Eq. (A6) is zero, in other words,
∂μμ̇ = ∂μg(Is, μ)|Is (μ) = 0. On the other hand, we know
g[Is(μ), μ] = 0 is the limit cycle—fixed point—condition.
From here, we find dμg[Is(μ), μ] = (∂Is g)(∂μIs) + ∂μg = 0,
and hence, ∂μIs = 0 ↔ ∂μg ≡ ∂μμ̇ = 0. Thus, when looking
for the critical current, it is sufficient to consider ∂μIs = 0. We
proceed by writing Eq. (A5) as

(1 − 2εμ + 2εη)Is

2α
= (1 − 2εμ)[B + 2K (μ − ε)].

Furthermore, we take the derivative with respect to μ of the
above and note that we are considering points which satisfy
∂μIs = 0. This leaves us with

(1 − 2εμ + 2εη)Is

2α

= {2ε[B + 2K (μ − ε)] + 2K (1 − 2εμ)}η.

which according to Eq. (A5) gives us

(1 − 2εμ)[B + 2K (μ − ε)]

= [2εB − 2K (1 − 4εμ + 2ε2)]η. (A7)

To proceed, we assume η2 � 1 around the critical current.
A consequence of the above is that we assume με − δμ � 1
with

με = 1

2ε
(1 −

√
1 − 4ε2), (A8)

and from relation in Eq. (8), we see that η2 ∼
(2ε)−1

√
1 − 4ε2 δμ at linear order in δμ and η2. By squaring

Eq. (A7) and expanding up to linear order in δμ, we find the
solution to be

2δμ ∼
√

1

4ε2
− 1

[K (1 − 2ε2 − √
1 − 4ε2) + εB]2

[K (1 − 2ε2 − 2
√

1 − 4ε2) + εB]2
. (A9)
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Accordingly, the critical current is well approximated by using
Eq. (A5):

Is,c � Is(με − δμ). (A10)

We thus have two forms of stable limit cycles for −|J⊥| <

K < 0 and Is > Is,c, namely, one described in Sec. III, where
η = 0, and one with η �= 0, which we described in this Ap-
pendix.

APPENDIX B: STABILITY REQUIREMENTS
FOR LIMIT CYCLES WITH η = 0

To perform the stability analyses, we first determine the
fixed points in φ and η up to first order in dissipative terms.
Including dissipative corrections, Eq. (7) becomes

δη̇ = 4|J⊥|(1 − μ2)δφfp − Is

2
(1 − μ2) = 0. (B1)

The above implies δφfp = Is/8|J⊥|. We continue the stability
analyses by linearizing around the fixed point η = 0, sin(φ) =
Is/4J⊥, and μ = (B − Is/2α)/(|J⊥| − K ):⎛

⎜⎜⎝
φ̇

η̇

μ̇

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 γ φ
η 0

γ
η

φ εη
η 0

0 εμ
η εμ

μ

⎞
⎟⎟⎠

⎛
⎜⎜⎝

δφ

δη

δμ

⎞
⎟⎟⎠, (B2)

where γ is zeroth order in α and Is, and ε is first order in
dissipation. The eigenvalues λ of the above matrix are given
by (

εμ
μ − λ

)[(
εη
η − λ

)
λ − γ

η

φ γ φ
η

] = 0. (B3)

Hence, one eigenvalue is given by εμ
μ , and the real part of

the other two eigenvalues is given by εη
η . The fixed point

is stable if the real part of all eigenvalues is negative. The
constraint εμ

μ < 0 precisely gives ∂μμ̇ < 0 in Eq. (11). The
requirement that εη

η < 0, on the other hand, gives εη
η/α =

(K − Jz )(1 − μ2) − |J⊥|(1 + μ2) < 0, which is satisfied for
K − Jz < |J⊥|.

APPENDIX C: STABILITY REQUIREMENTS
FOR LIMIT CYCLES WITH η �= 0

In the case η �= 0, the angle φ shifts due to dissipative
corrections on Eq. (7). We denote this shift by δφfp. We find
that the linearized equations of motion around the fixed point
give ⎛

⎜⎜⎝
φ̇

η̇

μ̇

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ε
φ

φ γ φ
η γ φ

μ

γ
η

φ εη
η εη

μ

0 εμ
η εμ

μ

⎞
⎟⎟⎠

⎛
⎜⎜⎝

δφ

δη

δμ

⎞
⎟⎟⎠, (C1)

with γ zeroth order in α and Is, and ε first order in dissipation.
The eigenvalues λ of the above matrix are given by the third-
order polynomial equation:(

εμ
μ − λ

)[(
ε

φ

φ − λ
)(

εη
η − λ

) − γ η
μγ φ

η

]
+ γ η

μγ φ
μ εμ

η − εμ
μεη

μ

(
ε

φ

φ − λ
) = 0. (C2)

Hence, the eigenvalues—up to first order in α and Is—
are given by λ1 = εμ

μ − (γ φ
μ /γ φ

η )εμ
η and λ± = (εφ

φ + εη
η )/2 ±

FIG. 4. Numerical phase diagram for the case K < 0 as a func-
tion of coupling J⊥ and current Is. In black, the analytical predictions
from Eqs. (4), (A2), and (A10) are plotted. In each region, the
corresponding long-time configuration is indicated. The regions for
large and small J⊥ correspond to oscillations. The z component of
the magnetization in this region depends on the injected spin current.
The characteristic of the hysteretic region is the dependence of the
long-time configuration on the initial conditions. We took B/K = 1.5
and Jz = 0.

√
γ

η

φ γ φ
η ± εμ

η γ
η

φ γ φ
η /

√
γ

η

φ γ φ
η . Since we are only interested in

the real part of the eigenfrequencies for our stability analyses,
we find that the limit cycle is stable if

Re(λ1) = εμ
μ −

(
γ φ

μ

γ
φ
η

)
εμ
η

= εμ
μ + (∂μη)εμ

η = ∂μμ̇ � 0, (C3a)

Re(λ±) = ε
φ

φ + εη
η

2
� 0. (C3b)

First, we note that (εφ

φ + εη
η )/2 = (μ − η)Is/2α − μ(B +

2K (μ − ε)) � 0, which implies sgn[B + 2K (μ − ε)]η > 0.
This condition is satisfied at the limit cycle. Hence, we are
left with the stability condition ∂μμ̇ � 0.

APPENDIX D: PHASE DIAGRAM FOR K < 0 WITH Jz → 0

In this Appendix, we describe the phase diagram in the
case K < 0, which is given in Fig. 4. For J2

⊥ > K2, this
system once again only has limit cycles with η = 0, and the
dynamics of the system is described by Eqs. (12) and (13). On
the other hand, when K2 < J2

⊥, two types of limit cycles are
stable if Is > Is,c, as we have seen in Appendixes A and C and
Sec. III. One of these limit cycles has η = 0 and is described
by Eqs. (12) and (13). The stability requirement |J⊥|(1 +
μ2) > K (1 − μ2) for K < 0 in this case leads to (B −
Is/2α)2 < (K − J⊥)3/(J⊥ + K ). The second type of limit
cycle has η �= 0, as discussed in Appendix A, and only exists
for current larger then Eq. (A10). We denote the region in
Fig. 4 in which both limit cycles exist as the hysteretic regime.

The regions of stable static configurations with η = 1 and
μ = 0 are given by Eqs. (11) and (A2). Additionally, we find
the region of stability with μ = ±1 and η = 0 by requiring
∂μμ̇ < 0 on Eq. (11). This results in B − Is/2α < ∓(K −
|J⊥|).
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