
PHYSICAL REVIEW B 108, 054411 (2023)
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anisotropy energy of L10-type ordered alloys
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We present a finite-temperature second-order perturbation method incorporating spin-orbit coupling to investi-
gate the temperature-dependent site-resolved contributions to the magnetocrystalline anisotropy energy (MAE),
specifically K1(T ), in FePt, MnAl, and FeNi alloys. Our developed method successfully reproduces the results
obtained using the force theorem from our previous work. By employing this method, we identify the key sites
responsible for the distinctive behaviors of MAE in these alloys, shedding light on the inadequacy of the spin
model in capturing the temperature dependence of MAE in itinerant magnets. Moreover, we explore the lattice
expansion effect on the temperature dependence of on-site contributions to K1(T ) in FeNi. Our results not only
provide insights into the limitations of the spin model in explaining the temperature dependence of MAE in
itinerant ferromagnets but also highlight the need for further investigations. These findings contribute to a deeper
understanding of the complex nature of MAE in itinerant magnetic systems.

DOI: 10.1103/PhysRevB.108.054411

I. INTRODUCTION

The magnetocrystalline anisotropy energy (MAE) is an im-
portant characteristic of magnetic materials because it governs
the coercivity. Rare-earth permanent magnets are examples
of magnets with a high coercivity and are used for many
modern applications. Recently, however, the development of
rare-earth-free magnets has been accelerating to avoid the use
of expensive rare-earth elements. L10-type transition-metal
alloys such as FeNi are examples of rare-earth-free high-
performance permanent magnets [1]. Generally, coercivity has
a strong temperature dependence; thus, we need to understand
the temperature dependence of the MAE for the develop-
ment of high-performance transition-metal magnets at finite
temperatures.

The MAE for the uniaxial crystal EMAE(T, θ ) is usually
expressed as follows,

EMAE(T, θ ) = K1(T ) sin2 θ + K2(T ) sin4 θ + · · · , (1)

where K1(T ) and K2(T ) are the anisotropy constants. How-
ever, the theoretical description of the temperature depen-
dence of the MAE remains controversial. In localized electron
systems, for instance, 4 f electron systems such as permanent
magnets, theories based on the localized spin model combined
with the crystal field theory have been well established [2–8].
The Callen-Callen power law [9–12] is a line of these theo-
ries that can describe the temperature dependence of K1(T )
and K2(T ). In contrast, the cases of transition-metal magnets,
which are treated as itinerant electron systems, are debatable.
At 0 K, the mechanism of the MAE in the itinerant elec-
trons systems, particularly K1(0), can be explained by the
second-order perturbation formula in terms of the spin-orbit
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coupling (SOC) according to the tight-binding model [13–18].
However, finite-temperature expressions for the MAE based
on the band theory are not available yet. This is because the
band theory is based on the mean-field theory and cannot
describe the spin-transverse fluctuations directly. One of the
ways to describe the spin fluctuation based on the itinerant
electron theory is the functional integral method [19–24].
This method is usually combined with the coherent potential
approximation (CPA). In this approach, the spin fluctuation
can be expressed by random spin states with respect to its
direction, which are called disordered local moment (DLM)
states. First-principles calculations based on this scheme have
been performed by several authors [25–29] to investigate the
finite-temperature magnetic properties of magnetic materials
as pioneering works. Subsequently, the temperature depen-
dences of the MAE, transport properties, and Gilbert damping
constants in the itinerant electron systems were investigated
via the DLM-CPA method and the density functional theory
[30–38], along with model calculations [39–41]. In particular,
the temperature dependence of the MAE for L10-type alloys
has been calculated by several authors [30–32,35]. Recently,
we calculated the temperature dependence of the MAE for
L10-type FePt, MnAl, and FeNi using the DLM-CPA method
[35]. The calculation results for FePt and MnAl indicated
that the MAE decreases with an increase in the temperature.
However, the calculated MAE for FeNi exhibited a unique
behavior. It did not decrease monotonically with an increase
in the temperature; rather, it exhibited plateaulike behavior
in the low-temperature region. This behavior is similar to
that of Y2Fe14B [34,42,43], for which the mechanism of the
temperature dependence of the MAE has been controversial.

In the present study, to analyze these behaviors, we de-
compose the MAE of these alloys at finite temperatures into
on-site and pair contributions using the second-order pertur-
bation (SOP) method in terms of the SOC. In this method, we
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can extend the formula to describe K1(0) in the tight-binding
model [13–18] to the finite-temperature expression K1(T ).

II. CALCULATION DETAILS

To develop the finite-temperature SOP formula, we use
the tight-binding linearized muffin-tin orbital (TB-LMTO)
method [44–48] with the atomic sphere approximation com-
bined with the DLM-CPA method. First, in the DLM-CPA
method, we need to calculate a distribution function ω({e}, T )
representing the probability with which the spin vectors are
directed to {e} at temperature T . In this work, we adopt the
single-site approximation; thus, ω({e}, T ) is decoupled into
the simple product of the probability at each site ωi(ei, T ) as
follows:

ω({e}, T ) =
∏

i

ωi(ei, T ). (2)

In a previous work, ωi(ei, T ) was evaluated using the analogy
of the Weiss field [28,30–32]. However, in this work, we
determine ωi(ei, T ) by evaluating the effective grand potential
�eff({e}, T ) of electrons. Here, we explain the calculation of
�eff({e}, T ) and ωi(ei, T ). First, we introduce the Green’s
function including the spin-transverse fluctuation at finite
temperatures in the TB-LMTO method G(z, {e}) [35–38] as
follows,

Gi j (z; {e}) = λ
β
i (z; ei )δi j + μ

β
i (z; ei )g

β
i j (z; {e})μ̄β

j (z; e j ), (3)

where z and gβ
i j (z; {e}) are E + iδ and an auxiliary Green’s

function including spin fluctuation, respectively. λ
β
i (z; ei ) and

μ
β
i (z; ei ) are given as follows,

λ
β
i (z; ei ) = [�i(ei )]

−1/2{1 + [γi(ei ) − β]Pγ
i (z; ei )}[�i(ei )]

−1/2,

(4)

μ
β
i (z; ei ) = [�i(ei )]

−1/2
[
Pγ

i (z; ei )
]−1

Pβ
i (z; ei ), (5)

μ̄
β
i (z; ei ) = Pβ

i (z; ei )
[
Pγ

i (z; ei )
]−1

[�i(ei )]
−1/2, (6)

where

�
−1/2
i (ei ) = U †(ei )(�i )

−1/2U (ei ), (7)

[
Pγ

i (z; ei )
]−1 = U †(ei )

[
Pγ

i (z)
]−1

U (ei ), (8)

γi(ei ) = U †(ei )(γi )U (ei ), (9)

Pβ
i (z; ei ) = U †(ei )P

β
i (z)U (ei ), (10)

Pβ
i (z) = Pγ

i (z)
{
1 − [β − γi]P

γ
i (z)

}−1
, (11)

Pγ
i (z) = (�i)

−1/2[z − Ci](�i )
−1/2. (12)

Here, γi, �i, and Ci are called potential parameters in the
TB-LMTO method. The β values are summarized in sev-
eral papers [37,46,47]. In this work, we neglect the SOC to
calculate the �eff({e}, T ) and ωi(ei, T ). The effective grand

potential of electronic part is expressed as

�eff({e}, T ) ∼ 1

π

∫
dε f (ε, T, μ)

∫ ε

−∞
dE Im Tr G(z; {e})

= − 1

π

∫
dε f (ε, T, μ)Im[Tr log λβ (ε+; {e})

+ Tr log gβ (ε+; {e})], (13)

where f and μ represent the Fermi-Dirac function and the
chemical potential, respectively. The trace is taken over with
respect to sites i, orbitals L, and spin indices σ . From here,
we expand gβ (ε+; {e}) with the auxiliary coherent Green’s
function ḡβ (z), which is defined as follows,

ḡβ (z) = [P̄(z) − Sβ]−1, (14)

where Sβ is given as

Sβ = S(1 − βS)−1. (15)

S is a bare structure constant matrix [45]. The auxiliary
Green’s function gβ (ε+; {e}) is expanded as follows,

gβ (z; {e}) = ḡβ (z)(1 + �P(z; {e})ḡβ (z))−1, (16)

where

�P(z; {e}) = Pβ (z; {e}) − P̄(z), (17)

and P̄ is a coherent potential function. We also need to obtain
P̄ in a self-consistent manner (explained later). Using Eq. (16),
Eq. (13) can be rewritten as follows:

�eff({e}, T ) = − 1

π

∫
dε f (ε, T, μ)Im{Tr log λβ (ε+; {e})

+ Tr log ḡβ (z) − Tr log[1 + �P(z; {e})ḡβ (z)]}.
(18)

By taking the trace with respect to site i, the grand potential
can be expressed as follows [37],

�eff({e}, T ) = �0 +
∑

i

��i(ei, T ), (19)

��i(ei, T ) = 1

π
Im

∫
dE f (E , T, μ)TrLσ

× log
[
1 + �Pi(z; ei )ḡ

β
ii(z)

]
. (20)

Here, we used the fact that the {e} dependence of λβ (ε+; {e})
vanishes in our case. Therefore, ωi(ei, T ) can be expressed as
follows,

ωi(ei, T ) = exp [−��i(ei, T )/kBT ]

/ ∫
dei

(21)× exp[−��i(e′
i, T )/kBT ],

where kB is the Boltzmann constant. Finally, we need to deter-
mine the converged ωi(ei, T ) and P̄(z) self-consistently. The
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CPA condition to determine P̄(z) is given as∫
dei ωi(ei, T )�Pi(z; ei )

[
1 + �Pi(z; ei )ḡ

β
ii(z)

]−1 = 0. (22)

We use Eqs. (14), (17), and (20)–(22) to obtain P̄i and the
converged ωi(ei, T ) in a self-consistent manner.

Once we obtain the converged ωi(ei, T ), we can calculate
the SOP formula at finite temperatures as follows,

δE2nd(T, n) = − 1

2π

∑
i j

Im TrLσ

∫ ∞

−∞
dE f (E , μ, T )

×〈
Gi j (z; {e}, n)H soc

j G ji(z; {e}, n)H soc
i

〉
{ωi (ei,T )},

(23)

where H soc and n represent the spin-orbit Hamiltonian and
the magnetization direction, respectively. Similar expressions

were used in several works [41,49]. 〈· · · 〉 denotes the average
over {e} with a weight of ωi(ei, T ), which is given as follows:

〈· · · 〉{ωi (ei,T )} =
∏

i

∫
dei ωi(ei, T )(· · · ). (24)

The rotation of the magnetization direction is expressed with
the SO(3) rotation matrices R(n) as follows [35,50,51],

Sl1l2
m1m2

(n) =
∑
m3m4

Rl1∗
m3m1

(n)Sl1l2
m3m4

Rl2
m4m2

(n), (25)

where ∗ denotes the complex conjugate. We substitute
Eq. (25) into Eq. (14) to express the rotation of the direction
of magnetization.

We can decompose Eq. (23) into on-site E2nd
ii and pair E2nd

i j
contributions as follows:

E2nd
ii (T, n) = − 1

2π
Im TrLσ

∫
dei ωi(ei, T )

∫ ∞

−∞
dE f (E , T, μ)

{
H soc

i

[
λ

β
i (z; ei ) + μ

β
i (z; ei )ḡ

β
ii(z, n)ξi(z; ei, n)μ̄β

i (z; ei )
]

×H soc
i

[
λ

β
i (z; ei ) + μ

β
i (z; ei )ḡ

β
ii(z, n)ξi(z; ei, n)μ̄β

i (z; ei )
]}

, (26)

E2nd
i j (T, n) = − 1

2π

∑
k

ImTrLσ

∫
dei ωi(ei, T )

∫
de′

jω j (e′
j, T )

∫ ∞

−∞
dE f (E , T, μ)

{
H̃ soc

i χik (1 − �χ )−1
k j H̃ soc

j

}
. (27)

Here, we introduce ξi(z; ei, n), ξ̃i(z; ei, n), H̃ soc
i , �, and χ ,

which are given as follows,

ξi(z; ei, n) = [
1 + �Pi(z; ei )ḡ

β
ii(z, n)

]−1
, (28)

ξ̃i(z; ei, n) = [
1 + ḡβ

ii(z, n)�Pi(z; ei )
]−1

, (29)

H̃ soc
i = ξi(z; ei, n)μβ

i (z; ei )H
soc
i μ̄

β
i (z; ei )ξ̃i(z; ei, n), (30)

�i(z, T, n) =
∫

dei ωi(ei, T )
[
�Pβ

i (z; ei )ξ̃i(z; ei, n)
]

× [
�Pβ

i (z; ei )ξ̃i(z; ei, n)
]
, (31)

χi j (z, n) = ḡβ
i j (z, n)ḡβ

ji(z, n)(1 − δi j ). (32)

For evaluating pair contributions, we expand the Green’s func-
tion including the spin fluctuation with the T matrix to include
the vertex correction terms. Details regarding the derivation
of the vertex correction terms are provided in several papers
[38,52,53].

In practical calculations, we neglect the Fermi-Dirac dis-
tribution function in Eqs. (26) and (27). This does not cause
serious numerical errors. In the present study, the K1(T ) part
of the MAE at finite temperatures is defined as follows:

K1(T ) ∼
∑

i j

[
E2nd

i j (T, θ = π/2) − E2nd
i j (T, θ = 0)

]
. (33)

Using Eqs. (26) and (27), we can investigate the site-resolved
contributions in K1(T ) and its temperature dependences. For
calculation details, the lattice constants of each alloy were
set to a = 2.729 Å, c = 3.706 Å, a = 2.779 Å, c = 3.56 Å,
and a = 2.518 Å, c = 3.561 Å for FePt, MnAl, and FeNi,

respectively, as same as our previous work [35]. The self-
consistent calculations to prepare the potential functions were
performed with 25 × 25 × 25 k points in the full Brillouin
zone by using the local spin density approximation. The
DLM calculations to prepare ωi(ei, T ) were performed with
15 × 15 × 15 k points. The SOP calculations were performed
with 50 × 50 × 50 k points.

III. RESULTS AND DISCUSSIONS

To examine the accuracy of the developed method, let us
first investigate how the SOP method can reproduce the MAE
obtained via the force theorem (FT) in our previous work [35].
Figure 1 shows the MAE calculated using the FT and the SOP
method for FePt, MnAl, and FeNi. Small differences between
the results of the two methods are observed for FePt and FeNi,
whereas little difference is observed for MnAl. For MnAl, the
good agreement is reasonable, considering that the SOC of
this system is far weaker than those of FePt and FeNi. From
this viewpoint, the origin of the larger difference for FeNi
compared with FePt is not simple, because the SOC in FeNi is
weaker than that in FePt. This may suggest the peculiar K1(T )
behavior of FeNi, which will be discussed later. In total sum-
mary, the qualitative behaviors of the temperature dependence
of the MAE in the previous work can well be reproduced by
the SOP method focusing on K1(T ). The difference between
the FT and the SOP method may arise from the higher-order
perturbation term, which contributes to K2(T ).

The total on-site and pair contributions to K1(T ) are also
shown in Fig. 1. For FePt, on-site and pair contributions have
opposite signs for the whole temperature region. The on-site
contribution is suppressed by the pair contribution, which
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FIG. 1. Temperature dependence of the total K1(T ) calculated
via the developed finite-temperature SOP method including vertex
correction terms for (a) FePt, (b) MnAl, and (c) FeNi, which are
indicated by green lines. For comparisons, the results calculated
using the FT reported by Yamashita et al. [35] are shown as black
lines. In addition, the total on-site and total pair contributions are
shown as red and blue lines, respectively.

leads to uniaxial anisotropy of K1(T ). For MnAl, K1(T ) is
mostly dominated by the on-site contribution. The pair con-
tribution makes a small correction to the K1(T ). In this case,
both contributions have a positive sign.

For FeNi, the on-site and pair contributions have similar
amplitudes, whereas the signs are opposite, as in the case of
FePt. In addition, the peculiar behavior that K1(T ) exhibits a
plateau in the low-temperature region is found to be due to the
cancellation of the variations of the total on-site and total pair
terms with the temperature change.

We stress here that even though the crystal structures are
the same for these alloys, the alloys differ with regard to
the breakdown of these SOP results into on-site and pair
contributions. In particular for FePt and MnAl, despite the
similar behavior of the temperature dependence of the total
K1(T ), the on-site and pair contributions differ significantly.
Furthermore, comparing FePt and FeNi reveals that the tem-
perature dependences of on-site and pair contributions differ
significantly between these two alloys. These characteristics
of the K1(T ) of each alloy can be recognized via the present
SOP theory at finite temperatures, which we believe is one
of the advantages of this approach. It is worth mentioning
that the calculated Curie temperatures are 920, 970, and
1220 K for FePt, MnAl, and FeNi, respectively. The exper-
imental values are 750 K [54] and 653 K [55,56] for FePt
and MnAl, respectively. For FeNi, the Curie temperature is
estimated over 823 K [1,57]. Calculated Curie temperatures
are overestimated compared with the experimental results.
This might attribute to the single-site approximation, which
neglects the spatial correlation of spin-transverse fluctuations.
For the K1 value of FePt, according to Okamoto et al. [54],
5.0 MJ/m3 was shown at room temperature (extrapolated
value for ordered alloy). Our SOP result for FePt corresponds
to about 6.8 MJ/m3 at 300 K. For MnAl, Nie et al. [58]
showed 1.4 MJ/m3. Our result for MnAl is about 2.1 MJ/m3

at 0 K.
Here, to investigate the characteristics of the temperature

dependence of K1(T ) in the itinerant electron magnets, we
compare those results with the results expected from the spin
model. The Hamiltonian is given by the XXZ model [35,59–
61] as follows,

H = −
∑
(i, j)

2Ji j �Si · �S j −
∑
(i, j)

Di jS
z
i Sz

j −
∑

i

Di
(
Sz

i

)2
, (34)

where �Si, Ji j , Di, and Di j are a classical spin vector, an
exchange coupling constant, a single-site anisotropy coeffi-
cient, and a two-site anisotropy coefficient, respectively. As
presented in our previous work [35], analysis with this model
requires Di > 0 and

∑
j Di j > 0 for FePt and MnAl and

Di < 0 and
∑

j Di j > 0 for FeNi to reproduce the tempera-
ture dependence of the total MAE. However, if one naively
assumes that the Di and Di j terms correspond to on-site and
pair contributions, respectively, at first glance, the signs of the
terms in the XXZ model used in the previous work are not
consistent with the results in Fig. 1, except for the case of
MnAl. This mismatch originates from the fact that the tem-
perature dependences of the MAE from the Di and Di j terms
in the XXZ model behave as approximately ∝M3(T ) [11,12]
and ∝M2(T ) [59], respectively, regardless of the signs and
amplitudes of the parameters Di and Di j , whereas those of the
on-site and pair terms in the SOP method do not necessarily
follow such simple rules but exhibit various behaviors depend-
ing on the system. For this reason, to reproduce the peculiar
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behavior of the total MAE of FeNi, the XXZ model has no
other choice than to set Di < 0 and

∑
j Di j > 0; however, the

on-site and pair contributions can produce such behavior with
opposite signs from the XXZ model. Thus, the results in Fig. 1
imply that the spin model is too simple and is insufficient to
express the temperature dependence of the MAE of itinerant
magnets.

To examine each contribution in detail, we decompose
the SOP results into each on-site and pair contribution. The
breakdown of these contributions is shown in Fig. 2 for all the
alloys. For FePt, the results are shown in Fig. 2(a). The total
on-site contribution in FePt is mostly from Pt, and the Fe con-
tribution is far smaller. In addition, it is found that the negative
contribution of the total pair term in Fig. 1(a) mainly comes
from the Fe-Pt pair, and it is suppressed by the positive con-
tribution from Pt-Pt pairs. This leads to a negative total pair
contribution. In this alloy, the on-site and pair contributions
related to Pt significantly affect the temperature dependence
of K1(T ). The results for MnAl in Fig. 2(b) indicate that all
the contributions are positive and that the situation regarding
the total on-site term is similar to that for FePt. It is mostly
dominated by the Mn on-site contribution. The second-largest
contribution is the Mn-Mn positive pair contribution, and the
other contributions are negligible. Thus, the on-site and pair
contributions of Mn determine the temperature dependence of
K1(T ) in MnAl.

For FeNi, as shown in Fig. 2(c), the on-site contributions
from Fe and Ni are positive and have similar amplitudes, lead-
ing to a total positive on-site contribution. We also find that
the negative contribution of the total pair term mostly comes
from a pair of different atoms, i.e., Fe-Ni. While the Fe-Ni
contribution is suppressed by other positive pair contributions,
it finally leads to negative finite total pair contributions.

From these results, although most of the pair contributions
are suppressed by other pairs and the net contribution becomes
small, the pair contributions play important roles over the
whole temperature region, particularly for FePt and FeNi.
The importance of the pair contributions was also investigated
by Ke [18] with the SOP method at 0 K. In this work, we
confirmed that the pair contributions to K1(T ) significantly
affect the temperature dependence of K1(T ) at not only 0 K
but also finite temperatures.

Finally, we virtually expand the lattice of FeNi to in-
vestigate the influence of electron itineracy on the on-site
contribution Kon

i (T ). Here, we fit Kon
i (T ) by assuming the

relation Kon
i (T ) ∝ Mi(T )n and investigate the temperature

dependence of the exponent n at each site. As mentioned
previously, the on-site contributions Kon

i (T ) should follow
the relation Kon

i (T ) ∝ Mi(T )3 if the localized spin model is
suitable to explain the temperature dependence of Kon

i (T ). We
briefly examine the validity of the single-site anisotropy term,
which is the simplest term, for the temperature dependence of
the MAE in the itinerant magnets. In Fig. 3, the temperature
dependences of n of the on-site contributions for FeNi with
various volumes are shown. If we expand the lattice, the n
value of Kon

Fe (T ) ∝ MFe(T )n increases, and it reaches 3 in the
low-temperature region. However, the n value of Kon

Ni (T ) ∝
MNi(T )n is always far from 3 and is not changed drasti-
cally. If we use a spin model with the single-site anisotropy

FIG. 2. Temperature dependence of the site-resolved contribu-
tions to K1(T ) for (a) FePt, (b) MnAl, and (c) FeNi.

term to explain the temperature dependence of the onsite
contributions, the n value must be fixed to 3 in the low-
temperature region regardless of the sign and amplitude of Di.
In addition, if the lattice is expanded, the Di and Di j values are
expected to change, and these temperature dependences are
not changed in the localized spin model. However, our results
imply that not only changing the value of Di but also changing
the temperature dependence of the on-site term itself with
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FIG. 3. Temperature dependences of the exponent n of
Kon

i (T )/Kon
i (0) = [Mi(T )/Mi(0)]n for Fe and Ni sites for various

volumes V of FeNi. The black line represents the results for the
original volume. Other lines represent to the lattice-expanded results.
V0 is set to 22.6 Å3.

expanding the lattice. Therefore, we can again conclude that
if we assume Eq. (34) to explain the temperature dependence
of the MAE, even the single-site anisotropy term in Eq. (34)

may not always be sufficient to describe the temperature de-
pendence of Kon

i (T ) in the itinerant ferromagnets.

IV. SUMMARY

In summary, we developed a finite-temperature SOP
method to describe the temperature dependence of K1(T ) and
applied it to L10 FePt, MnAl, and FeNi. We confirmed that
the developed method can reproduce the results of a previous
work [35]. We also investigated the on-site and pair contribu-
tions to K1(T ) with the developed method. We showed that not
only the on-site contributions but also the pair contributions
significantly affect the temperature dependence of K1(T ). In
particular, the unique behavior of K1(T ) for FeNi is attributed
to the competition of on-site and pair-site contributions. In
addition, for some results, it is found that the signs of on-site
and pair contributions do not agree with the conditions used
in the previous work [35]. Finally, we investigated the effect
of electron itineracy for the temperature dependence of the
Kon

i (T ) of FeNi while expanding the lattice parameters. We
found that the exponent n of the on-site contributions of both
atoms depends on the volume and is not fixed to 3, which is
expected from a spin model. From the above, our results imply
that the XXZ model, even the single-site anisotropy term in
this model, is insufficient for the itinerant ferromagnets.
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