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The kagome lattice can host exotic magnetic phases arising from frustrated and competing magnetic in-
teractions. However, relatively few insulating kagome materials exhibit incommensurate magnetic ordering.
Here, we present a study of the magnetic structures and interactions of antiferromagnetic Na,Mn;Clg with
an undistorted Mn?* kagome network. Using neutron-diffraction and bulk magnetic measurements, we show
that Na,Mn;Clg hosts two different incommensurate magnetic states, which develop at Ty; = 1.6 K and
Ty> = 0.6 K. Magnetic Rietveld refinements indicate magnetic propagation vectors of the form q = (gy, gy, %),
and our neutron-diffraction data can be well described by cycloidal magnetic structures. By optimizing exchange
parameters against magnetic diffuse-scattering data, we show that the spin Hamiltonian contains ferromagnetic
nearest-neighbor and antiferromagnetic third-neighbor Heisenberg interactions, with a significant contribu-
tion from long-ranged dipolar coupling. This experimentally determined interaction model is compared with
density-functional-theory simulations. Using classical Monte Carlo simulations, we show that these competing
interactions explain the experimental observation of multiple incommensurate magnetic phases and may stabilize

multi-q states. Our results expand the known range of magnetic behavior on the kagome lattice.

DOI: 10.1103/PhysRevB.108.054423

I. INTRODUCTION

Geometrical frustration—the inability of a system to sat-
isfy all of its pairwise interactions simultaneously—can
suppress conventional magnetic ordering and promote exotic
magnetic states [1]. A focus of frustrated-magnetism research
has been insulating materials in which magnetic ions occupy
a kagome lattice of corner-sharing triangles, where strong
frustration effects can occur if the interactions are antifer-
romagnetic. For example, if antiferromagnetic Heisenberg
interactions couple neighboring spins only, a spin-liquid state
is stable down to extremely low temperatures even in the
classical limit [2], before eventually undergoing octupolar
magnetic ordering [3]. There is a continuing search for real
materials that are candidates to realize frustrated kagome
magnetism [4]. In the quantum (S = 1/2) limit, notable can-
didates include herbertsmithite [5,6] and barlowite [7-9]. In
the classical (large-S) limit, probably the most studied candi-
dates are iron-containing jarosite minerals [10-12], which are
often off-stoichiometric [13,14]. Therefore, an important goal
is to identify and characterize other structure types contain-
ing kagome lattices, particularly those with antiferromagnetic
interactions, and where the kagome lattice is structurally
undistorted.

Kagome antiferromagnets that exhibit long-range mag-
netic ordering may still show strong effects of geometrical
frustration. In particular, the inclusion of further-neighbor
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interactions can stabilize several unusual magnetic states in-
stead of conventional collinear antiferromagnetism. These
states include noncollinear 120° order as well as many
noncoplanar states, which are more stable than collinear an-
tiferromagnets in large regions of interaction space [15]. For
certain exchange interactions, incommensurate magnetic or-
dering can also be stabilized; however, the nature of the
incommensurate phase is difficult to determine from simula-
tions [16,17]. Experimental studies of materials that occupy
this part of the interaction space are therefore important to
advance our understanding of kagome magnetism.

In this context, we identified Na,Mn3;Clg as a promis-
ing material for frustrated magnetism on the kagome lattice.
This material was first reported in the 1970s [18] and is
likely electrically insulating [19], but its magnetic structure
and interactions have not previously been studied. Neverthe-
less, a recent materials survey highlighted Na,Mn;Clg as a
candidate frustrated antiferromagnet [20]. Due to the large
magnetic moment of Mn>*with S = 5/2 and the absence of
an orbital contribution (L = 0), its behavior is expected to be
predominantly classical. The reported crystal structure [18]
is shown in Fig. 1(a); its trigonal symmetry (space group
R3m) with Mn at the 3b Wyckoff position ensures that the
kagome planes are undistorted. A recent investigation of its
bulk magnetic properties showed multiple magnetic phase
transitions below 2 K, and the possibility of a low-temperature
structural phase transition was suggested due to the obser-
vation of a broad specific-heat anomaly around 6 K [19].
Notably, a structural transition to a trimerized polar phase
is observed in the related S = 1 kagome magnet Na,Ti3Clg
[21-25].

©2023 American Physical Society
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FIG. 1. (a) Crystal structure of Na,Mn;Clg, showing Mn?* (ma-
genta), Cl (green), and Na't(yellow) ions. (b) Neutron powder
diffraction data collected at 7 =2 K (black circles), fitted curve
from Rietveld refinement (red line), and data fit (blue line). Ex-
perimental data were collected using the HB-2A diffractometer at
ORNL (A = 2.4109 A). The upper and lower tick marks indicate the
positions of nuclear Bragg peaks from Na,Mn;Clg and the Cu sam-
ple container, respectively. (c) Magnetic interaction pathways within
the kagome Mn*" layers, showing next-nearest neighbor interactions
J, and the two distinct third-neighbor interactions, J3, and J3;,. The
nearest-neighbor interaction pathway is parallel to J3, at one half of
its distance.

In this paper, we report magnetic characterization and
powder neutron-diffraction experiments on Na,Mn;Clg. In
agreement with a recent report [19], we observe that this
material undergoes two magnetic phase transitions with de-
creasing temperature. However, our data do not indicate a
measurable crystallographic distortion at temperatures down
to 0.3 K, indicating that the undistorted kagome lattice is pre-
served. Our powder neutron-diffraction measurements show
that, unusually, the two ordered magnetic states both have
incommensurate magnetic propagation vectors. These data
are consistent with single-q helical magnetic ordering, with
an antiferromagnetic stacking of kagome layers. We show
that the development of multiple incommensurate phases can
be explained by a model including Heisenberg exchange in-
teractions up to third-nearest neighbors and the long-ranged
dipolar interaction, and we estimate the values of the exchange
interactions by analyzing the magnetic diffuse scattering mea-
sured above Ty. Our results place Na,Mn3Clg in a complex
region of the kagome phase space, in which incommensurate
ordering is stabilized by a competition between short-range
ferromagnetic and longer-range antiferromagnetic interac-
tions. Our interaction model also suggests that Na,Mn;Clg
deserves further investigation as a potential host of multi-q
spin textures in zero applied magnetic field.

Our paper is structured as follows. We first introduce the
crystal structure and potential magnetic exchange pathways
of Na,Mn;Clg, and present thermomagnetic measurements
of the bulk magnetic properties. We then discuss our pow-
der neutron-diffraction data and symmetry-informed Rietveld

analysis, from which the likely single-q magnetic struc-
tures are determined. Magnetic diffuse-scattering analysis is
employed to parametrize the magnetic interactions that stabi-
lize incommensurate ordering. We compare and contrast our
experimental results with density-functional-theory calcula-
tions. Finally, we discuss the extent to which our experimental
observations can be rationalized using field-theoretical and
Monte Carlo simulations and conclude by summarizing our
results and highlighting opportunities for future research.

II. METHODS

A. Sample synthesis

A polycrystalline sample (mass 2.1 g) of Na,Mn3;Clg was
prepared by sealing a stoichiometric mixture MnCl, and
NaCl in SiO, after heating at 250 °C under dynamic vacuum
overnight. The mixture was heated to 750 °C for several hours
and quenched by removing from the furnace. The sample was
ground, sealed with éll-atm argon, and annealed at 350 °C for at
total of ~260 h with an additional intermediate grinding. All
handling of this very air-sensitive sample was conducted in an
inert-atmosphere glovebox, and the samples were kept under
inert atmosphere when they were transferred to the vacuum
lines for sealing of the silica tubes.

B. Experimental measurements

Magnetization measurements were performed using Quan-
tum Design magnetometers with data below 1.8 K collected
using a *He insert. The samples were loaded into measure-
ment straws in an inert-atmosphere glovebox with grease to
protect the powders from air during the rapid loading process.
Specific heat data were collected at temperatures down to
0.4 K using a *He insert.

Neutron-diffraction measurements were performed using
the HB-2A powder diffractometer at the High Flux Isotope
Reactor of Oak Ridge National Laboratory. The incident neu-
tron wavelength A = 2.4109 A. Our powder sample of mass
2.1 g was loaded into a 4-mm-diameter cylindrical Cu con-
tainer in a He glovebox. The sample was cooled using a
dry *He cryostat, affording a base temperature of ~0.3 K.
Counting times were &3 hr at 0.3, 0.8, 2.0, 5.0, and 40 K,
and ~0.5 hr at other temperatures below 7. The data were
corrected for neutron absorption by the sample [26].

C. Magnetic diffuse scattering refinements and field theory

Magnetic diffuse-scattering refinements were performed
using the SPINTERACT program to refine the values of the
exchange interactions [27]. The spin Hamiltonian included
Heisenberg exchange interactions and the magnetic dipolar
interaction (see Sec. III E). The input data were collected at
2 and 5 K and were placed in absolute intensity units (barn
sr! Mn~!) by normalization to the nuclear Bragg profile. A
high-temperature (40 K) data set was subtracted from these
data.

The magnetic diffuse scattering 7(Q) and bulk suscep-
tibility x7 were calculated using Onsager reaction-field
theory [27-29], and a 40 K calculation was subtracted
from the calculated /(Q). In this approach, the Fourier

054423-2



MULTIPLE INCOMMENSURATE MAGNETIC STATES IN ...

PHYSICAL REVIEW B 108, 054423 (2023)

TABLE I. Refined crystallographic parameters of Na,Mn;Clg at
T =2 K, obtained from Rietveld refinement to powder neutron-
diffraction data (A = 2.4109 A).

Nale'l3C18, T =2K
R3m,a =7.4249(1) A, ¢ = 19.4971(4) A
Boveran = 031(6) AZ

Site Wyckoff x,y,2)

Na 6c (0,0,0.3395(7))

Mn 3b (0,0, 1)

Cll 6c (0,0,0.9062(4))

CI2 18h (0.5081(3),0.4919(3),0.0931(2))

transform of the magnetic interactions is calculated as
Jl."]‘.ﬁ(q) =>. Jlf'j‘.ﬁ (r)exp(—iq - r), where o, 8 denote Carte-
sian spin components, i, j € {1, 3} denote sites within the
primitive unit cell, and r is the vector connecting unit cells
containing sites i and j. The interaction matrix formed by
the Jf;ﬁ (q) is diagonalized on a grid of up to 50° points in
the first Brillouin zone to determine its eigenvalues A, (q) and
eigenvector components U (q),

M(@UE (@) =Y TP (@)UY (q),
J

where p € {1, 3} indexes the normal modes. The long-range
dipolar interaction is included using Ewald summation [30].
Within a reciprocal-space mean-field approximation, the mag-
netic propagation vector of the first ordered state is the wave
vector at which A, reaches its maximal value. The I(Q) and
xT are given in terms of the A,(q) and Uj.(q), as described
in Ref. [27].
During the refinements, we minimized the function

2 Ielxpt - SIclalc ’
cp(=) o
where subscript “expt” and ‘“calc” indicate measured and
calculated diffuse scattering patterns, respectively, o is an
experimental uncertainty, and s is a refined overall scale fac-
tor common to the neutron-scattering data and the magnetic
susceptibility x7. The minimization was performed using
the MINUIT program [31,32]. To identify local minima in 2,
we performed 25 refinements for each model, with different
randomly chosen initial parameter values in each case.

D. Rietveld refinements

Rietveld refinements were performed using the FULLPROF
software [33,34]. A crystal-structure refinement was first per-
formed at T = 2 K (> Ty1). In addition to the crystallographic
parameters given in Table I, we refined the intensity scale fac-
tor, 260 zero-offset, peak-shape, and background parameters.
The peak shape was modeled using a pseudo-Voigt function
initialized with the instrument resolution parameters, with U,
V, and W parameters subsequently refined. The background
was fitted using Chebychev polynomials.

Magnetic Rietveld refinements were performed against
0.3 K and 0.8 K data from which the 2 K data had been
subtracted. This subtraction isolates the magnetic Bragg

signal by subtracting the nuclear and background contribu-
tions, which are essentially unchanged between 0.3 and 2 K.
In the magnetic refinements, asymmetry, Chebychev back-
ground, and magnetic-structure parameters were refined, as
described in Sec. III D; all other parameters were fixed at the
values obtained from the 2 K refinement. Magnetic-structure
figures were prepared using the VESTA program [35].

E. Density-functional-theory calculations

Density functional theory calculations were performed us-
ing the all-electron-density functional code WIEN2K [36,37].
The linearized augmented plane wave method [38] and the
generalized-gradient approximation of Perdew, Burke, and
Ernzerhof [39] were utilized. The RKp.x generated by the
smallest linearized augmented plane wave sphere radius (R)
and the interstitial plane-wave cutoff (Kp.x) was set as 7.0
for good convergence. The muffin-tin radii of Na, Cl, and
Mn atoms were 2.47, 2.14, and 2.49 a.u., respectively. The
number of g-points in the full Brillouin zone was 200. Lat-
tice parameters of Na,Mn3;Clg were fixed to the experimental
values of @ = b =7.423 A and ¢ = 19.497 A. Then, the in-
ternal atomic coordinates were relaxed until forces on all of
the atoms were less than 1 mRy/bohr, with nonmagnetic,
ferromagnetic [FM, q = (0, 0, 0)], and interlayer antiferro-
magnetic [interlayer-AFM, q = (0, 0, %)] states. The relaxed
crystal structure with a FM state is highly similar to the
experimental crystal structure. However, in the nonmagnetic
state, the atomic coordination changes significantly, as CI
atoms moves towards the Mn layers. The relaxed interlayer-
AFM crystal structure is same as the FM crystal structure, but
exhibits lower energy and smaller forces, due solely to the
different magnetic ordering. The energy difference between
FM and interlayer-AFM states is 1.19 meV /f.u..

To estimate the net energetic effect of neglecting spin-orbit
coupling (SOC), we conducted calculations of the FM and
interlayer-AFM states with SOC and magnetization along the
trigonal axis. We find this energy difference to be essentially
equal (1.17 meV /f.u.) to the original energy difference with-
out SOC, suggesting that SOC is negligible in this material.

To calculate the interlayer and intralayer interactions illus-
trated in Fig. 1(c), we built several supercells with different
magnetic orders, as shown in Fig. 2. Our approach is similar
to that of Refs. [40—42]. The 1x1x2 supercell in Fig. 2(a) is
built for calculating the interlayer interaction J,.. The 1x1x1
supercell in Fig. 2(b) displays the J;, J,, and J, interactions.
The 1x2x1 supercell in Fig. 2(c) and 2x1x1 supercells in
Figs. 2(d) and 2(e) contain the magnetic orders with J;, J», J34,
J3p, and J, interactions. Employing these five supercells and
the 1x 1x 1 supercell with ferromagnetic order, we calculated
the interactions listed in Table IV.

III. EXPERIMENTAL RESULTS

A. Crystal structure refinement

The crystal structure of Na,Mn3Clg is shown in Fig. 1(a),
and comprises of triangular Na*t layers separating kagome
Mn?* layers [18,19]. We performed Rietveld refinements
against our 2 K and 40 K neutron-diffraction data to in-
vestigate the possibility of a crystallographic distortion from
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FIG. 2. The (a) 1x1x2, (b) 1x1x1, (¢c) 1x2x1, and (d),
(e) 2x1x1 supercells with different magnetic orders for calculating
the intralayer and interlayer interactions. The yellow and green balls
represent the Na and Cl atoms. The purple and blue balls denote the
spin-up and spin-down Mn atoms.

the published structure (space group R3m) [Fig. 1(b)]. Good
agreement was obtained with the published structural model
[18] at both temperatures, except for two very weak peaks at
1.64 and 2.16 A~! that were not accounted for, and were un-
changed between 0.3 and 40 K. Since these peaks could not be
explained by simple multiples of the crystallographic unit cell,
or by possible impurity phases (NaCl, MnCl,, or NaMnCls),
we concluded that the sample or its environment contained a
small fraction of unknown impurity. Our results do not show
evidence for any structural phase transition between 2 and
40 K, indicating that the broad ~6 K specific-heat anomaly
reported previously [19] is probably due to magnetic ordering
of a minor NaMnCl; impurity phase (a possibility noted in
Ref. [19]).

Each nearest-neighbor Mn—Mn bond is bridged by a CI1
ion and a Cl2 ion, which provide the nearest-neighbor su-
perexchange pathways. The Mn—Cl1-Mn and Mn—CI2-Mn
bond angles are 92.42° and 94.03°, respectively. Since these
values are close to 90°, the Goodenough-Kanamori rules
predict weak ferromagnetic nearest-neighbor exchange inter-
actions. Further-neighbor interactions have more complicated
pathways and, consequently, are difficult to predict. In par-
ticular, there are two inequivalent third-neighbor exchange
pathways with the same interatomic separation [Fig. 1(c)].

B. Thermomagnetic measurements

Our high-temperature bulk magnetic susceptibility mea-
surements and Curie-Weiss fits are shown in Fig. 3(a). They
reveal an effective magnetic moment of 5.99 ug, close to the
spin-only value of 5.92 ug for Mn*", and a Weiss temper-
ature of By = —4.6(1) K, indicating net antiferromagnetic
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FIG. 3. Overview of bulk magnetic measurements. (a) High-
temperature powder magnetic susceptibility x &~ M/H measured in
applied field of 10 kOe (black squares), and Curie-Weiss fit (red
line). (b) Dependence of magnetization M on applied field H at
temperatures of 1.9, 10, and 50 K (black, blue, and green squares,
respectively). (¢c) Low-temperature magnetic susceptibility measured
in applied fields of 0.1 (black points), 2 (orange points), 10 (blue
points), and 20 kOe (red points). The 0.1 kOe data indicate magnetic
phase transitions at approximately 0.6 and 1.6 K. (d) Dependence of
magnetization M on applied field H at 0.4 K (black squares) and its
field derivative (blue circles).

interactions. Figure 3(b) shows the magnetic-field dependence
of the magnetization, which does not follow the Brillouin
function at low temperatures (< 10 K), in qualitative agree-
ment for theoretical predictions for the kagome lattice [43].
An anomaly is observed at Ty; ~ 1.6 K in our low-
temperature magnetic susceptibility data measured in a small
applied field of 0.1 kOe. This anomaly is suppressed to lower
temperature with increasing applied field, consistent with a
magnetic ordering transition [Fig. 3(c)]. The “frustration pa-
rameter”, f = 6w /Ty, =~ 3, indicates a relatively small degree
of frustration. Since the nearest-neighbor kagome antiferro-
magnet is highly frustrated, this result hints at the presence of
significant further-neighbor couplings or anisotropies; how-
ever, the nature of these couplings cannot be determined
from bulk characterization data alone. Interestingly, and
consistent with Ref. [19], we also observe a second magnetic-
susceptibility anomaly at Ty, ~ 0.6 K [Fig. 3(c)], suggesting
a multi-stage magnetic ordering process. Such behavior is
unusual and hints that, despite the relatively small value of f,
the frustrated topology of the kagome lattice may cause sev-
eral magnetic structures to be nearly degenerate. Figure 3(d)
shows the field derivative of the magnetization, dM/dH, in
the magnetically ordered phase below Ty,. Several anomalies
are observed in dM/dH at small applied fields, suggesting
that the magnetic ground state is fragile to external perturba-
tions. The fine features in dM/dH observed in Fig. 3(d) were
also verified by ac susceptibility measurements as a function

054423-4



MULTIPLE INCOMMENSURATE MAGNETIC STATES IN ...

PHYSICAL REVIEW B 108, 054423 (2023)

R———— _ 10—
Z 0 {2 siv e
‘_O‘ 8' - g LA =
2 : o 0 H10 =
T 6t 1L 1
¥ 4K Nawmo, { =04 | -
~ i i. i & 2 =
D 2 ®ess 0000 (.) -. i

o—— 1 i) B ELLTPPT PPN 1t

0246810 0246 810

T (K) T (K)

FIG. 4. (a) Heat capacity of Na,Mn;Clg, showing an anomaly
at 1.6 K and a shoulder at ~0.6 K. (b) Heat capacity divided by
temperature, C/T (black circles, left axis) and magnetic entropy
change AS(Thax) obtained by integrating C/T from 0.4 K to Tiax
(green circles, right axis). The expected magnetic entropy change of
RIn(2S + 1) is indicated by a green dashed line in (b).

of dc field, which effectively probes the local dM/dH . Similar
behaviors were observed in the ac and dc measurements.

Specific-heat data are shown in Fig. 4(a). An anomaly is
observed at 1.6 K and a shoulder at ~0.6 K, consistent with
the transition temperatures observed in magnetometry and
with Ref. [19]. We observe a weak additional peak near 6.2 K,
but its magnitude is much smaller than reported in Ref. [19],
suggesting that it originates from magnetic ordering of a small
amount of NaMnCl; impurity. Fig. 4(b) shows the heat capac-
ity divided by temperature, C/T, and the magnetic entropy
change AS(T),,x) obtained by integrating C/T from 0.4 K to
Thax- Data for a phonon background are not available but the
phonon (< T3) contribution to C/T is evidently very small
below T < 10 K. For T.,,x = 10 K, the magnetic entropy
change reaches approximately 87% of the expected magnetic
entropy of RIn(2S + 1) per Mn; the shortfall is likely due to
the absence of data below 0.4 K.

C. Overview of neutron data

We performed neutron-diffraction measurements to ob-
tain microscopic insight into the magnetic interactions and
structures of Na,Mn;Clg (see Methods). An overview of the
temperature dependence of our neutron data is shown in
Fig. 5. Several new Bragg peaks appear below Ty; =~ 1.6 K,
most prominently at wave vectors of approximately 0.6 and
1.5 A='. We identify these as magnetic Bragg peaks arising
from the onset of long-range magnetic ordering, since they
appear at the same temperature as the magnetic-susceptibility
anomaly at Ty,. Interestingly, the positions of the magnetic
Bragg peaks suddenly shift at Ty, ~ 0.6 K, revealing that
the second phase transition involves a change in magnetic
propagation vector. At temperatures above Ty;, broad mag-
netic diffuse scattering features can be seen, indicating the
development of short-range magnetic correlations as Ty; is
approached from above. We discuss the Bragg and diffuse
magnetic scattering in Secs. III D and III E, respectively.

D. Magnetic structures from Rietveld refinements

We first discuss possible ordered magnetic structures of
Na;Mn;Clg, as determined by analyzing the magnetic Bragg
profiles obtained at temperatures below Ty;.

N
2.5¢
2F /72_
Lo e}
< 15F 8
S S
1t Tl
0.5F I
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0 0.5 1 1.5 2 0

(K

FIG. 5. Overview of neutron-diffraction data, showing diffrac-
tion intensity in false color as a function of temperature 7" and wave
vector Q. Magnetic ordering at Ty; =~ 1.6 K is indicated by the
appearance of new (magnetic) Bragg peaks, and the magnetic phase
transition at Ty, = 0.6 K is indicated by a change in position of these
peaks. Nuclear peaks, such as the four intense peaks at Q > 1.8 A~!,
do not change position with temperature.

We used the program KSEARCH of the FULLPROF suite
[33,34] to identify possible propagation vectors at 0.3 K
(T < TNZ) and 0.8 K (TNZ <T < TNl)' The pOSitiOI‘lS of 10
magnetic peaks (at 0.8 K) and 15 magnetic peaks (at 0.3 K)
were provided as input, and a systematic search of candidate
propagation vectors q = g.a* + ¢,b* + g,c* was performed,
starting with those that lie on a symmetry point, line, or plane
of the Brillouin zone. However, none of the high-symmetry
propagation vectors was compatible with the observed Bragg
positions, at either temperature. The best-fit propagation vec-
tors were instead of the form (g + 8, g — &, %), with § <
q. We obtain (g, 8) =~ (0.29,0.02) at 0.8 K and (g, 8) =
(0.27,0.06) at 0.3 K; precise values are given in Table II.

TABLE II. Refined values of magnetic-structure parameters for
different single-q models, and corresponding goodness-of-fit metric
Ry,p. The refined parameters are defined in the text.

Na,;Mnj;Clg, magnetic
q = (0.3282(3), 0.2117(3), %) atT =03K
q = (0.3102(4), 0.2646(4), %) atT =0.8K

T(K) Structwe jig(e) fqr (48)  fe (B)  Rup (%)
0.3 sine 1L15(16)  6.02(4) —0.48(22)  25.7
0.8 sine 0.25(18)  5.32(4) —0.86(21) 305
T (K) Structure o () A (%) 0 () Ryp (%)
0.3 qehelix  5.35(6) 0* 0* 37.9
q.chelix  4.85(5) 0* 0* 29.3
abhelix  4.77(5) 0* 0* 28.2
abhelix  4.55(5) 22(2) 0* 27.9
helix 4.84(6) 0* ~35 27.5
0.8 qichelix  4.66(6) 0* 0* 415
q.chelix  4.20(5) 0* 0* 33.0
abhelix  4.23(5) 0* 0* 31.9
abhelix  4.06(5) 91(3) 0* 30.0
helix 4.23(5) 0* <30 31.9
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These propagation vectors lie on a general position, but they
are close to the high-symmetry (g, g, %) plane.

Having determined possible propagation vectors, we used
the program SARAH [44] to identify symmetry-allowed
magnetic structures. The primitive unit cell contains three
Mn?* sites, with fractional coordinates r; = (%, 0, %), =
(0,1, 1), and ry = (4, 4, 1) with respect to the conventional
axes a, b, c. Each site has three magnetic degrees of freedom,
which are not further constrained by symmetry. We choose
these as basis-vector components along orthonormal axes ¢y,
q., &, where ¢ is parallel to the c-axis, qj is parallel to the pro-
jection of q in the ab-plane, and q; = €xqj is perpendicular
to q; and c. These structures are amplitude-modulated spin-
density waves (sine structures), with different spin magnitudes
and orientations for each site,

Moo R) o< (i 1, ) exp(—27iq - R) +cc., ()

where q denotes the propagation vector, R denotes a lat-
tice vector, j € {1, 3} labels sites within the unit cell, and
Hq,» Kq, > He are basis-vector components. Alternatively, it is
possible to construct helical structures such as

Mipeix R) o (1 i) . 0) exp(—2miq - R) +cc..  (3)

where, in this case, the spin plane is perpendicular to the c-
axis. The ordered magnetic-moment length can be identical
on all sites in the crystal in a helical structure, for example if
Mg, = Hq, in Eq. 3).

Due to the relatively large number of variable parameters
and the limitations of powder data, we make two assumptions
when testing candidate magnetic structures. First, we only
consider structures that order with a single propagation vector
(single-q structures). While multi-q structures are possible,
they cannot generally be distinguished from single-q struc-
tures by powder diffraction [45]. Second, we initially assume
that the basis vectors at sites ry, ry, and r3 are parallel; this
assumption is reasonable because the interactions between
nearest and next-nearest neighbors are ferromagnetic, as we
will show in Sec. III E. Magnetic-structure models were tested
against the magnetic Bragg profile using Rietveld refinement
(see Methods). We first considered amplitude-modulated sine
structures. The assumption of parallel basis vectors reduces
the number of refined parameters from 9 to 3. Sine structures
yield excellent agreement with our data at both 0.3 and 0.8 K,
as shown in Figs. 6(a) and 6(e), respectively. The magnetic
moment is predominantly oriented along q, for the corre-
sponding structures, which are shown in Figs. 6(c) and 6(g),
respectively. The refined parameter values and goodness-of-
fit metric Ry, are given in Table II. To determine if sine
structures are physically reasonable, we calculated the max-
imum value of the ordered magnetic moment, max(ilord)-
For a spin-only ion, this value should not normally exceed
2S g (= 5.0 ug for Mn?*). This expectation is confirmed
by the low-temperature magnetization of Na,Mn3Clg, which
saturates to approximately 5ug per Mn>* [Fig. 3(d)]. Un-
fortunately, we find max(iteoq) > 5.0up for the refined sine
structures: max(oq) = 6.15(7) ug at 0.3 K and 5.40(7) ug
at 0.8 K. These values are physically unreasonable, suggesting
that the correct structures of Na,Mn3Clg are not single-q sine
structures.

Circular helices are promising alternative structures, since
all sites have equal magnetic moment lengths. Initially, we
consider circular helices with magnetic moments in either the
qjc plane, the g, ¢ plane, or the ab plane (equivalent to the
q.q plane). At both 0.3 and 0.8 K, the best fit is obtained for
the ab helix, with slightly worse agreement for the q ¢ helix
[Table II]. The qjc¢ helix yields much worse agreement than
the other structures, so we do not consider it further. The fits
for ab helices at 0.3 and 0.8 K are shown in Figs. 6(b) and
6(f), respectively, and the corresponding structures are shown
in Figs. 6(d) and 6(h). The agreement with the data is very
good, although marginally worse than for the corresponding
sine structures. Importantly, however, the refined values of
Word are now physically reasonable, with a maximum value of
4.77(5) up at 0.3 K. This result favors the helical structures.

We tested two variations of the helical structures in an
effort to improve the fit quality. First, we considered the ab
helix and relaxed our previous assumption of parallel basis
vectors, by refining a clockwise rotation A¢ of the basis
vector at position r3 = (%, %, %) about the c-axis. The opti-
mal fit is obtained for relatively small A¢ =~ 20° at 0.3 K,
and substantial A¢ ~ 90° at 0.8 K. Second, we maintain the
assumption that the basis vectors are parallel, but vary the spin
plane as q, (q cos ¢ + ¢sin6). At 0.3 K, a minimum in Ry,
occurs for 6 &~ 35°, whereas at 0.8 K, fit quality is essentially
unchanged for all 6 < 30°. Each of these variations yields a
similar or slightly improved fit compared to the simple ab
helix (see Table II).

Figure 7 shows the temperature evolution of the refined
parameter values for the ab helix with collinear basis vectors.
A discontinuity in the propagation vector is apparent at Ty,
[Fig. 7(a)]. No such anomaly is apparent in the refined value
of the ordered magnetic moment, which increases smoothly
on cooling the sample below Ty [Fig. 7(b)]. The temperature
dependence of this order parameter at low temperatures (7T <
1.2 K) is consistent with the phenomenological form ftoq
1 —cT? for a three-dimensional magnet with half-integer
spin [46]. Its temperature dependence for 1.2 <7 < 1.6 K
is consistent with the critical form for a three-dimensional
Heisenberg magnet, ftorq X (Ty; — 70365, although the small
number of data points precludes fitting the critical exponent.

In conclusion, our powder-diffraction data are well ex-
plained by circular helical magnetic structures. Basis vectors
are close to the ab plane and nearly collinear at 0.3 K, with a
possibility of greater noncollinearity at 0.8 K. We emphasize,
however, that the possibility of multi-q structures cannot be
ruled out, and we discuss this further in Sec. IV B.

E. Magnetic interactions from diffuse scattering

We seek to parametrize the spin Hamiltonian of
Na;Mn;Clg by analyzing the diffuse magnetic scattering
measured above Ty;. This approach is an alternative to a
spin-wave analysis of inelastic neutron-scattering data and has
recently been applied to several frustrated antiferromagnets
[47—-49]. The magnetic diffuse scattering measured at 2 and
5 K (with 40 K data subtracted) is shown in Fig. 8. Diffuse
magnetic peaks are sharper at 2 K than at 5 K, consistent
with an increase in the magnetic correlation length on cooling
the sample. The bulk magnetic susceptibility expressed as
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(a) and helical (b) structures (red lines), and data-fit curves (blue lines). [(c) and (d)] Possible single-q magnetic structures at 7 = 0.3 K,
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FIG. 7. Temperature dependence of refined parameters for the
ab helix structure with collinear basis vectors. (a) Temperature evo-
lution of the magnetic propagation vector (qy, gy, %), showing g,
(red squares) and g, (blue diamonds). (b) Temperature evolution
of the ordered magnetic moment foq (black circles). The solid
green line is a fit to pug, (1 — cT?), where Ly = 4.90(4) pg and
¢ = 0.23(1) K~2. The dotted orange line is a fit to the critical form
for a three-dimensional Heisenberg magnet, m(Ty, — T)%3%, where
Ty = 1.63(1) K and m = 4.3(1) ug.

xT is also shown in Fig. 8 and confirms the development
of antiferromagnetic correlations. To model these data, we
consider a Hamiltonian that includes Heisenberg exchange
interactions and the long-range magnetic dipolar interaction,

Si-S; —3(S; - £;)(S; - £ij)
H==) JSi8+D} (rij/r ) ’

i>j i>j

“

where S; is modeled as a classical vector of magnitude
JS(SF1), S =75/2 is the spin quantum number of Mn>*,
F;j = |r; —r;|/r;; is a unit vector parallel to the separation
of spins i and j, and r} = 3.7124(1) A is the nearest-
neighbor distance. The exchange interactions include the
nearest-neighbor exchange J;, the interlayer coupling J., and
the further-neighbor couplings shown in Fig. 1(c), so that J;; €
{J1, J2, J34, J3p, J.}. The magnitude of the dipolar interaction
at the nearest-neighbor distance, D = ,uo(guB)z/4nrka =
0.0487 K, is determined by the crystal structure. The values
of the exchange interactions were optimized against our 1(Q)
and x T data (see Methods).
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(xT) data. A high-temperature (40 K) data set has been subtracted from the neutron data shown. The models (a)—(c) are described in the main

text, and the parameter values for each fit are given in Table III.

We tested interaction models against our data in order
of increasing number of exchange parameters, as follows.
Unless otherwise noted, the dipolar interaction was fixed
at D =0.0487 K. For each exchange model, the best fit
to I(Q) and xT data is shown in Fig. 8. The refined val-
ues of the exchange interactions are shown in Table III,
along with the goodness of fit metric Ry, and two quanti-
ties estimated from the Onsager-reaction-field calculation that
may indicate model quality: the predicted magnetic order-
ing temperature 7,5 and the predicted magnetic propagation
Vector calc-

First, we considered a minimal model in which only J; and
J. were refined [model (a)]. This model does not represent our
neutron data well [Fig. 8(a)], and the predicted propagation
vector i8S commensurate, in contrast to the incommensurate

propagation vector observed experimentally. Second, we re-
fined J;, J», and J, parameters [model (b)]. This model yields a
substantially improved fit, but some misfit is still evident in the
1(Q) and, especially, the xT data [Fig. 8(b)]. The calculated
propagation vector is now incommensurate, but different to
the experimental one. Third, we refined Ji, J, Ja4, J3p, and
J. parameters [model (c)]. This model yields an excellent
fit to both the /(Q) and x T data [Fig. 8(c)]. Moreover, the
calculated propagation vector, (0.30, 0.30, %), is close to the
experimental value of (0.3102(4), 0.2646(4), %) in the first
ordered state at 0.8 K, and the calculated T]\?alc ~ 1.6 K agrees
with the measured value. This refinement was stable despite
the relatively large number of free parameters; no large pa-
rameter covariances (o0;; > 80%) were noted, and initializing
the refinement with different parameter values yielded only

TABLE III. Refined values of interaction parameters for different models. Interaction parameter values are in K, and assume spins of
magnitude /S(S + 1) with § = 5/2 for Mn*. Positive values indicate ferromagnetic interactions. Parameter values held fixed are indicated

with an asterisk (*).

Ji (K) J> (K) J3a (K) J3 (K) J. (K) D(K) Ry RAT Qeale T (K)
(@  —0.060(3) 0* 0* 0* —0.247(4)  0.0487* 53.0 23 0,0, 2) 1.63
(b) 0.009(5)  —0.073(4) 0* 0* —0.196(6)  0.0487*  28.0 42 (0.56,—0.56,0.56) 1.36
(c) 0.09(1) 0.02(1) —0.28(1) —0.12(2)  —0.06(2)  0.0487* 19.2 2.2 (0.30,0.30, 2) 1.57
(d) 0.16(1) 0.04(1) —0.30(1) —0.13(3)  —0.08(1) 0* 253 2.0 (0.28,0.28, 2) 1.00
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one possible local minimum, which had significantly worse
R'\},ep”“"” = 23.0% and Rég =4.1%.

Our results suggest that model (c) represents well the in-
teractions of Na;Mn;Clg. This model has weak ferromagnetic
Ji, consistent with the Goodenough-Kanamori rules. The in-
terlayer coupling J, is antiferromagnetic, consistent with the
antiferromagnetic layer stacking observed below Ty;. The
third-neighbor couplings J3, and J3, are antiferromagnetic
and significantly larger than J;. Hence, Na,Mn3Clg is an un-
usual system where strong antiferromagnetic third-neighbor
interactions compete with ferromagnetic nearest-neighbor in-
teractions. To the best of our knowledge, a similar J;-J3
competition has been identified in only one other kagome
material, vesignieite [50]. However, this material differs from
Na,;Mn;Clg in its magnetic properties as well as its chemistry,
asithas § = 1/2 and shows commensurate magnetic ordering
[50].

Finally, we considered the relevance of the long-ranged
dipolar interaction by performing a fourth refinement in which
Ji1, J2, J3a, J3p, and J. parameters were varied, while D was
fixed at zero [model (d)]. This refinement yielded worse
agreement with /(Q) and x7T data, and significantly under-
estimates the value of Ty; (Table III). This result shows that
the dipolar interaction has a significant effect on the magnetic
properties, as expected since D is of comparable magnitude to
the exchange interactions. However, the refined values of all
parameters except J; are equivalent (within 1o) for models (c)
and (d), suggesting that the effect of the dipolar term on these
refinements is largely confined to nearest neighbors.

IV. THEORY AND MODELING
A. Magnetic interactions from first principles

To gain insight into the exchange interactions, we per-
formed first-principles calculations using density-functional
theory (see Methods). The values of the interactions calcu-
lated using DFT are given in Table IV for different values of
the Hubbard U between 0 and 5.25 eV. Based on other mate-
rials, we anticipate that U is likely between 4 and 5.25 eV.

The first-principles exchange interactions show similarities
with the experimentally determined values, but also substan-
tial differences. On the one hand, the first-principles values
of J; and J, are ferromagnetic and antiferromagnetic, re-
spectively, consistent with the values fitted to experimental
data. The magnitudes of J; and J, for U = 5.25 eV are also
comparable to the experimentally determined magnitudes, in
contrast to a previous DFT study that reported interactions
larger than 30 K [20]. On the other hand, the first-principles

TABLE IV. Values of interaction parameters obtained from
density-functional theory simulations for different values of the Hub-
bard U.

Uey) Ji(K) J2 (K) S0 K) I3 (K) Je (K)
0 0.516 —1.321 0.801 1.045 —0.040
2.00 0.288 —0.745 0.525 0.591 —0.029
4.00 0.194 —0.507 0.411 0.406 —0.024
5.25 0.163 —0.430 0.377 0.346 —0.023

values of J,, J3,, and J3;, are opposite to the experimentally de-
termined values; moreover, the calculated magnitudes of these
interactions are very large compared to the other interactions.

We carefully checked whether the first-principles results
could be consistent with our experimental data. Taking U =
5.25 eV, we calculate the Weiss temperature as Oppr =
%S(S + DIy + o+ Je + J30 + J3,/2] = 3.0 K. Hence, DFT
predicts a ferromagnetic Weiss temperature, which is not
consistent with the antiferromagnetic value [0 = —4.6(1) K]
measured experimentally. We also estimate the magnetic or-
dering temperature to be 4.8 K, which is much larger than
the experimental value of 1.6 K. Finally, we performed ad-
ditional refinements to neutron and x7 data as described in
Sec. IITE, except we constrained the signs of the exchange
interactions to be the same as those from DFT, while allowing
their magnitudes to refine freely. These refinements yielded
J3q = J3p = 0, essentially reproducing the results of model (b)
in Sec. IIIE.

We therefore conclude that the DFT results are not fully
consistent with our experimental data, making Na,Mn;Clg
a model material for benchmarking developments in first-
principles calculations. The reason for the inaccuracy of the
DFT exchange interactions beyond nearest-neighbors is not
yet clear. As discussed in the Methods, we checked the effect
of spin-orbit coupling, and found it to be negligible in our
calculations. An interesting possibility is that the discrep-
ancy may relate to the neglect of the Stoner coupling on the
ClI ligand sites, as recently proposed in the related material
NaMnCl; [51].

B. Origin of incommensurate ordering

In this section, we discuss the origin of the multiple in-
commensurate ordering transitions in Na,Mn3Clg, using a
combination of field-theoretic and Monte Carlo simulations.

Incommensurate magnetic structures are relatively uncom-
mon in kagome antiferromagnets. For example, to the best
of our knowledge, all known jarosite minerals that exhibit
long-range order have either (0,0,0) or (0,0, %) propaga-
tion vectors (see Ref. [52] and references therein). Similarly,
commensurate states are observed for many other insulat-
ing materials in which the kagome lattice is undistorted
or slightly distorted; for example, MgFe;(OH)sCl, with
q=1(00,0, %) [53], centennialite CaCus(OH)4Cl, - 0.6H,O
[54], CdCu3(OH)e(NO3), - 0.6H,O [55], Nd3SbsMg,014
[56], and Sr-vesignieite SrCus; V,0g(OH), with q = (0, 0, 0),
a-CusMg(OH)¢Br, [57] and YCu3(OH)¢Cl; with q =
0,0, %) [58], and Ba-vesignieite BaCu3;V,03(OH), with
q= (%, 0, 0) [50,59]. By contrast, the distorted-kagome ma-
terial Ba,Mn3F;; is one of the only insulating kagome
materials with incommensurate magnetic ordering [60]. In-
commensurate modulations are more frequently observed
in metallic kagome systems, such as TbsRusAlj, [61] and
YMngSng, the latter of which undergoes a commensurate-to-
incommensurate transition on cooling [62].

To understand the preference for kagome magnets to form
commensurate structures, and the conditions where incom-
mensurate structures may appear, we use the reciprocal-space
mean-field approximation introduced in Sec. IIC to inves-
tigate the stability of different phases as a function of the
interactions Jy, J3,, J3p, and J, [Fig. 1(c)]. Throughout large
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and IC2 = (0, g, r). Note that the interlayer coupling J. is antiferromagnetic for all phase diagrams, and the nearest-neighbor coupling J; is

ferromagnetic for (b)—(e).

regions of this interaction space, the classical ground state
is one of the commensurate “regular magnetic orders” de-
scribed in Ref. [15]. Of the models previously investigated
theoretically, the most relevant one to Na;Mn3Clg is the J;-J3,
Heisenberg model studied in Refs. [16,17]. The phase dia-
gram for this model is shown in Fig. 9(a), and contains five
phases: ferromagnetic layers with antiferromagnetic stacking
[q =(0,0, %)], q = 0 antiferromagnet, V/3x+/3 antiferro-
magnet [q = (%, % %)], three-sublattice antiferromagnet [q =
(0, % %)], and an incommensurate region. This result repro-
duces the result of Ref. [16] for isolated kagome planes,
except that we include a small antiferromagnetic interlayer
coupling J. — 07 to stabilize three-dimensional ordering.

While the J;-J3, phase diagram is relatively complicated, it
is nevertheless simpler than our model for Na;Mn;Clg, which
also includes significant J,, J35, and dipolar couplings. We
therefore extended the J;-J3, phase diagram to consider the
effects of these additional couplings, which are needed for
a full description of our Na,Mn3;Clg data. Notably, for all
models, antiferromagnetic J3, is necessary to stabilize incom-
mensurate ordering with q = (q, ¢q, %). In Fig. 9(b), we fix
ferromagnetic J; = 1 and consider the phase diagram in the
J34-J3p plane for antiferromagnetic J. — 0. Nonzero J3;, has
a dramatic effect on the phase diagram; in particular, includ-
ing antiferromagnetic J3, extends the stability region of the
incommensurate phases observed for antiferromagnetic J3,.
Figures 9(b)-9(d) show the effect of increasing the magnitude
of J., the antiferromagnetic interlayer coupling (J. — 07,
—0.15, and —0.65, respectively, in the same units as J;). The
effect of increasing |J.| is to increase further the region of
phase space in which incommensurate order is stable within
the mean-field approximation. Finally, in Fig. 9(e), we show
the J3,-J3, phase diagram including the long-range dipolar
interaction D/J; ~ 0.55 appropriate for Na,Mn3Clg. The in-
clusion of D has a relatively small effect on the positions of
the phase boundaries.

The reciprocal-space mean-field theory provides a useful
overview of the phase space, but has several important limita-
tions. First, for a non-Bravais lattice such as kagome, it only
determines a lower bound on the energy of the ground state.
As discussed in Ref. [16], for the incommensurate region

of the Ji-J3, phase diagram, a physical spin configuration
could not be identified that reached this lower bound; hence,
the actual magnetic ground state is uncertain in this region.
Second, since this theory considers instabilities of the param-
agnetic phase, it predicts only the propagation vector of the
first ordered state that develops on cooling; it provides no
information about the possibility of multiple phase transitions,
as are observed experimentally in Na,Mn3Cls.

We performed classical Monte Carlo simulations to
address these limitations. Since the periodicity of an in-
commensurate magnetic structure does not “fit” within any
finite-sized configuration, finite-size artifacts are encountered,
which can be reduced by studying relatively large system
sizes. However, the long-ranged nature of the magnetic dipo-
lar interaction makes large system sizes computationally
expensive. We therefore consider first an approximation to the
full Hamiltonian, Eq. (4), where we simulate the parameters
that best describe our diffuse-scattering data [model (c) in
Table III], but truncate the dipolar interaction D at the nearest-
neighbor distance; we will call this the “nearest-neighbor
dipolar model.” For comparison, we also simulated the same
model (c) except with D = 0. To identify finite-size effects,
we considered different system dimensions from 10x10x4
hexagonal unit cells (3600 spins) to 20x20x8 hexagonal
unit cells (28800 spins). For the 10x10x4 and 20x20x8
simulations only, we slightly adjusted the model (c) interac-
tion parameters to stabilize q = (%, 13—0, %) ordering, which
is commensurate with the system size; this was achieved by
multiplying the best-fit values of J3, and J3;, by 0.936. To in-
vestigate the effect of a different system geometry, we defined
a orthogonal unit cell with axes a, = a, b, = a + 2b, and
¢, = ¢, and performed simulations of 12x6x4 and 18x9x6
orthogonal unit cells (5184 and 17496 spins, respectively).
Simulations were run for up to 4.1x 10% moves per spin at low
temperatures, where a single move involved one microcanon-
ical (over-relaxation) update followed by a proposed spin
rotation of a randomly chosen spin, which was accepted or
rejected according to the Metropolis criterion. Measurements
of the autocorrelation function showed that these conditions
allowed the system to decorrelate at all temperatures above
0.1 K. Simulations including the long-ranged dipolar inter-
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FIG. 10. (a) Magnetic specific heat calculated from Monte Carlo
simulations of the exchange parameters of model (c) in Table III,
taking the dipolar interaction D = 0. Experimental data are also
shown for comparison. Successive curves are vertically offset by 0.4
units for clarity. (b) As (a), except the dipolar interaction is included,
either for all neighbors (green triangles) or for nearest neighbors only
(all other points). The simulated system sizes are as shown in the key
in (a). (c) Magnetic diffraction patterns at 7 = 1.4 K, showing cal-
culated powder diffraction profile from Monte Carlo simulation (red
line, left), experimental powder-diffraction data (black circles, left),
and calculated single-crystal diffraction pattern from Monte Carlo
simulation (grayscale plot, right). (d) As (c), except at T = 1.0 K.
(e) As (c), exceptat T = 0.3 K.

action, implemented using Ewald summation [63], were also
performed for a small system size of 10x6x4 orthogonal unit
cells, without over-relaxation updates.

Results of our Monte Carlo simulations are compared with
our experimental data in Fig. 10. For the model with D = 0,
a sharp specific-heat anomaly indicating a single magnetic
phase transition is observed at ~0.9 K [Fig. 10(a)]; we do
not consider the low-temperature state here. The nearest-
neighbor dipolar model shows a more complex temperature
evolution [Fig. 10(b)]. In all our simulations, sharp specific

heat anomaly is observed at 0.9 K, with a second feature
between 1.3 and 1.6 K that is resolved as either a single
broadened peak or two peaks close in temperature, depend-
ing on system dimensions. Hence, unlike the Heisenberg
model, the nearest-neighbor dipolar model shows at least two
magnetic phase transitions, in qualitative agreement with the
experimental data for Na,Mn3Clg. Properties of the magnetic
phases obtained for a model of 18x9x6 orthogonal unit
cells are shown at 1.4, 1.0, and 0.3 K, in Fig. 10(c)-10(e)
respectively. The phases observed at 1.0 and 0.3 K are re-
solved for all other system sizes and geometries. However,
the 1.4 K phase is not resolved in the 20x20x8 simula-
tion, suggesting its appearance for some other system sizes
may be a finite-size artifact. The calculated magnetic powder
diffraction patterns show remarkably good agreement with
our experimental powder-diffraction data, especially at 1.4
and 1.0 K [Figs. 10(c)-10(e)]. Calculations of the single-
crystal magnetic diffraction patterns reveal magnetic Bragg
peaks corresponding to a single incommensurate wave vec-
tor at 1.4 K, indicating a single-q magnetic structure at this
temperature [Fig. 10(c)]. Remarkably, however, the same cal-
culation shows magnetic Bragg peaks corresponding to two
wave vectors at 1.0 and 0.3 K. The intensity of each wave vec-
tor is approximately equal at 1.0 K but significantly different
at 0.3 K [Figs. 10(d) and 10(e)]. The same effect was observed
across all our simulations at 1.0 and 0.3 K, suggesting this
is likely not an artifact due to domain formation, but instead
indicates the formation of double-q states in the Monte Carlo
simulations. Our simulations of the long-ranged dipolar model
also suggest possible changes in magnetic structure below ap-
proximately 1.0 K, although further transitions are not clearly
resolved in the heat capacity for this small simulation size
[Fig. 10(b)]. For this model, the magnetic structure is clearly
2-q only below 1.0 K.

Our results suggest the enticing possibility that the ordered
incommensurate states may, in fact, be multi-q structures
rather than single-q helices. Given the good agreement of
our microscopic model with powder-diffraction data and its
correct prediction of multiple phase transitions, this scenario
is certainly possible. Further theoretical studies including the
long-ranged dipolar interaction would be useful to elucidate
the relative stabilities of single-q and multi-q states, which
may be close in energy.

V. CONCLUSIONS

Our neutron-diffraction study reveals that Na,Mn;Clg
shows novel magnetic behavior. Unusually for a kagome
antiferromagnet, it shows incommensurate ordering; even
more unusually, it exhibits multiple incommensurate magnetic
phases, which form at 1.6 and 0.6 K. To the best of our
knowledge, ordering wave vectors of the form (gy, g,, %), as
observed in Na;Mn;Clg, have not previously been observed
in insulating kagome magnets. As such, Na,Mn3Clg signifi-
cantly expands the known range of magnetic behavior on the
kagome lattice.

We investigated the magnetic interactions that drive incom-
mensurate ordering in Na;Mn3Clg using experiment-driven
and first-principles approaches. By fitting the magnetic diffuse
scattering measured above the magnetic ordering temperature,
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we showed that the magnetic interactions extend to third-
nearest neighbors. Antiferromagnetic third-neighbor interac-
tions J3, and J3;, are the largest terms in the Hamiltonian, and
compete with ferromagnetic nearest-neighbor interactions J;.
Using a mean-field theory, we showed that antiferromagnetic
J3q, J3p, and interlayer couplings extends the stability region
of incommensurate ordering in a model with ferromagnetic J;.
Our experimentally determined interactions could not be fully
reproduced by DFT calculations, which predict ferromagnetic
Js, and J3p, inconsistent with our experimental data. This
material may therefore be a useful test case for advancements
in first-principles methodologies.

Using magnetic Rietveld refinement, we showed that the
magnetic Bragg profiles of the two incommensurate magnetic
phases are well described by single-q helical structures. These
are cycloidal helices, in which the spins and the propagation
vector q both have a component in the ab plane. Due to the
limitations of powder data, however, other structures can give
equivalent or slightly better agreement with the experimental
pattern. We showed that single-q sine structures are highly
unlikely at 0.8 and 0.3 K, since some sites would have un-
physically large magnitudes of the ordered magnetic moment.
However, we were not able to rule out multi-q structures,

which are generally indistinguishable from their single-q
analogs in powder diffraction measurements. This issue is
especially relevant here, because Monte Carlo simulations of
our experimentally determined interaction model show multi-
ple magnetic phases transitions, in qualitative agreement with
the experimental data, and indicate that two of the phases
obtained are 2-q states. Further experiments would therefore
be valuable to distinguish between single-q and double-q
states. These experiments could include single-crystal neutron
diffraction under applied magnetic field, or inelastic neutron
scattering. The growth of large single crystals of Na,Mn3Clg
would facilitate such measurements and potentially shed fur-
ther light on the nature of the spin texture in Na,Mn3Clg.
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