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Combined approach to analyze and classify families of classical spin liquids
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Classical spin liquids have been a very active subject of research in the last few years. A very rich variety of
cases have been shown to exist, including short-range and algebraic spin liquids displaying dipolar correlations
at zero temperature. In this article, we investigate different families of classical spins liquids by combining
analytical techniques and Monte Carlo simulations. Our study relies on the Luttinger-Tisza approximation (LTA),
which is associated with the constraint vector function in momentum space, whose general properties allow for
a classification of different spin liquids. We show that the general properties of the LTA provide a framework for
identifying and accurately characterizing the different types of spin liquids in different geometries. We apply our
approach to three different families of spin liquids defined on the checkerboard and kagome lattices, which
exhibit a remarkable range of situations, including various cases of algebraic and short-range spin liquids.
Additionally, we analyze the effective Gauss law emerging from different kinds of spin liquids and identify
states that exhibit additional degeneracy lines. The presence of spin-liquid phases and pinch-point singularities
are confirmed by Monte Carlo simulations validating our approach. Our study opens up avenues of research in
the study of spin liquids, exploring algebraic spin liquids with higher-rank gauge fields and as critical points
dividing different types of classical spin liquids.
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I. INTRODUCTION

Classical frustrated antiferromagnets are known to show
exotic low-temperature behavior, for example, the absence of
order and an extensive zero-temperature entropy; the simplest
example has been provided by the plain Ising antiferromagnet
in the triangular lattice [1]. The Heisenberg antiferromagnet
in the checkerboard and kagome lattices is another example
of systems with extensive zero-temperature entropy. Of par-
ticular interest is the behavior of, for example, correlation
functions at zero temperature, as they are solely governed by
the entropic properties of the lowest energy set of configura-
tions. The nature of this lowest energy set of configurations,
sometimes also called the ground-state manifold, may present
interesting properties implying, for example, algebraically de-
caying correlations. A situation where this occurs is when
all the lowest energy configurations satisfy a conservation
property that can be assimilated to a charge-free Gauss law.
In those cases, because of entropic reasons, the probabil-
ity weight of coarse-grained configurations is built from an
effective free energy with a Maxwell form [2,3]. For spin sys-
tems, it was first realized in the case of the three-dimensional
spin-ice system in the pyrochlore lattice [4,5], later studied
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for Heisenberg spins [2,3,6]. This also applies to the two-
dimensional counterparts which are the checkerboard and
kagome lattices. The algebraic correlations arise in this case
from the propagator of a “photon” which is not screened
by charge proliferation as long as only the lowest energy
set of configurations is taken into account. In general, this
zero-temperature behavior is also captured at nonzero tem-
perature, with, for example, Monte Carlo (MC) analysis,
provided that there is no order-by-disorder (OBD) mechanism
[7] that selects a subspace within the ground-state manifold.
The existence of algebraic correlations at zero temperature is
not, nevertheless, a generic feature of those highly degener-
ate systems as there are also known examples having only
exponentially decaying correlations [8], and so excluding the
possibility of an unscreened photon.

In this article, we investigate the spin-liquid behav-
ior of three families of classical Heisenberg systems on
two-dimensional lattices, specifically the checkerboard and
kagome lattices. These families are defined by including
longer-range couplings beyond nearest neighbors, with the
values of these couplings spanning the parameter space of the
models. To maintain the spin-liquid nature of the systems,
we write the Hamiltonian as a sum of the squares of the
magnetizations of effective plaquettes. By exploring the phase
diagrams of the models as we vary the parameters, we uncover
a rich variety of behaviors, including algebraic spin liquids
that are associated with a Gauss law satisfied by vector or ten-
sor gauge fields. We also find short-range spin-liquid phases
that are separated by critical points corresponding to algebraic
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spin liquids. Importantly, we confirm all of our results through
Monte Carlo simulations.

In Sec. II we describe the kind of Hamiltonians we consider
and the analytical and numerical techniques used all through-
out the article. In Sec. III we treat as a first example the case of
a generalized checkerboard lattice. This case turns out to have
an algebraic behavior with an associated Gauss law in all the
regions of its phase diagram. The second example is given in
Sec. IV and it is built from the kagome lattice. This model
also shows an algebraic behavior with an associated Gauss
law for every value of the parameters although it presents
a different behavior with temperature: in the checkerboard
case, the specific heat normalized to the expected value for a
nonliquid system is always less than 1 (indicating the presence
of zero and soft modes), while in the second example, OBD
is at play at lower temperatures. Section V is devoted to the
last example, which is built as a lattice of corner-sharing
hexagons. In contrast to the two previous models, this system
has short-range spin-liquid phases separated by critical points
with algebraic behavior. At this stage, it is worth mentioning
that one key ingredient to analyze the low-temperature be-
havior of those systems is what we call the constraint vector,
which we discuss below and whose nature is different for the
three families of systems that we analyze here.

II. APPROACH AND METHODS

The aim of this study is to investigate the various types
of classical spin liquids and their general properties that
arise from the Heisenberg model defined in generalized lat-
tices. Three types of lattices are considered: the checkerboard
lattice, the kagome lattice represented as corner-sharing tri-
angular plaquettes, and the kagome lattice represented as
corner-sharing hexagonal plaquettes. The antiferromagnetic
Heisenberg models defined in these lattices are known to
be highly frustrated systems giving rise to a very rich phe-
nomenology. Here, we define a generalization for each of
these cases by adding longer-range couplings between the
spins but preserving the fundamental property of the Hamil-
tonian to be expressed as the sum of the square of the
magnetization of plaquettes. The primary differentiating fac-
tor between these models is the nature of the constraint vector
function, which is described in detail in Sec. II B and was
introduced in Refs. [3,9].

In this study, we focus on systems described by a Hamil-
tonian that can be expressed as a sum of clusters of magnetic
sites on a lattice. Specifically, we consider a lattice consisting
of classical spins Si, which correspond to three-component
unit vectors defined on each lattice site i. The Hamiltonian
takes the form

H = J

2

∑
p

S2
p, (1)

where the sum is made over clusters, or plaquettes labeled p
and

S p =
∑
i∈p

ηiSi, (2)

with ηi being real coefficients. These coefficients allow to tune
continuously the Hamiltonian and thus the interactions, but

conserving the general Hamiltonian structure of Eq. (1). By
construction, what we call the effective spin of the plaquette p,
S p, must be zero for all the plaquettes in order to minimize the
energy. Depending on the chosen plaquettes, this Hamiltonian
implies exchange interactions at different order of neighbors
with specific ratios, related to the number of plaquettes where
the bond is present.

To comprehensively analyze these models and investigate
the diverse types of spin liquids, we employ for each of them
both analytical and numerical approaches, which involve var-
ious complementary steps:

(i) We first study the band structure of the models using
the Luttinger-Tisza approximation (LTA), placing special em-
phasis on the points where dispersive bands touch flat bands.
By applying the LTA, we can predict potential spin-liquid
regimes and gain a deeper understanding of the system’s be-
havior.

(ii) We study the properties of the constraint vector, whose
characteristics are different in each of the chosen models, and
argue how its analysis gives us important information about
the properties of the system at very low temperatures, as, for
example, the shape of the structure factors. Moreover, as was
pointed out in Ref. [9], the study of its topological properties
can also give us information about the nature of the spin
liquids and the transitions that may occur between different
spin-liquid phases. Also, following Henley [3], we perform
a projective analysis by connecting the spin correlation func-
tions to a projector in the space orthogonal to the constraint
vector.

(iii) Then, we resort to MC simulations to study the effect
of temperature and calculate key parameters to unveil the
different types of spin liquids.

(iv) Finally, we show that in many (although not all) cases,
the lowest energy configuration manifolds of the system are
characterized by a Gauss law, which is associated with the
presence of pinch points in the structure factors [3]. We also
observe for some critical cases other emergent phenomena,
such as higher-rank pinch points.

Before delving into the details of the three models we have
analyzed, it is worthwhile to provide some general context
regarding the analytical and numerical approaches we em-
ployed.

A. Luttinger-Tisza approximation

The LTA [10–12], also known as the spherical approxima-
tion, is a powerful tool to provide an initial characterization
of the classical ground states of quadratic Hamiltonians. This
approach begins by defining the Fourier transforms of the
spins Sm

q as

Sm
q = 1

Nc

∑
i

Sm
i e−iq·ri,m , (3)

where we have assumed that the lattice has Nc unit cells, the
index m denotes the sublattice, and the index i runs over all
unit cells. The vector ri,m gives the position of the site from
sublattice m among the unit cells i. In order to get the T = 0
spin configurations, within the LTA scheme, instead of impos-
ing the local constraint in spin length, ‖Si‖ = 1 is replaced
by the softer global constraints

∑
i ‖Sm

i ‖2 = Nc S2, one for
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each sublattice. Within this less restrictive approximation, if
the system is translation invariant, we can diagonalize the
Hamiltonian by taking the Fourier transform of the spins as
Eq. (3). So, for a general classical Heisenberg model of mag-
netic moments coupled by exchange interactions Ji j;mn, H =∑

i j

∑
mn Ji j;mnSm

i · Sn
j , it is possible to rewrite the Hamilto-

nian as

H = 1

Nc

∑
m,n

∑
q

Mmn(q) Sm
q · Sn

−q, (4)

where Mmn(q) = [M(q)]mn corresponds to the Fourier trans-
formation of the exchange interactions

Mmn(q) =
∑
r j−ri

Jmn(r j − ri ) e−iq·(r j,n−ri,n ) (5)

with r j − ri vectors representing lattice translations linking
different unit cells, and where the

∑
q runs over all wave

vectors in the first Brillouin zone. The eigenvalues {εm(q)} of
the matrix M(q) correspond to the energy bands of the model
while the ground-state configuration (at T = 0) is associated
with the minima of the lowest band εm(q) which defines the
ordering wave vectors q∗. For Bravais lattices, the ground
states of the Hamiltonian can always be constructed as a
linear combination of the eigenvalues obtained from the LTA.
For non-Bravais lattices, such as the ones considered in this
work, the LTA provides a low-energy boundary for the ground
states. It is also an indicator of frustration and ground-state
degeneracy. Throughout this article we will exploit this tool
in connection with the constraint vector, which we describe in
the next section.

B. The constraint vector

For a system with translational invariance, and from the
parameters of the generalized plaquette defined in Eq. (2), one
can define what we call the constraint vector function [3,9] in
momentum space:

Lm
q =

∑
i,m∈p

ηi eiq·(rc−ri,m ), (6)

where the sum is made over sites of sublattice m belonging
to a generalized plaquette p; q is the momentum and rc is the
real-space vector position of the plaquette center [9]. For the
special case of a Hamiltonian with the structure in Eq. (1), this
definition allows us to rewrite the Hamiltonian as

H = J

2

∑
m,n

∑
q

(
Lm

q Ln
−q

)
Sm

q · Sn
−q, (7)

where Sn
−q is the Fourier transform of the spins Si. This nota-

tion is reminiscent of the above-mentioned LTA of a generic
spin Hamiltonian in momentum space [see Eq. (4)]. It appears
that in the specific case of cluster Hamiltonian (1) there will
be an intimate connection between the constraint vector and
the band structure.

Consider the example of the checkerboard lattice, depicted
in Fig. 1, with antiferromagnetically interacting Heisenberg
spins placed on each vertex. For this system, the interaction

FIG. 1. Checkerboard lattice. The lattice spacing is denoted by
a. This lattice possesses two sublattices, depicted by red and green
dots.

matrix is written

M(q) = J

(
cos[a(qx + qy)] cos(aqx ) + cos(aqy)

cos(aqx ) + cos(aqy) cos[a(qx − qy)]

)
,

(8)
where the constraint vector is

L(q) =
(

2 cos[a(qx + qy)/2]

2 cos[a(qx − qy)/2]

)
. (9)

Thus it is easy to show that Mmn(q) = J
2 Lm(q)Ln(q) − 11 us-

ing the identity 2 cos(a + b) cos(a − b) = cos a + cos b.
Note that since Mmn(q) is composed of a single vector

Lq, the number of dispersive and flat bands can be easily
predicted from the properties of Lq. If Lq is an n-component
real vector, one can choose a basis where all its components
are zero except one. This indicates the presence of n − 1 flat
bands associated with the lowest energy topped by a unique
dispersive band having a dispersion ε(q) = J

2 ‖Lq‖2. If Lq
is an n-component complex vector, then one expects n − 2
flat bands. The two cases are revealed to be different and
it is convenient to describe the two possibilities separately,
showing in each case why the constraint vector is an efficient
tool for the identification of pinch points. Moreover, from the
analysis that we detail below, it becomes clear how the T → 0
and non-zero-temperature behavior [13] are related.

C. Unique constraint vector and projective analysis

Let us consider first the case where the cluster Hamiltonian
is defined on a unique type of plaquette. For each of these
clusters p, the condition S p = 0 translates in reciprocal space
into the condition

Sα (q) =
∑

m

Lm
q Sm,α

q = 0 (10)

with m indexing sublattices and α = x, y, z referring to the
spin component. In this view, and following Henley’s argu-
ments [3], it appears that for T → 0, the correlation functions
〈Sm

−q · Sn
q〉 must be proportional to the projector in the space

orthogonal to Lq, defined as

� = 1 − L
1

‖L‖2
L†, (11)

and are manifestly singular when ‖L‖2 vanishes. Within
this projective analysis of correlation functions, as we argue
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below, this situation typically corresponds to the presence of
a pinch point and the corresponding algebraic correlations in
real space. This directly explains why, for centrosymmetric
systems corresponding to a real-valued constraint vector, the
topological analysis of the constraint vector appears to be
useful [9]. It indeed allows identifying the situations for which
the vector constraint vanishes. In the context of the LTA,
this implies that pinch points will be observed each time the
dispersive band touches the flat band as the dispersion law
is proportional to the square of the constraint vector norm
ε(q) ≡ J

2 ‖Lq‖2.
The structure of the contact point determines the type of

pinch point we observe. Let us first see the most typical
situation in which the dispersion around the contact point is
quadratic:

ε(q) ∝ ‖q‖2. (12)

This case corresponds to the usual pinch points, associated
with the correlation functions〈

Sm
−q · Sn

q

〉 ∼ δmn − qmqn

‖q‖2
, (13)

where we have assumed a linear behavior for two of the
components of the vector constraint

Ln
q = aiqi (14)

since its norm is quadratic.
Let us now consider the case where the dispersion around

a contact point reveals to be quartic and not quadratic. The
dispersion relation is thus

ε(q) ∼ ‖Lq‖2 = α‖q‖4 + 2βq2
x q2

y , (15)

indicating a behavior for the correlation functions like

〈
Sm

−q, Sn
q

〉 ∝ δmn − (qm)2(qn)2

α‖q‖4 + 2βq2
x q2

y

, (16)

which corresponds to a higher-rank fourfold-symmetric pinch
point [14].

If the local dispersion is revealed to be sextic,

ε(q) � α2
(
q6

x + q6
y

) + 2β
(
q4

xq2
y + q2

x q4
y

)
, (17)

the situation is more complex. In this case, the structure factor
can be generally described by a function of the form

S(q) ∼ A + B

(
qxqy

q2
x + q2

y

)3

− C
qxqy

q2
x + q2

y

, (18)

where A, B, and C are three real constants. The ratio B/C
determines the aspect of the pinch point observed (see Fig. 2).
For C � B pinch points look like usual pinch points since
the structure factor becomes similar to the one associated
with a quadratic dispersion. However, for B � C, pinch points
present a six-leg structure, easily recognizable. For B � C the
pinch points look again like regular pinch points but flattened.

D. Complex conjugate constraint vectors and projective analysis

We focus now on systems where there exist two ground-
state conditions as in Eq. (10), involving two different
constraint vectors which are simply complex conjugate. These

FIG. 2. Different types of pinch-point structures associated with
rank-3 nondivergent tensors. The case B � C looks like usual pinch
points but flattened along the direction perpendicular to the two arms.
For B � C the pinch points possess six arms, for which contrast
depends on the ratio B/C. The case C � B is not illustrated as it
simply corresponds to usual pinch points.

conditions correspond to the case of lattices such as the py-
rochlore lattice [3] or the kagome lattice with first-neighbor
couplings, or its generalization that we mention here in the
section of corner-sharing triangles. In this kind of situation,
the system has different types of plaquettes and Eq. (1) must
be modified to write the sum over the different kinds of
plaquettes. In the simplest case, the elementary clusters are
triangles, which do not possess a central point symmetry.
Because there are up-pointing and down-pointing triangles,
there are two relations like Eq. (10), one for each type of
triangle, corresponding by symmetry to complex conjugate
constraint vectors. This situation is similar to the tetrahedral
conditions in the pyrochlore lattice [3].

For these systems, the lowest energy constraint doubles
into L · Sα = 0 and L∗ · Sα = 0, one for each vector constraint
(and for each spin component α). Note that the components
of the present vectors refer to sublattices and not spin com-
ponents. This means that, for the projective analysis, the
correlation functions 〈Sm

−q · Sn
q〉 are now proportional to the

projector into the space orthogonal to both Lq and L∗
q. To

build this projector, we define a matrix M made of L and L∗ as
columns and define the projector into the subspace orthogonal
to M as

� ≡ 1 − M(M†M)−1M†, (19)

where

M†M =
(‖L‖2 Q∗

Q ‖L‖2

)
(20)

and

Q(q) = Q∗(−q) = L · L =
∑

m

(
Lm

q

)2
(21)

is a complex scalar function of momentum q. This leads to

(M†M)−1 = 1

‖L‖4 − |Q|2
(‖L‖2 −Q∗

−Q ‖L‖2

)
, (22)

implying that there are singularities anytime that we have

‖L‖4 − |Q|2 = 0. (23)
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Let us now consider the LTA, where the Hamiltonian in recip-
rocal space reads

H =
∑

q

[
Ln

qLm
−q + (

Ln
qLm

−q

)∗]
Sm

q · Sn
q (24)

with the first Lq product accounting for up clusters and
the conjugate one for down clusters. Again, one can always
choose a basis in which the two first axes generate the plane
spanned by the real and complex part of L. In this basis,
the transformed L, which we note as l, has thus only two
components. The nonzero part of the LTA matrix can then be
written as

m =
(

2|l1|2 l1l∗
2 + l∗

1 l2
l1l∗

2 + l∗
1 l2 2|l2|2

)
, (25)

indicating that the energies associated with the dispersive
bands are simply

ε± = ‖L‖2 ± |Q|, (26)

where we used the invariance of the scalar products under the
rotation L → l. We thus see that, once again, the observation
of pinch points is related to the existence of a contact point
between one of the dispersive bands and the flat ones.

At this point, it is noteworthy to make a remark regarding
the analysis of the topological properties of the constraint
vector L. As we saw above, for a singularity to appear, the
quantity that must be zero is not the norm of the constraint
vector itself, but (L · L∗)2 − |L · L|2. This quantity can be
rewritten, splitting real and imaginary parts of the constraint
vector as

‖L‖4 − |Q|2 = 4[‖R{L}‖2‖I{L}‖2 − (R{L} · I{L})2]. (27)

This means that there is a singularity each time that either the
real part or the imaginary part of the constraint vector van-
ishes, or they become proportional to each other. Therefore,
the relevant vector field for the analysis is the real vector L×,
defined as

L×(q) = i Lq × L∗
q. (28)

Here the square of the norm of L× is precisely equal to
‖L‖4 − |Q|2. For systems with n distinct constraint vectors, a
singularity in the structure factor is observed when the deter-
minant of the matrix M† · M vanishes, where M is the matrix
formed by arranging the n constraint vectors as columns. This
condition corresponds to the presence of linear dependence
between any two of the constraint vectors [9]. The topological
analysis should thus be performed on the (n

2) vector fields
defined as vector products of a pair of constraint vectors.

E. Low-temperature emergent Gauss tensors

It is established in the literature [3] that an effective low-
energy Gauss law is connected with the presence of pinch
points in the structure factor. This effective low-energy Gauss
law may be described in terms of a gauge theory, i.e., the
possibility to define a lattice vector field whose total flux at
each vertex of the lattice is zero within the lowest energy
configuration manifold. Although the converse is not obvious,
it is nevertheless natural to ask if a singularity in the constraint
vector such as the ones we have discussed above implies the

existence of a vector field with zero divergence in the limit as
T approaches zero. Under the assumption that no OBD effect
takes place, the LTA can shed some light on this issue by
considering the system at nonzero but very low temperature
and at scales smaller than the thermal correlation length.

Consider a contact point q0 in the lowest dispersive band
ε(q) and the flat bands. These points play a crucial role in
studying the large-scale behavior of correlation functions. By
expanding the energy around the contact point q = q0, one
can generally obtain a first-order approximation as

ε(q) � α2
(
q2

x + q2
y

)
, (29)

where q represents the deviation of momentum from the con-
tact point q0, and α is a positive real coefficient and an axis
rescaling may be necessary to make the expression isotropic.
This case corresponds to the most common pinch-point struc-
ture, which can be associated with a gauge field E that satisfies
the relation

q · E = 0. (30)

This gauge field can be simply constructed as

Ex(q) = −α qy φ(q), Ey(q) = α qx φ(q), (31)

where φ(q) is a coarse-grained version of the Fourier trans-
form of a spin component. The associated energy functional
describing the low-energy physics is

F �
∫

d2r EiE
i =

∫
d2q Ei(q)Ei(−q)

=
∫

d2q ε(q)|φ(q)|2. (32)

This low-energy functional can be seen as a local development
of the coarse-grained version of the Hamiltonian in Eq. (4).
However, understanding how this emergent Gauss law mani-
fests at the lattice level with the spin degrees of freedom is a
challenging and complex question that cannot be answered in
a general way, but rather must be analyzed on a case-by-case
basis for each specific system.

Furthermore, at certain critical points or lines in the phase
diagram, higher-rank pinch points can also appear as contact
points. In these cases, the band dispersion can be described by
a quartic development as

ε(q) � α2
(
q4

x + q4
y

) + 2β q2
x q2

y , (33)

with α and β being real positive coefficients. In this case,
the underlying gauge structure involves a symmetric rank-2
tensor Ei j satisfying ∂iEi j = 0 [15,16], which is translated in
momentum space to the condition

qiEi j = 0, j = x, y, (34)

which can be easily fulfilled by taking

E(q) =
(

q2
yφ −qxqyφ

−qxqyφ q2
xφ

)
. (35)

In this case, the low-energy functional can be written as

F �
∫

d2q ηi jEi j (q)Ei j (−q) =
∫

d2q ε(q)|φ(q)|2, (36)

where the coefficients ηi j depend on α and β.
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Other contact points located on critical lines in phase dia-
grams have a local sextic dispersion:

ε(q) � α2
(
q6

x + q6
y

) + 2β
(
q4

xq2
y + q2

x q4
y

)
. (37)

In this case, a symmetric rank-3 tensor E can be introduced,
following a generalized Gauss law analogous to Eq. (34):

∂iEi jk = 0, (38)

with i, j, k referring to real-space coordinates x and y. This
Gauss law can be satisfied by taking

E =
(

Exxx Exxy Exyx Exyy

Eyxx Eyxy Eyyx Eyyy

)

=
(

q3
yφ −qxq2

yφ −qxq2
yφ q2

x qyφ

−qxq2
yφ q2

x qyφ q2
x qyφ −q3

xφ

)
. (39)

Note that this tensor is indeed symmetric since Ei jk = Eik j =
Ejik = Ek ji. The low-energy functional can again be expressed
using this tensor as

F �
∫

d2q ηi jkEi jk (q)Ei jk (−q) =
∫

d2q ε(q)|φ(q)|2,
(40)

where coefficients ηi jk again depend on α and β. This type of
rank-3 tensor seems not to have been previously discussed in
the literature [14–16]. A tensor field E with a functional of the
form of Eq. (40) and satisfying the Gauss law in Eq. (38) leads
to a structure factor of the form of Eq. (18).

F. Direct link between constraint vector and Gauss laws

There exists an alternative way to link the local contact
point dispersion to the associated pinch-point structure [17].
Around a contact point q0 the constraint vector must vanish
and thus admits a local expansion

L(q0 + q) = qi∂qi L(q0) + qiq j∂qi∂q j L(q0) + · · · , (41)

where ∂qi L(q0) 
= 0 for usual quadratic contact points, but it
becomes zero for contact points with a local dispersion that is
at least quartic. Together with the zero-temperature constraint
in Eq. (10) it implies a first-order Gauss law

∂qi Lm(q0)qiSm
q = 0 (42)

for a quadratic point, a second-order Gauss law

∂qi∂q j Lm(q0)qiq jSm
q = 0 (43)

for a quartic contact point, and more generally an nth-order
Gauss law for a contact point with a dispersion of order
2n. This can be obtained directly in real space, expand-
ing the coarse-grained version of the ground-state constraint
S(rp) = 0 around the plaquette position rp. To do this, con-
sider the coarse-grained version of spins Sm(r), defined such
that Sm(ri,m) ≡ Sm

i for each lattice site i of sublattice m. Next,
rewrite it as

Sm(r) = eiq0·rχm(r) (44)

with χm(r) a continuously varying vector field encoding the
fluctuations around the contact-point configurations. The Tay-
lor expansion of this field for a spin located at ri,m, taken

around a plaquette position rp, is then

χm(ri,m) = χm(rp) + [(ri,m − rp) · ∇]χm(rp)

+ 1
2 [(ri,m − rp) · ∇]2χm(rp) + · · · . (45)

Using this expansion the ground-state constraint

S(rp) =
∑

m

∑
i,m∈p

Sm(ri,m) = 0 (46)

becomes

Lm(q0)χm(rp) − Lm(q0)rp · ∇χm(rp)

+ ∇ ·
⎡
⎣∑

m

∑
i,m∈p

ηie
iq0·ri riχm(rp)

⎤
⎦ + · · · = 0. (47)

It then appears clearly that if a contact point forms at q0, i.e.,
if the constraint vector L(q0) becomes zero, the fields

Eα (r) ≡
∑

m

∑
i,m∈p

ηie
iq0·ri riχ

α
m(r)

=
∑

m

∇qLm(q0)χα
m(r) (48)

will obey a Gauss law ∇ · Eα with α labeling spin compo-
nents. If the contact point admits a quartic dispersion, meaning
∇qLm(q0) = 0, this field will become trivial. The relevant
tensor field can then be constructed as

Eμν (rp) ≡ 1

2

∑
m

∑
i,m∈p

ηie
iq0·ri rμ

i rν
i χm(rp), (49)

which is symmetric by construction and obeys the second-
order Gauss laws ∂μ∂νEμν = 0. The construction of the
relevant effective nondivergent tensors associated with higher
dispersions is similar. The rank of the tensor built will coin-
cide with the pinch-point structure for the same reasons as the
ones discussed in the previous section [15,18].

G. Monte Carlo simulations

In order to explore the behavior of the systems with
temperature, we resorted to Monte Carlo simulations, using
the Metropolis algorithm combined with overrelaxation, and
lowering the temperature in an annealing scheme. The temper-
ature T is always expressed in units of the coupling with the
highest absolute value for each particular set of parameters.
We thermalized the system for more than 105 Monte Carlo
steps, and took measurements for twice as many Monte Carlo
steps. We worked with systems with N = n0 L2 spins, where
n0 is the number of sites in the unit cell (n0 = 2 for the
checkerboard lattice and n0 = 3 for kagome), and L is the
linear size, which we took as L = 24–60.

In order to look for possible spin-liquid signatures,
we measured two quantities: the specific heat per spin
(Cv) and the static structure factor defined as S(q) =
1
N

√
〈| ∑ j S jeiq·r j |2〉.

On one hand, exotic phenomena such as zero modes or en-
tropic state selection (OBD) may lower the specific heat from
its expected equipartition value, which for three-dimensional
spins with fixed length is 1 (in units of the Boltzmann con-
stant). In the OBD scenario [7], the specific heat may be
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FIG. 3. Extended plaquette for the checkerboard lattice. The four
spins from the standard checkerboard plaquette come in the total
spin definition [Eq. (52)] with coefficient 1, and are surrounded
by a square. The pairs of side spins have coefficient γ and corner
points, coefficient δ. Colors in the sites of the lattice indicate different
sublattices. The primitive lattice vectors are denoted by e1 and e2, and
the corresponding Brillouin zone is given on the right of the figure.

lowered by the presence of soft modes with quartic-order
thermal fluctuations, which are selected from the ground-state
manifold since they lower the free energy, as was observed,
for example, in the honeycomb and kagome lattices [19,20].
Regarding the zero modes, which do not contribute to the spe-
cific heat, for systems where the Hamiltonian can be rewritten
as the sum of plaquettes, the number of zero modes in the
model may be expressed as [21–24]

F = q

b
(n − 1) − n, (50)

where q is the number of spins per plaquette, b is the number
of plaquettes that share the same spin, and n is the dimension
of the spin, which in this work is n = 3. The specific heat at
low temperatures is reduced by these zero modes to

Cv = b n/2q. (51)

As we see, in these two expressions only enters the ratio
b/q. This is an important point for the three cases that we
study here, indeed, in building the generalized plaquettes, the
coefficients q and b increase, but the ratio is always kept
constant.

On the other hand, an inspection of the structure factor
in reciprocal space may reveal features such as the above-
mentioned pinch points. Furthermore, the structure factor
lends itself well to comparison with both LTA analysis and
experimental findings, enabling the generation of explicit pre-
dictions for neutron scattering results.

III. EXAMPLE 1: THE CHECKERBOARD LATTICE

As a first example, we examine the checkerboard lattice
and define the effective spin Sp of an extended plaquette p as
follows:

S p =
∑
i∈p

Si + γ
∑
i∈〈p〉

Si + δ
∑

i∈〈〈p〉〉
Si, (52)

where the first sum corresponds to the spins located at the
vertices of a crossed square denoted by p, as illustrated in
Fig. 3. The second and third sums involve the sites adjacent
to the crossed square, with the first sum considering the sites

connected by γ , and the second sum considering the sites con-
nected by δ. We propose to explore this model using first the
LTA to obtain an approximate low-energy description of the
system. We will then analyze the constraint vector Lq and its
topological properties, which will provide further insights into
the system’s behavior. Finally, we will perform Monte Carlo
simulations to verify the predictions made by the LTA and
investigate the model’s properties in more detail. Additionally,
we will describe the behavior of the system using a real-space
gauge field description, which can provide a useful framework
for understanding the underlying physics.

A. Luttinger-Tisza approximation

As announced in the previous section, the first step is
to construct the constraint vector function. Since the lattice
has two sites in the unit cell, Lq is a two-component vector.
Moreover, the inversion symmetry with respect to the center
of the plaquette (rc in Fig. 3) ensures that its components are
real. The constraint vector is written explicitly as

L(q) = 2

(
cos

(
1
2 e1 · q

)
cos

(
1
2 e2 · q

)
)

+ 2δ

(
cos

(
3
2 e1 · q

)
cos

(
3
2 e2 · q

)
)

+ 2γ

(
cos

((
e1 + 1

2 e2
) · q

) + cos
((

e1 − 1
2 e2

) · q
)

cos
((

1
2 e1 + e2

) · q
) + cos

((
1
2 e1 − e2

) · q
)
)

(53)

with e1 = a(1, 1)t and e2 = a(1,−1)t as depicted in Fig. 3.
These properties imply that there is a unique flat band asso-
ciated with a dispersive band, which is simply proportional to
the norm of the constraint vector. The dispersive band always
touches the first band at different points of the Brillouin zone
(BZ), but does so in different ways depending on the values
of the parameters γ and δ. The contact surface between the
two bands can take the form of isolated points, corresponding
to pinch points as depicted in the previous section. The shape
of the band around the contact point then determines the type
of pinch point [see Eqs. (29) and (33)]. The contact surface
can also manifest as a contact line, which occurs when the
values of γ and δ result in Lq always being zero, defining a
closed curve in reciprocal space with the equation qx = f (qy)
[25]. These lines do not correspond to pinch points but to
degeneracy lines and the reason for their presence is dis-
cussed in Sec. III F. The results given by the LTA analysis
are summarized in the phase diagram presented in Fig. 4. The
phases are labeled using the standard high-symmetry points
in the BZ: �, M, and X . For example, M + MX corresponds
to a situation where there is a contact point located on each
equivalent corner point M, and another on each equivalent axis
linking a point M to a point X . The notation M + ©� indicates
a contact point located on the corner point M, and a contact
line encircling the central point �.

Four distinct extended phases, each presenting only pinch
points, have been identified in this study. The first phase is
characterized by pinch points only at the M points, while the
second and third phases have four additional contact points
arising in the �M and XM axes, respectively. In the fourth
phase, pinch points appear in both the �M and XM points,
resulting in eight additional contact points with the lowest
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FIG. 4. Phase diagram, with γ in abscissa and δ on the ordinate.
The labels indicate the position of the pinch points. There are four
major phases, separated by critical lines with distinct features (see
text for details). There are four special points marked in red, which
show particularly special features. The phases corresponding to three
of the four special points marked with red dots are given in Fig. 5.
The last one, located at point γ = 0, δ = −1, corresponds to the
phase M + � + X . On the top right corner the positions of the special
points �, M, and X along the BZ are given.

energy band. These extended phases are separated by critical
lines, represented with solid lines in the phase diagram, which
always correspond to the emergence of new pinch points. On
one side of the critical line, the pinch point disappears, while
on the other side, it splits into new pinch points. For instance,
consider the line M + � separating the M and M + �M
phases. As one approaches this line from the M phase side,
a pinch point emerges at point � and then splits itself into
four pinch points located on each segment �M. When moving
away from this critical line, the new pinch points migrate
from point � towards point M. This suggests that some pinch
points along these critical lines could be higher-order pinch
points since they are split into subpinch points. This issue is
discussed in more detail below.

The special line associated with equation γ = δ, repre-
sented by a dotted line in the phase diagram, is different
in essence since it does not separate two distinct phases. It
hosts two kinds of critical states where circular contact lines
are observed around point � or M. Finally, there are four
critical points located at the intersection of the critical lines.
Three of these special points show straight contact lines in
the LTA spectrum, located in different positions (see Fig. 5), a
phenomenon that is also discussed below. The fourth point, lo-
cated at γ = 0, δ = −1, corresponds to the phase M + � + X ,
likely to be the only phase holding two different types of
higher-rank pinch points.

Note that, for all the values of the parameters, there are
always contact points between the two bands at the M points
(as in the γ = δ = 0 case), implying that the present model is
always an algebraic spin liquid. It is then natural to search for
an associated Gauss law, as we explain below. As mentioned
above, the fact that there exist pinch points that split into
subpinch points suggests that these pinch points should be

FIG. 5. Heat maps of the excited band ε(q) obtained with the
LTA for the checkerboard lattice for three cases where there are
contact lines between the lowest-energy flat bands and the excited
one (degeneracy lines). Red lines correspond to the equipotential
lines ε(q) = 0.

higher-order pinch points. There are actually three different
situations corresponding to the three critical lines separating
extended phases.

The line of equation δ = −1 + 2γ presents pinch points
located at X points that split into two subpinch points located
on the BZ boundaries. The local dispersion around these
special pinch points is quartic along the BZ boundary but
quadratic along the perpendicular direction X -�. This Lifshitz
type of behavior [26] corresponds to a special pinch point in
the structure factor, as we see in Fig. 8.

The critical line observed for δ = −1 − 2γ possesses a
contact point located at �, which splits into four subpinch
points along the axis �M. These special pinch points have
a quartic dispersion. As pointed out in Sec. II E, this corre-
sponds to the existence of an underlying gauge field theory
using a rank-2 tensor Eα

i j for each spin component α, sat-
isfying a generalized Gauss law ∂iEα

i j = 0 for each spin
component α [14–16,18]. This corresponds in the structure
factor to pinch points presenting a fourfold degeneracy.

The last critical line of the equation δ = (1 − 2γ )/3 pos-
sesses a high-rank pinch point located at point M which splits
into eight subpinch points along the axes �M and MX . This
pinch point shows a sextic dispersion and thus corresponds
to an emerging rank-3 tensor satisfying a generalized Gauss
law ∂iEα

i jk = 0 for each spin component α, as presented in
Sec. II E.

B. Topological properties of the constraint vector function

As stated above, the vector Lq = (L1,q, L2,q) is a two-
component real vector. The topological defects of such a
vector field are vortices, for which the field norm ‖Lq‖ must
vanish at their center, implying the existence of pinch points
[9]. In principle, the positions, number, and topological in-
dices of the vortices may be another equivalent way to classify
the phases discussed above.

To detect the vortices, we compute the associated vorticity,
defined as

Q = 1

2π

∮
C

dq · (L̃1∇qL̃2 − L̃2∇qL̃1), (54)

where the integral in Eq. (54) is defined for a closed path C
and L̃1 and L̃2 are the components of the normalized vector
L̃ = Lq/‖Lq‖. This calculation, although simple in principle,
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FIG. 6. Checkerboard case: Vector plots of the constraint vector Lq for different γ , δ parameters in the extended checkerboard lattice.
Circles mark the position of the vortices and antivortices, and the value of the corresponding winding number is indicated.

requires some attention, especially in the definition of the
closed path C in phases with multiple pinch points that are
not positioned in special points in the BZ. We chose circles
surrounding these points, with a radius smaller than the dis-
tance to other singularities, to avoid subtracting or adding
vorticities.

In Fig. 6 we show the vector plots of the constraint vec-
tor Lq for different values of (γ , δ), where in general clear
vortices can be seen centered in the position of the pinch
points. In most cases, we obtain that the pinch points are
associated with pairs of vortices and antivortices with vorticity
|Q| = 1. Nonetheless, there are a few special cases to mention.
First, we see, for example, that for (1,−1/3) the vortices
at the M points have a higher topological charge, |Q| = 3.
For these parameters, as was discussed above, higher-order
pinch points are expected, and thus we might expect higher
vorticity. However, since the vorticity is a quantity that affects
the long-range structure, one expects that the total vorticity
of a region including multiple vortices should be conserved
when different pinch points merge into a single higher-order
pinch point. This is indeed the case: looking at the line
δ = −1 + 2γ , the quartic pinch point located at � results
from the merging of two vortex-antivortex pairs. It is then
not surprising that the resulting pinch point has zero vorticity
[see, for example, the point (−0.5, 0) in Fig. 6]. If we now
look at the critical line separating the phases M + �M and
M + MX the situation is different, since on the M + �M side
a vortex of charge 1 located at point M is surrounded by four
antivortices of charge −1 on the axis �M [see point (−1, 0)
in Fig. 6]. When merging, these five vortices will thus lead
to the formation of an antivortex of vorticity −3 (see Fig. 6).
On the M + MX side of the line, this pinch point splits again
into four antivortices of vorticity −1 located on the XM axis,
and one vortex of charge 1 located at M [see point (1,−1) in
Fig. 6].

This illustrates why the topological analysis does not allow
spotting some pinch points if they result from the merging of
vortex-antivortex pairs.

Note that for the special points (γ , δ) = (0.5, 0) and
(−1, 1), there are degeneracy lines that reach the point M at
which the vector Lq vanishes. For these cases, the computa-
tion of the vorticity is thus ill defined.

C. Monte Carlo simulations and thermal effects

The checkerboard lattice, which is the “simple” plaquette
from Fig. 3, setting γ = δ = 0 in Eq. (52), may be inter-
preted as corner-sharing squares where all four vertices of
the plaquette are connected. Since each spin is shared for two
plaquettes, replacing q = 4 and b = 2 in Eq. (50), we see that
there is one zero mode and thus the specific heat, following
Eq. (51), is expected to be 3/4 at lower temperatures if there
are no additional soft modes. This is in fact also the case
for the pyrochlore lattice [21,27]. When γ is turned on, the
coefficients q and b jump to respectively the values of 12 and
6, and if δ is also turned on, they become respectively 16 and
8. The crucial point to note is that the ratio of b to q, which
determines the value of the specific heat, is always maintained
at 1/2.

The Cv as a function of temperature and the low-T structure
factor are shown in Fig. 7 and in the first panel of Fig. 8. MC
simulations for the extended model show an excellent agree-
ment with the analytical predictions, as seen in the structure
factors S(q) plotted in Fig. 8 for different parameter sets in
the phase diagram. Regarding the effect of temperature, we
see that the zero modes remain present for all (γ , δ) values
at low temperature, pinch points remain in the structure fac-
tors, and the Cv is lowered from 3/4 at some special points.
We show this in Fig. 7, where we compare the specific heat
of some typical cases [(γ , δ) = (0, 0), (−0.5, 0), (0, 1)] with
the particular values (1, 1), (−1, 1), (0.5, 0), where the Cv

remains lower than 3/4 at the lowest simulated temperature.
This agrees with the LTA prediction since in these cases there
are additional degenerate lines, which are related to states
with particular subextensive degeneracy, as it is described in
Sec. III F. This degeneracy is also seen as additional lines
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FIG. 7. Specific heat per spin as a function of temperature for
the extended checkerboard lattice for different parameters (γ , δ)
obtained from MC simulations. The temperature is in units of the
highest effective coupling.

in the structure factor, as shown in Fig. 8. Notice that for
(−1, 1) the degeneracy lines are seen in the extended Brillouin
zone (EBZ), and not in the first BZ. In the LTA, contact lines
between the second band and the lowest energy flat band
were also found as circles for a region in the γ = δ line.
As an example, the specific heat for (0.3,0.3) is lower than
3/4 at least up to the lowest simulated temperature, indicating
that this additional semiextensive degeneracy introduces soft
modes.

Moreover, the structure factors in Fig. 8 also show the
presence of higher-order pinch points: fourfold pinch points
at � = 0 at the δ = −1 − 2γ line, illustrated for (−0.5, 0),
sixfold pinch points at the δ = (1 − 2γ )/3 line, shown for
(−0.5, 2/3) and (1,−1/3), and Lifshitz pinch points in the
δ = −1 + 2γ line, exemplified for (0.1,−0.8) and (0.6,0.2).
In the special case (0,−1) there are two types of pinch points:
quartic ones at the � point and Lifshitz ones in the X points
of the BZ.

Figure 8 compares S(q) obtained from Monte Carlo simu-
lations (left half) with the results from the projective analysis
[3] (right half),

S(q) =
∑
m,n

〈
Sm

−q · Sn
q

〉 ∝ 1 − L1(q)L2(q)

‖L‖2
, (55)

obtained directly from Eq. (11). The comparison shows a
strong agreement between the two approaches, confirming
that this analytical method allows identifying both the location
and the structure of pinch points. This method fails, however,
to reveal the existence of degeneracy lines, the limit of the
structure factor S(q) being well defined when approaching a
degeneracy line, even if the denominator ‖L‖2 vanishes.

D. Gauss law

Here we demonstrate the presence of an effective U (1)
gauge field theory allowing for dipolar correlations related
to a photonlike propagator [3] producing pinch points in the
structure factors. This effective gauge theory is based on the
presence of a divergence-free gauge field.

To construct this field, we consider the lattice with vertices
located at the centers of each original crossed plaquette. The
resulting lattice is simply a square lattice and is thus bipartite,
meaning that each bond can be “oriented” from, say, sublattice
A to sublattice B. The next step is to associate a flux on
these oriented bonds such that the sum of the assigned fluxes
incoming in one vertex is equal to the total spin S p of this
plaquette, which must be zero for any ground-state configura-
tion. In this way, the constructed field will be divergence-free,
as requested. The question is now to understand how to con-
stitute the fluxes attached to each bond. By symmetry, the flux
through each bond can be expressed as a linear combination
of the nine spins associated with the intersection of the two
extended plaquettes linked by that bond [see Fig. 9(a)]. Taking
the notation from Fig. 9(b), the flux associated with the bond
labeled by the index i and oriented along the direction of the
red arrow can be defined as

�i = α Si + β
∑

j∈yellow

S j + η
∑

j∈green

S j + δ
∑

j∈pink

S j, (56)

where α, β, and η are real coefficients. For the sum of four
incoming fluxes to be equal to the total spin S p, the weight
coefficients α, β, and η must satisfy the constraints

α + 2β + δ = 1,

β + η = γ . (57)

These two conditions can always be satisfied for any value of
parameters γ and δ. This means that one can always build the
fluxes �i with zero divergence on each vertex whatever the
values of the parameters γ and δ are. Moreover, it turns out
that different choices for the parameters in Eq. (56) produce
flux configurations that differ by loops of the shorter possi-
ble length (elementary squares in the present case) and thus
do not change the large-scale behavior of the system, or its
coarse-grained effective action that we describe below. This
remark is also valid for the two other examples, defined on the
kagome lattice (Secs. IV D and V D), that we describe in this
work.

Following Henley [3], one can then build a rank-2 tensor,
called the polarization tensor Pα

j (ri ), defined on each oriented
bond i located at the position ri as

Pα
j (ri ) = �α

i u j
i , (58)

where α = x, y, z is the index of the spin components. The
vector ui is the vector giving the direction and the orientation
of the link i considered. The coarse-grained version of this
tensor field then satisfies, by construction, the three Gauss
equations

∇ · Pα = 0, (59)

one for each spin component α.
The simplest zero-temperature energy functional has the

usual structure

Ftot(P) = κ

2

∫
d2r

∑
i,α

(
Pα

i

)2
, (60)

leading, with the Gauss condition (59), to the existence of
pinch points in the structure factor [3,14]. For higher temper-
atures, consideration of symmetry arguments [3,14] suggests
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FIG. 8. Comparison of Sq obtained from MC simulations (at T = 0.0002, left side of each panel) and projective analysis results (right)
for different regions of the LTA phase diagram (Fig. 4). First row: Representative points for the four extended regions. Second row: Points
indicated in red. Third and fourth rows: Example points at different degenerate lines. Note that for γ = δ = −1, when looking carefully, the
structure factor obtained through MC simulations presents a circular degeneracy line encircling the � point, matching with LTA predictions.

that entropy should favor configuration with a small polar-
ization tensor norm. This indeed corresponds to the possible
existence of small flux loops, that can be flipped without
an energy cost. Since entropy favors the appearance of such
loops, it will consequently favor configurations with small

polarization tensors. The total free energy should thus behave,
considering that entropy effects dominate (F ∼ −T S), as

1

T
Ftot(P) = κ ′

2

∫
d2r

∑
i,α

(
Pα

i

)2
. (61)
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FIG. 9. (a) The intersection of two neighboring extended plaque-
ttes. The co-dual lattice, which is a square lattice, is bipartite. The
sites are then of two types, depicted with green and blue crosses.
Bonds can be oriented from the green sites toward the blue ones.
Flux attached to the oriented bond linked to the two plaquettes
shown, depicted in red, can only be made of spins belonging to both
plaquettes. (b) Scheme construction for the Gauss law analysis in the
extended checkerboard lattice model. The flux associated with the
bond i, oriented in the red arrow direction, gets contributions from
the surrounding highlighted spins with coefficients α, β, η, and δ.
See the text for details.

This functional has exactly the same structure as the
zero-temperature one. This implies in both cases that the po-
larization tensor is analogous to a magnetic field, meaning that
correlations functions do have the longitudinal fluctuations
projected out and take the form

〈
Pα

i (−q)Pβ
j (q)

〉 ∝ δαβ

(
δi j − qiq j

‖q‖2

)
(62)

in momentum space. This corresponds to a function having
different limits when ‖q‖ → 0, forming the pinch points.

E. Higher-order pinch points

The flux construction above appears to be valid for every
value of the parameters γ and δ. The coarse-grained version of
the associated polarization tensor [Eq. (58)] obeys a first-order
Gauss law and thus implies, as depicted above, the existence
of two-arm pinch points. There are, however, critical lines
in the phase diagram presenting more complex pinch points,
which seems in contradiction with the above construction.
The point is that, for specific configurations associated with
certain pinch-point locations, the coarse-grained version of
the associated polarization tensor [Eq. (58)] can become iden-
tically zero. This can be illustrated with the case of a contact
point located in �, corresponding to fourfold pinch points.
The configurations associated with such a contact point cor-
respond to a zero wave vector, and thus repeat a unique spin
on each sublattice, as depicted on Fig. 10(a). For these spe-
cific configurations, the fluxes built following the previous
section appear to be equal if they are attached to opposed
bonds. In Fig. 10(b) this corresponds to having �1 = �3 and
�2 = �4. This means that taking the coarse-grained version
of the polarization tensor (58) will imply the sum of oriented
fluxes of equal magnitude and opposed directions, producing
a field that is zero on each plaquette center rp. In this situation,
by analogy with Eq. (49), an infinitesimal rank-2 polarization
tensor can be defined as

Ei j
l = ui

lu
j
l �l , (63)

FIG. 10. (a) Real-space spin configurations associated with the
existence of a contact point located in �, thus corresponding to
a wave vector q0 = 0. These configurations repeat the same spin
all along the system for each sublattice. (b) Representation of the
fluxes �i placed on the bonds linked to an extended plaquette. These
fluxes are attached to the underlying bonds, which can be oriented as
depicted with blue arrows.

on each lattice bond l . The coarse-grained version of this
polarization tensor, symmetric by construction, will satisfy
a generalized Gauss law ∂i∂ jEi j (rp) = 0 at each plaquette
center rp. This comes from the fact that writing this double
divergence as a lattice derivative leads to the relation

∂i∂ jEi j (rp) �
∑
l→p

�l , (64)

with the sum being over the bonds l connected to the plaquette
center located in rp among the co-dual lattice. The above
relation thus implies a Gauss law because we built the fluxes
in such a way that ∑

l→p

�l = S p = 0. (65)

Consequently, it appears that the construction of geometrical
fluxes carried out in the previous section can be in fact also
associated with the tensor of rank superior to 1, allowing us
to explain why there are pinch points in the phase diagram
presenting more than two arms.

The existence of an underlying polarization tensor provides
an explanation for the presence of pinch points for all values
of γ and δ. However, this alone does not account for the
observation of contact lines in the LTA results, which mani-
fest as bright lines in the MC simulations. Consequently, in
the following section, we put forward an explanation for the
occurrence of these degenerate lines.

F. Degeneracy lines

The combination of LTA analysis and MC simulations pre-
sented above demonstrates that certain special lines emerge
in momentum space, corresponding to a linear band con-
tact ε(q) = 0 within the context of the LTA. As detailed in
Sec. III C, the MC simulations confirm that these lines give
rise to strong spin correlations. If we consider, for example,
the case δ = γ = 1, we notice that the structure factor is
similar to the ones observed for slightly different parameter
values, but with the addition of bright lines (see Fig. 8). These
lines can be seen as the addition of terms of the form

Sdl (q) = δ(c + qi ), i = x, y, (66)
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FIG. 11. Scheme to illustrate the possible real-space configura-
tions associated with the degeneracy lines found in the extended
checkerboard model for (γ , δ) = (1, 1) (left) and (0.5, 0) (right).

with c the offset giving the positions of the lines in momentum
space. This can be understood by looking at special real-space
configurations. Let us start with the simple case γ = δ = 1.
For these special values of the parameters, the total spin of an
extended plaquette p is simply

S p =
∑
i∈p

Si (67)

and must be zero for all the ground-state configurations. This
can be satisfied if we consider four parallel lines composed of
four spins belonging to a plaquette p, and impose that for each
line A the four spins sum to zero:

4∑
i=1

SAi = 0. (68)

In this situation, we observe that there are no correlations
between different lines, introducing an additional degree of
freedom. However, due to the overlap of the extended plaque-
ttes, we also notice that the lines must extend over the entire
lattice, and be composed of only four distinct spins along
their length, as illustrated on the left side of Fig. 11. In this
situation, the structure factor component associated with these
configurations will be maximal along the lines in this direction
and zero along all other directions, meaning we can roughly
write it as

S(r)dl
∼= δ(y) f4a(x), (69)

with f4a(x) a function having a four-site periodicity. Note that
the same correlation function can be obtained considering ver-
tical lines, simply exchanging x ↔ y. The Fourier transform
of this structure factor is expected to have the form of Eq. (66),
with lines located at positions cn = nπ/2a with n a nonzero
integer. Note that the lines at positions ±π/a do not appear in
Fig. 5. This is due to the fact that the π modes correspond to
form neighboring spin doublets SAi = −SAi+1 , for which there
is no constraint of repetition along the line. This π mode is
thus uncorrelated and does not produce any degeneracy line.

For the case δ = −γ = 1, the idea is the same except that
this time the spins from one line must be identified two by two
as SA1 = SA3 and SA2 = SA4 . There are again no correlations
along the direction perpendicular to the line. Along the line,
the spin components taken along the bisector between the two
spins result in a zero mode, while the spin components taken
in the two spin planes but orthogonal to the first spin axis

FIG. 12. Scheme of the extended plaquette for the kagome lat-
tice. First neighbors of the standard triangular plaquette come with a
factor γ and second and third neighbors are counted with a factor δ

in the total spin plaquette definition [Eq. (71)]. Colors in the sites of
the lattice indicate different sublattices. The primitive lattice vectors,
denoted by e1 and e2, are depicted on the right-hand side of the figure.

produce a π mode. This results in the formation of lines of
abscissa 0 or π/a in momentum space, as observed in Fig. 5.

In the case γ = 0.5 and δ = 0, the picture is similar, except
that this time we draw diagonal lines including three sites in
each extended plaquette as depicted at the right of Fig. 11.
These lines are composed of alternating spins such that each
triplet on a line A satisfies

SA − 2γ SA = 0. (70)

This produces diagonal degeneracy lines lying on the BZ
boundary since there is a

√
2a periodicity along the real-space

diagonal correlated lines.
These lines have a huge impact on the structure factor

due to the semiextensive degeneracy, which also explains
the smaller specific heat observed in the MC simulations,
as discussed in Sec. III C. It is important to note that these
particular values of γ and δ are necessary to construct these
types of lines, which explains why we only observe rectilinear
degeneracy lines for three points in the parameter space.

There are other types of degeneracy lines showing up when
γ = δ, which appear to be quasicircular, enclosing either
points M or �. These lines appear in the LTA context as
circular contact lines and as bright lines in the structure fac-
tors obtained in the MC simulations. These lines indicate the
formation of quasi-isotropic structures of a size considerably
larger than the generalized plaquette.

We will now shift our focus to the second example, which
shares numerous similarities with the checkerboard lattice dis-
cussed in this section, but also introduces new physics related
to the underlying structure of the kagome lattice.

IV. EXAMPLE 2: THE KAGOME LATTICE SEEN AS
CORNER-SHARING TRIANGLES

For our second example, we consider an extended trian-
gular plaquette in the kagome lattice, depicted in Fig. 12,
associated with the Hamiltonian in Eq. (1), where here the
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FIG. 13. Phase diagram for the kagome lattice seen as corner-
sharing extended triangles. This diagram holds five extended phases
containing only pinch points. These phases are separated via critical
lines with pinch points located on either special point M or K . The
line δ = 0 presents special features with the appearance of degener-
acy lines encircling either K or � points. There are five special points
showing exotic features, denoted by red dots on the phase diagram.

total spin in each plaquette Sp is given by

S p =
∑
i∈p

Si + γ
∑
i∈〈p〉

Si + δ
∑

i∈〈〈p〉〉
Si. (71)

The first sum concerns the spin of the central trian-
gle of Fig. 12 (cyan region), while the second and third
sums concern respectively first- (yellow region) and second-
nearest-neighbor (pink region) spins.

A. Luttinger-Tisza approximation

In the kagome lattice, there are three inequivalent sites in
the unit cell and they lack inversion symmetry with respect
to the center of the plaquette. Furthermore, there are two
types of plaquettes, corresponding to up-pointing and down-
pointing triangles, that are related by central symmetry. As a
result, there exist two complex conjugate constraint vectors Lq
and L∗

q.
The LTA analysis of the kagome lattice reveals three bands,

but only the first band ε1(q) is flat (as described in Sec. II D).
The second band ε2(q) = (L∗ · L)2 − (L · L)2 always appears
to touch the flat band, similar to the checkerboard case.
Through an analysis of the location of the points in the BZ
where the second band touches the lower flat band, ε2(q∗) =
ε1(q∗), we can construct the phase diagram illustrated in
Fig. 13, here with special high-symmetry points at �, M, and
K . The notation used to label phases is similar to the one used
for the checkerboard example. The phase diagram is similar
in essence to the one of this first example, presenting five
extended phases presenting only pinch points, located at point
�, and on segments �M, �K , and KM.

As for the checkerboard, to go from one extended phase
to another a critical line must be crossed. Some of these
critical lines present pinch points located on the special points
K or M, which is never the case for the extended phases.
Since these pinch points must split into subpinch points when
crossing the critical line, they correspond to high-order pinch

points. They can be classified as for the checkerboard by
looking at how many pinch points they split, the contact point
dispersion, and their shape in the structure factor. First, when
looking at the transition from phase � to � + �M through the
line of equation δ = 1/2 − γ , the central point � appears to
split into itself plus six subpinch points, when in the analogous
situation in the checkerboard it was only splitting into four
subpinch points. Note that the dispersion relation at point �

is quite original since it is written naturally as a sixth-order
dispersion divided by the wave-vector norm. This still allows
a low-temperature description associated with a rank-3 tensor
and thus leads to pinch points with structure as Eq. (18). The
line with equation δ = − 1

2 + 2γ has a high-order pinch point
located in � which splits into itself plus 12 subpinch points
along segments �M and �K . The associated contact point has
a sextic dispersion, and thus enters in the formalism developed
at Sec. II E. When looking at the critical line of equation
δ = 1 − γ , three pinch points along �K segments appear to
collapse in the K point to again split into three subpinch
points along KM segments. Curiously, the dispersion at point
K is quadratic, corresponding at first glance to a usual pinch
point. It does, however, appear that for this special line of
the phase diagram, the second dispersive band also touches
the flat band at points K with a quadratic dispersion. In this
situation the denominator of the structure factor (72) obtained
using the projective analysis is of order 4, corresponding to
a quartic pinch point. The line δ = − 1

2 + γ hosts a Lifshitz
pinch point located in M, splitting into two subpinch points
along M� segments. Finally, the line with equation δ = 1

2 is
associated with a quartic pinch point located at M, splitting
itself into four subpinch points along M� and MK segments.
This information is summarized in Table I.

A special line in the phase diagram with circular de-
generacy lines in the BZ can be observed for δ = 0.
These degeneracy lines enclose the point � for γ ∈] −
∞,−1/2[∪]1/4, 1/2[, and surround point K for γ > 1/2
(except for γ = 1). For γ going from 1/4 to 1/2, the line
encircling the point � starts growing and goes from circular to
hexagonal as it extends in the BZ. When γ reaches 1/2, these
lines touch the BZ boundaries and appear to form hexagons.
When γ goes away from 1/2 these lines take the shape of
triangles encircling K points, which shrink to become points
for γ = 1. For γ > 1 these triangular lines grow again around
the K points, going back to the hexagonal configuration when
γ → ∞. For γ < 1/2, the circular lines around � grow with
|γ | until they reach the BZ boundary in the limit γ → −∞.
The hexagonal line phase encountered for γ = 1/2 thus cor-
responds to both limits γ → ±∞. Note that this critical line
δ = 0 is similar to the δ = γ line observed for the checker-
board lattice.

There are five special points located at the intersections
of special lines which present exotic features. Three of these
points show straight degeneracy lines. The point (γ , δ) =
(1/2, 0) has degeneracy lines forming hexagons along the
MM ′ segments, while at (−1, 1/2) and (0,−1/2), the degen-
eracy lines form six-legged stars along the �M segments.

The point (3/4, 1/4) corresponds to the phase � + M + K
and is, therefore, the only point holding two high-order pinch
points: Lifshitz ones in M and quartic ones in K . It is sim-
ilar in essence to the point γ = 0, δ = −1 observed for the
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TABLE I. Different types of high-order pinch points encountered within the triangular plaquette kagome model. The dispersion of the
band(s) touching at the indicated point is given. The multiplicity indicates in how many points the high-order pinch point splits when going
away from the critical line. The illustration of the structure in the last column is chosen to be representative, but the fine structure of the pinch
points changes along a given line.

checkerboard. The last special point at (1/2, 1/2) corresponds
to a situation where the first dispersive band becomes flat
and touches the first flat band everywhere. This point is not
equivalent to the previous example and will be discussed in
Sec. IV F.

B. Constraint vector function analysis

In this case, the Lq vector has three complex components.
As discussed in Sec. II D, a singularity arises when the real
or imaginary part of the constraint vector vanishes, or when
they become proportional. Therefore, we focus on the analysis
of the real vector field, denoted as L× and defined as L× =
i Lq × L∗

q. Figure 14 displays the plot of
√|L×| in the first

Brillouin zone for selected values of γ and δ. Our analysis,
which uses L× but not Lq, is of course complementary to the
LTA. The positions of the zeros of L× can also be observed
in the plot. It is worth noting that a pinch point (L× = 0) is
present at the � point in all cases, while other pinch points
emerge at different positions along the �-K , �-M, or K-M
paths.

C. Monte Carlo simulation and temperature effects

Let us now discuss the effect of thermal fluctuations. In the
traditional Heisenberg model on the kagome lattice, obtained
by setting γ = δ = 0 in Eq. (71), the coefficients in Eqs. (50)

and (51) are q = 3 and b = 2, respectively. However, by
including the terms with γ 
= 0 and then δ 
= 0, these coef-
ficients jump to 9 and 6, and then to 15 and 10, respectively,
while keeping the ratio q/b constant in all cases. As q/b =
3/2, we have F = 0 in this case, and so the specific heat is
expected to be 1. However, it has been demonstrated that in the
simplest scenario with γ = δ = 0, the specific heat does not
behave as expected at lower temperatures. As the temperature
decreases, the system goes from a high-temperature para-
magnetic phase to a classical algebraic spin-liquid regime,
where Cv ∼ 1. Then, as the temperature is further lowered,
OBD comes into play. In this case, both analytical and Monte
Carlo simulations [20,28] have shown that the system selects
a submanifold of ground states with soft modes and quar-
tic fluctuations that reduce Cv to 11/12. In the intermediate
spin-liquid regime, the structure factor exhibits the expected
pinch points located at the M points of the EBZ, which are
consistent with the LTA, where the two lowest energy bands
touch at the � point. As the temperature continues to decrease,
bright peaks associated with OBD selection become visible in
reciprocal space [29].

Now, let us examine the impact of thermal fluctuations
in the models that arise by considering γ 
= 0 and δ 
= 0,
starting with the δ = 0 case. Figures 15 and 16 display the
Cv vs T plots and Sq at different T , respectively, for various
values of γ , including the well-known γ = 0 case. For all
values of γ , the higher-temperature regime with pinch points
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FIG. 14. Heat map of
√‖L×‖ in the Brillouin zone of the kagome lattice for the triangular plaquette case. We observe that there is a fixed

pinch point at the � point for all cases (where ‖L×‖ = 0), while the positions of the other pinch points vary depending on the values of γ

and δ.

in the M points can be seen. However, there are some notable
differences. Specifically, the � + ©� regime from the LTA
analysis differs for γ < −0.5 compared to 0.25 < γ < 0.5. In
the first case, the Cv at higher temperature seems to tend to a
cooperative paramagnetic regime, which is consistent with the
presence of pinch points in the Sq, with an additional bright
line encircling the � point. Then, there is a peak in the Cv in-
dicating a selection, and the Cv is lowered, Cv < 1, reflected in
a change in the Sq. In the second case (here we take γ = 0.3),
the Cv seems to go monotonically to 1 as the temperature is

lowered, with no additional features, and in the Sq the pinch
points are present up to the lowest simulated temperatures
(T = 2 × 10−4), and are encircled by bright lines; i.e., there is
no state selection, at least in the temperature range we studied.
A similar phenomenon is seen for the special point γ = 0.5,
where in this case the pinch points in the Sq coexist with bright
“kagome” lines that match the LTA predictions. For higher γ ,
in the � + ©K case, the Cv and Sq show a similar behavior
with temperature as for γ < −0.5, with the important differ-
ence that here the bright lines encircle the K points of the BZ,
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FIG. 15. Specific heat per spin as a function of temperature for
the extended triangular plaquette kagome model. The temperature is
in units of the highest effective coupling.

as predicted by the LTA method. Although the details of the
transition from the algebraic spin liquid with degenerate ©�
and ©K lines to a lower temperature phase are beyond the
scope of this work, this sort of behavior with temperature has
been shown in models hosting spiral spin liquids with similar
degenerate ©� and ©K lines in the honeycomb and triangular
lattices [30,31], where this transition was shown not to be
associated with the breaking of any continuous symmetry,
consistent with the Mermin-Wagner theorem.

The structure factor obtained with MC simulations can be
compared with the structure factor obtained at zero tempera-
ture using the projective analysis, given by

S(q) ∝ 1 −
∑
i 
= j

‖L‖2(L∗
i L j + c.c.) − (Q∗LiL j + c.c.)

‖L‖4 − |Q|2 .

(72)
In the special case where δ = 0, the difference between the

different phases only manifests as the appearance of degener-
acy lines, with the only pinch point remaining at the � point.

In such a context, and as it was already noticed in the case of
the checkerboard lattice, the projective method fails to reveal
the degeneracy lines present in the system.

In the case of δ 
= 0, the LTA shows a variety of phases,
including multiple additional pinch points and higher-order
spin liquids. As before, we take some representative cases and
perform MC simulations. The resulting structure factors are
shown in Fig. 17. For (0.75,0.25), we see that the algebraic
spin liquid holds at the lowest simulated temperature (there
is no OBD) and the position of the pinch points matches
the LTA prediction and the projective analysis, with Lifshitz
pinch points in the M points of the BZ and quartic ones in K .
Something similar is seen at (−1.3, 0.5) and (2,0.5), where
higher-order pinch points emerge. Then, we present four cases
with degenerate lines. In these cases, at lower temperatures,
there is an OBD selection, reflected in the specific heat as a
sharp transition that lowers the value of the Cv (see Fig. 15).
For (−1, 0.5) and (0,−0.5), the degenerate lines match the
LTA prediction. However, LTA does not predict degeneracy
lines in (−0.5, 0.5) and (0,0.5); the reason for this is explained
below in Sec. IV E, which is dedicated to the degeneracy lines.

D. Gauss law

As in the case of the checkerboard lattice, the presence
of pinch points for all values of γ and δ brings the question
of the existence of a divergence-free polarization tensor that
holds true for every combination of these two parameters. To
develop this tensor, we follow the same steps as before. We
begin with the bipartite honeycomb lattice shown in Fig. 18,
with its vertices situated at the center of each triangle of the
kagome lattice. The bonds of this dual lattice can be oriented
and a flux made of neighboring spins can be attached to each
of these bonds. The spins which contribute to this flux are
the ones belonging to the intersection between neighboring
extended plaquettes, and the flux can thus be generally defined

FIG. 16. Structure factor for different values of γ in the extended triangular plaquette kagome model obtained with MC simulations, at
higher temperatures (top row) and at the lowest simulated temperature (bottom row).
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FIG. 17. Structure factor for different values of γ and δ in the extended triangular plaquette kagome model obtained with MC simulations
(at T = 0.0052) and by the projective analysis (PA): Except for the case of γ = 0.5 and δ = 0.5, in each panel, the left-hand side shows the
result from MC simulations while the right-hand side shows the calculation based on PA.

using the notations of Fig. 18 as

�(ri ) = αSi + β
∑
j∈〈i〉

S j + η
∑

j∈〈〈i〉〉
S j + χ

∑
j∈〈〈〈i〉〉〉

S j, (73)

where the coefficients α, β, η, and χ are real. We want the sum
of the incoming fluxes to be equal to the plaquette total spin
in Eq. (71), which is zero for any ground-state configuration.

FIG. 18. Scheme for constructing the good fluxes for Gauss laws.
The bi-dual lattice of the kagome lattice, that is, the honeycomb
lattice, is a bipartite lattice. The sites of the two sublattices are
represented by red and blue dots. The bonds can then be oriented
from red sites towards blue sites, as depicted by the pink arrow. The
flux attached to the bond surrounded by a pink arrow is made of
the ten neighboring spins, counted with coefficients α, β, η, and χ

depending on their position relative to the bond.

The coefficients must then be chosen such that the conditions

α + 2β = 1,

β + η = γ ,

η + χ = δ,

(74)

are always satisfied. There are three equations to fulfill with
four degrees of freedom, meaning that the relevant fluxes can
be built whatever the values of γ and δ. The fluxes being
well defined, the polarization tensor can then be constructed
following Eq. (58).

E. Degeneracy lines

As in the case of the checkerboard lattice, here in the
kagome lattice, seen as corner-sharing triangles, there are
degeneracy lines showing up in the structure factors. Among
these lines, some can be observed as contact lines within
the LTA, as is the case for (γ , δ) = (1/2, 0), (−1, 1/2), and
(0,−1/2). There are, however, other lines showing up only
in MC simulations, as is the case for δ = 1/2 and any value
for γ . We propose here to present real-space configurations
corresponding to γ = 0 and δ = −1/2 in Fig. 19 to illustrate
the first situation, and the real-space construction applying
for δ = 1/2 and arbitrary γ , shown in Fig. 20, to discuss the
second case. In the first case depicted in Fig. 19, there are lines
of correlated spins forming along one direction. These lines
are uncorrelated, but share the same spatial frequency along
the line direction. This spatial oscillation corresponds here to
a zero (or equivalently a π ) mode: when going from one site
to the next site belonging to the same sublattice, the spins do
not change. This is true for the lines enclosing only sites from
the two first sublattices, as for lines only containing sites of
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FIG. 19. Real-space spin configurations responsible for the
emergence of vertical bright lines in structure factor for γ = 0 and
δ = −1/2. (a) The line structure, showing colored lines of correlated
spins along the horizontal direction. Note these lines do not need
to have any correlations, as can be seen in (b), where it can be
checked that this line structure does respect the condition S p = 0
for each extended plaquette p. When going from one elementary cell
to another the same pattern is reproduced, corresponding to a zero
spatial frequency.

the third sublattice. Because these two lines are generally un-
correlated, this means that in the BZ the corresponding bright
lines, located at spatial frequency zero, must correspond to
two different modes (1,−1, 0)t and (0, 0, 1)t . This means
that, on these lines, the subspace of modes with zero energy
must have dimension 2, implying that these modes belong to
different bands, and so the dispersive band must touch the flat
one.

The second situation, encountered for δ = 1/2, is different,
as depicted in Fig. 20. There are again lines of correlated
spin extending along one direction and uncorrelated along the
orthogonal direction. This time, however, the lines lying on
sites of the two first sublattices possess a spatial frequency
π/a, while the lines lying on the third sublattice have a spa-
tial frequency π/2a. This means each bright line in the BZ
relies only on one mode in sublattice space, meaning that the

FIG. 20. Real-space spin configurations responsible for the
emergence of vertical bright lines in structure factor for δ = 1/2 with
any γ . Here again, lines of spin can be constructed in such a way
that, even if these lines are uncorrelated along one direction, they
always fulfill the ground-state constraint S p = 0 for each extended
plaquette p. The lines lying on the two first sublattices (red and blue
dots) have a zero spatial frequency while the one lying on the last
sublattice (green dots) has a 4a periodicity corresponding to a π/2a
spatial frequency.

corresponding sublattice subspace attached with zero-energy
eigenvalue is one dimensional. This means that the degener-
acy line can here lie entirely in the flat band, implying no
contact line between the dispersive band and the flat one.
This line can, however, appear in MC simulations if an OBD
phenomenon selects the submanifold containing real-space
configurations related to one degeneracy line. This is what
can be observed in Fig. 17, where for δ = 1/2 degeneracy
lines appear either at frequency π/a or π/2a depending on
the value of γ (note that in Fig. 17 the frequencies are given
in 1/2a units).

F. Multicritical point

There exists a special point in the phase diagram, located at
(γ , δ) = (1/2, 1/2), which has the peculiarity to present two
flat bands instead of one in the LTA context. The structure
factor observed for these parameters, depicted in Fig. 17,
is surprising since it does not possess any pinch points. It
appears to be identical to the one observed for the next ex-
ample we discuss, the kagome lattice seen as corner-sharing
hexagons. This lattice with a plaquette Hamiltonian [Eq. (1)]
was revealed to host short-range spin liquids [8], and thus
presents no pinch points.

For the special parameters (γ , δ) = (1/2, 1/2), the total
spin of an extended triangular plaquette can be expressed as
the sum of the total spins of the three hexagons it contains.
This means that the ground-state manifold of the present
model does contain the ground-state manifold of the kagome
lattice seen as corner-sharing hexagons that we discuss in the
next section. It turns out that there is an OBD phenomenon
selecting the submanifold of ground states associated with the
hexagonal kagome lattice, producing the same structure factor
and also a similar specific heat dependence with temperature
(see Fig. 15). We checked this by looking at the mean mag-
netization per hexagon obtained from the MC data: it appears
that it is indeed much lower for (γ , δ) = (1/2, 1/2) than for
other values of the parameters. The fact that the specific heat,
in this case, is much lower than the ones obtained for other
values of parameters γ and δ, being equal to 1/2 instead of
11/12, explains the OBD phenomenon: the system chooses to
lie in the submanifold presenting the biggest number of soft
modes.

In Sec. IV D it was shown that there is a Gauss law that
can be built for every value of γ and δ. On the other hand,
it is known, and we discuss this issue in the next section,
that the model defined in the hexagonal kagome lattice has
short-range correlations without pinch points, which seems in
contradiction with the presence of a Gauss law. The resolution
of this paradox relies on the fact that, for these precise values
of the parameters γ and δ, the Gauss law built following
the scheme of Sec. IV D only leads to placing closed lines
of fluxes wrapped around hexagons of the kagome lattice.
More precisely, there is a specific choice for the parameters
in Eq. (73) for which the resulting flux field is identically
zero. As mentioned before, other choices for these param-
eters give flux configurations that differ by the presence of
flux loops of the shortest length. This means that for any
choice in the parameters defined in Eq. (73), the correspond-
ing coarse-grained effective polarization tensor is simply zero
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FIG. 21. Extended model for the corner-sharing hexagon plaque-
tte in the kagome lattice. Colors in the sites of the lattice indicate
different sublattices. The six central spins belonging to the blue
hexagon enter with coefficient 1 in the plaquette total spin S p defini-
tion and the six surrounding spins are taken with a coefficient γ . The
primitive lattice vectors e1 and e2 are are chosen as depicted on the
right-hand side of the figure.

everywhere. In such a situation, which corresponds to an ef-
fective action like Eq. (60) with infinite stiffness, the Gauss
law, always fulfilled but by a zero field, does not produce
dipolar correlations.

V. EXAMPLE 3: THE KAGOME LATTICE SEEN AS
CORNER-SHARING HEXAGONS

As the final example in our study, we consider the cluster
Hamiltonian in Eq. (1) for the kagome lattice with extended
corner-sharing hexagons (see Fig. 21), with a total spin per
plaquette of

S p =
∑
i∈p

Si + γ
∑
i∈〈p〉

Si. (75)

The second sum accounts for the spins surrounding the central
hexagon of the figure. The case γ = 0 was previously exam-
ined in Ref. [8] as an instance of a short-range spin liquid.
Note that, in this model, there are three sublattices, which are
not equivalent, but the plaquette is symmetric with respect to
central inversion.

A. Luttinger-Tisza approximation

As in the previous example for the extended model of
the kagome lattice with triangular plaquettes, there are three
inequivalent sublattices in this model, but now the plaquette is
symmetric with respect to central inversion (see Fig. 21). Con-
sequently, the vector Lq is now a three-component real-valued
vector. This implies in the LTA context that there exist two flat
bands surmounted by a single dispersive band with dispersion
relation ε(q) = J

2 ‖L(q)‖2. This third band only touches the
two flat bands for the specific values of γ : −1, 1

2 , and 1 (see
Fig. 22), giving the dispersive band minimum as a function of
γ . In particular, for γ = −1 the pinch points are located at the
� points of the first BZ, while the band’s contacts are located
at the K points for γ = 0.5 and at the M points for γ = 1.

FIG. 22. Luttinger-Tisza analysis for the extended kagome lat-
tice as corner-sharing hexagons: gap between the third band and the
two flat bands as a function of parameter γ . The third band touches
the other two flat bands only at three critical values γ = −1, 1

2 , and
1. Apart from these three points, the third band is gapped.

These results imply that there are four distinct short-range
spin-liquid regions separated by three points that, as we show
below, correspond to algebraic spin liquids.

B. Topological properties of the constraint vector function

As mentioned before, the constraint vector is now a three-
component real-valued vector. It is well known that a three-
component vector field defined on the Brillouin zone Lq can
support topological textures called skyrmions. The associated
topological charge of these textures is the total chirality QS (or
skyrmion number), which in this context is calculated by the
integral over the BZ:

QS = 1

4π

∫
BZ

L̃q · (
∂qx L̃q × ∂qy L̃q

)
, (76)

where in the definition of QS we use the normalized vector
L̃q = Lq/|Lq|. The existence of skyrmions (i.e., nonzero QS)
does not imply singularities in Lq; however, the existence of
jumps in the total skyrmion number when varying γ implies
the appearance of singularities necessary to change from one
topological sector to another.

Figures 23(a)–23(g) show density plots of the topological
charge QS for different values of γ . The insets illustrate the
constraint vector norm in the BZ zone, where it can be seen
that, as expected from the LTA analysis, Lq = 0 at different
points of the BZ for three values of γ : −1, 0.5, and 1. QS as
a function of γ is shown in Fig. 23(h). Each point where the
skyrmion number jumps (indicated with red arrows) implies a
singularity of Lq, which in turn indicates a critical point where
the band gap is closed and there is an algebraic spin liquid.
Therefore, the analysis of the topology of the constraint vector
supports the fact that, at the three points γ = −1, 0.5, 1, there
is an algebraic spin liquid with pinch points separating short-
range spin-liquid phases.
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FIG. 23. Topological analysis of the constraint vector in the extended hexagonal plaquette model in the kagome lattice. [(a)–(g)] Density
plots of the topological charge for different γ parameters. The insets show the absolute value of the constraint vector Lq in the �-M-K-� line.
(h) Total topological charge of the constraint vector integrated over the BZ as a function of γ . Red arrows indicate the points of the jumps in
the topological charge (γ = −1, 0.5, 1), which correspond to values where the gap band is closed and pinch points are seen in the structure
factor.

C. Monte Carlo simulation and temperature effects

In the highly frustrated point of the kagome lattice where
the Hamiltonian can be expressed as the sum of hexago-
nal plaquettes, the system is highly degenerate. Each spin
is shared by two hexagons, so replacing q = 6 and b = 2
in Eq. (50), it can be seen that there are two zero modes,
and the low-temperature Cv tends to 0.5. Those values are
in principle expected to prevail for γ 
= 0 as the coefficients
q and b become respectively 12 and 4, keeping again their
ratio invariant. Previous studies [8,23] have shown that this
particular case is a short-range spin liquid, which is reflected
in the structure factor, where no pinch points are seen. As was
discussed above, the LTA shows two flat bands and a gapped
dispersive band. The extension of the hexagonal plaquette
model gives three special points where pinch points may be
seen at different points in reciprocal space, for γ = −1, 0.5, 1.

Monte Carlo simulations show that the specific heat at low
temperatures goes to 0.5 for all values of γ (see Fig. 24).
As predicted by the LTA and the constraint vector analysis
in the previous sections, pinch points are clearly seen in the
low-temperature structure factors at γ = −1, 0.5, 1, whereas
these features are not present for other values of γ , as shown
in Fig. 25. Comparison with the projective analysis method
shows a very good agreement. At γ = −1, the structure factor
is similar to that seen in other models in the kagome lattice,
such as chiral spin-liquid models [32,33], with pinch points
in the M points of the EBZ. The position of these features
changes in the other two special points, as discussed in the
LTA analysis: they are at the K points of the BZ at γ = 0.5
and at the M points of the BZ at γ = 1.0. Therefore, the MC
results support the LTA and constraint vector function analy-

sis, evidencing that indeed at low temperatures the extended
hexagon plaquette model in the kagome lattice hosts a family
of short-range spin liquids separated by three algebraic spin
liquids which are distinguishable in reciprocal space.

D. Gauss law

The existence of pinch points for γ = −1, 0.5, and 1 sug-
gests again looking for an underlying divergence-free tensor
for these three special values. We propose here a construction
giving a polarization tensor satisfying a Gauss law for the
γ = −1 and γ = 1/2 cases. Although there might be one also
for the case γ = 1, we did not find an explicit construction in
real space and defer this particular case for future studies.

FIG. 24. Specific heat per spin as a function of temperature for
the extended hexagonal plaquette kagome model. The temperature is
in units of the highest effective coupling.
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FIG. 25. Comparison between the structure factor from MC simulations (at T = 0.0002) at the lowest simulated temperature (left from
each panel) and the projective analysis results (right from each panel) for different values of γ in the extended hexagonal plaquette kagome
model.

1. The case γ = 1/2

The first step consists in showing that this specific case
maps to a similar model, studied in Refs. [9,22], and defined
in the honeycomb lattice with the cluster Hamiltonian

H = J

2

∑
�

⎛
⎝∑

i∈� Si

⎞
⎠

2

= J

2

∑
� (S�)2, (77)

where the plaquettes are bond-sharing hexagons. Consider
the three spins of each of the six triangles surrounding the
hexagon of Fig. 21. They can be grouped to create the effective
spins

S� =
∑
i∈�

Si, (78)

located on the sites of a honeycomb lattice. Making the sum
of those new effective spins around a hexagonal plaquette cor-
responds, in the original lattice of corner-sharing hexagons,
to the sum of two times the spins in the inner plaquette and
one time those in the crown. This precisely gives exactly two
times the total spin S p of the plaquette p for the special case
γ = 1/2, ∑

�∈�p

S� = 2S p. (79)

There is thus a mapping relating the model in the honeycomb
lattice discussed in Refs. [9,22], which has been shown to host
an algebraic spin liquid, even if no Gauss law has been found
previously. Note, however, that in the present case the effec-
tive spins S� are not normalized, but this has no effect on the
construction of the Gauss law. We now propose a construction
scheme for the polarization tensor in the honeycomb lattice

case, a construction that holds for the lattice of corner-sharing
hexagons presently discussed. Consider the dual lattice of the
honeycomb one, which is the triangular lattice. It is a tripartite
lattice, meaning three types of sites can be defined in a way
such that each type of site does not have any neighbors of its
own type. These three types of site are depicted in Fig. 26
with little squares, disks, and triangles. In this situation, the
lattice bonds can be arbitrarily oriented as depicted in Fig. 26,
where a capital letter is associated with each type of oriented
bond. We now place on each oriented bond of type I located

FIG. 26. Flux construction for the honeycomb model as bond-
sharing hexagons. The sites of the three sublattices are depicted with
the red symbols �, ◦, and +. The bonds are oriented as depicted by
arrows. To each of these bonds is attached a flux made of the two
neighboring spins.
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at position ri a flux

�I (ri ) = αI

∑
j∈〈i〉

S j, (80)

where the coefficient αI depends on the type of bond consid-
ered, and where the sum is made over the two spins sitting
aside the bond (see Fig. 26). We now ask that for each type
of plaquette J , the sum of the incoming and outgoing fluxes
be equal to a number nJ times the vector SJ�, which is zero
for the ground-state configurations. In this way, we ensure that
the sum of fluxes entering each vertex is zero. This implies the
three relations

◦ : αA − αB = n◦,

� : αB − αC = n�,

+ : αC − αA = n+,

(81)

one for each plaquette type. This system of three equa-
tions with six parameters is not closed. Summing these three
equations gives ∑

J

nJ = 0. (82)

This equation is general, with n different parameters nJ for
n-partite lattices. It does not appear explicitly for bipartite lat-
tices since there are in this case only two different parameters
nJ always taken as 1 and −1, 1 for nodes with incoming links
and −1 for nodes with outgoing bonds. For one given choice
of {nJ} the coefficients αI can be expressed as

αB = αA − n◦,

αC = αA + n+, (83)

with αA remaining here as a free parameter. We can choose,
for example, n◦ = n� = −1, n+ = 2, and αA = 1, which im-
poses αB = 2 and αC = 3. We see that if we consider, for
example, ◦ plaquettes and sum the incoming and outgoing
fluxes, each spin is entering one time, and outgoing two times,
meaning the sum of the fluxes is equal to −S�, and is thus
zero as expected. Once the fluxes have been constructed, the
polarization tensor can be defined in a similar way as we did
before in Eq. (58). Note that the mapping from our model to
the bond-sharing hexagon model, and its subsequent Gauss
law, is only possible for the case γ = 1/2, which plays here
the role of an algebraic critical point separating short-range
spin-liquid phases with no divergence-free polarization tensor.

2. The case γ = −1

In this case, we can use the kagome dual lattice depicted in
Fig. 27 to place fluxes. Each oriented bond is attached with a
flux composed of two spins belonging to the link at the right of
the arrow (see Fig. 27 where the spins attached to a bond are
highlighted with the corresponding bond color). The two spins
come with signs + or −, in such a way that the projection of
the dipole on the bond points in the bond direction. In this way
we obtain ∑

i∈� �i = S p = 0 (84)

FIG. 27. Flux structure allowing to build a Gauss law for a lattice
of corner-sharing hexagons with γ = −1. Each bond of the dice
lattice is oriented as depicted with arrows. A flux made of two spins
taken with opposite signs is attached to each bond.

when summing around a hexagonal plaquette. For vertices
surrounded by a triangle, the sum of outgoing fluxes gives∑

i∈�
�i =

∑
i∈�

(Si − Si ) = 0, (85)

meaning the sum of the fluxes is zero for each vertex of
the dual lattice. The polarization tensor �i constructed from
these fluxes following Eq. (58) is thus divergence-free in the
ground-state manifold, as expected.

VI. CONCLUSION AND PERSPECTIVES

In summary, our research provides an extensive inves-
tigation of three distinct families of classical spin liquids
derived from cluster Hamiltonians, employing a combination
of complementary analytical and numerical techniques. On
the analytical side, the key ingredient is the definition of the
constraint vector Lq, which serves as the building block of
the LTA and the projective analysis of the structure factors
and, in some cases, whose topological properties allow for a
classification of the different kinds of spin-liquid phases. On
the numerical side, we used extensive MC simulations which
turn out to corroborate the analytical results but also account
for the entropic effect at nonzero temperature.

The first two families of spin liquids that we investigated,
defined on the checkerboard and kagome lattices, exhibit al-
gebraic correlations, and a real-space Gauss law is explicitly
derived for all parameter values in the Hamiltonian. The an-
alytical and MC analysis also shows that, for some critical
values of the parameters, higher-rank gauge fields emerge.
These two models nevertheless differ in the fact that the
second one clearly shows OBD phenomena and a subsequent
selection within the ground-state manifold.

The final example that we analyzed reveals a distinct qual-
itative behavior: the system is predominantly in a short-range
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spin-liquid phase for most microscopic parameter values.
There are, however, different short-range phases separated by
critical points where the system has algebraic correlations. For
two of these points with algebraic behavior, we provided an
explicit construction of a divergence-free flux field, and the
LTA analysis makes us believe that it should be the case also
for the third point.

In conclusion, our study highlights the effectiveness of
complementary analytical and numerical techniques in the
investigation of classical spin liquids. By analyzing three dis-
tinct families of cluster Hamiltonians, which we can consider
as tailored benchmark models, we have shown that we can
encompass what we believe is the vast majority of the zool-
ogy that one can encounter in the study of two-dimensional
classical spin liquids, such as OBD phenomena, vector and
higher-rank tensor gauge fields, and its associated multiarm
pinch points, and the coexistence in the phase diagram of
short-range and algebraic spin-liquid states. Our results are
also of particular importance from the experimental perspec-
tive. Indeed, for example, in material candidates for kagome
spin liquids such as the polymorphs herbertsmithite and kapel-
lasite [34–36], there are competing interactions and it is
interesting to see how their corresponding ab initio Hamil-
tonians can approach one of the categories of the model

studied here. Our results are also of course of first impor-
tance for the elaboration of artificial spin-liquid materials
(see Refs. [37,38] for a compelling review of different ge-
ometries), where the control of the design of the setup can
allow to stick to different families of spin liquids presented
here. Furthermore, our analysis is not limited to two-
dimensional systems, and its extension to three-dimensional
models built from extended plaquettes holds considerable
promise.

Note added. Recently, another independent work regard-
ing the classification of classical spin liquids appeared as a
preprint by Yan et al. [17].
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