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Allosteric impurity effects in long spin chains
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Allosterism traditionally refers to local changes in an extended object, for instance the binding of a ligand to
a macromolecule, leading to a localized response at some other, possibly quite remote position. Here, we show
that such fascinating effects may already occur in very simple and common quantum many-body systems, such
as an anisotropic Heisenberg spin chain: Introducing an impurity at one end of a sufficiently long chain may lead
to quite significant changes of the observable behavior near the other end, but not in the much larger region in
between. Specifically, spin autocorrelation functions at thermal equilibrium are found to exhibit a pronounced
allosterism of this type.
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I. INTRODUCTION

It is commonly taken for granted that isolated many-body
systems with short-range interactions satisfy a locality princi-
ple of the following kind: A single defect, impurity, or other
type of local modification does not lead to significant changes
of the systems’ thermal equilibrium properties at sufficiently
remote places. The main message of our present work consists
in the discovery that exactly the opposite behavior actually oc-
curs already for very simple examples such as an anisotropic
Heisenberg spin chain: Thermal equilibrium correlation func-
tions near both ends of the chain may exhibit quite substantial
changes upon introducing an impurity at one end. Moreover,
no significant changes of the thermal equilibrium properties
are observed throughout the rest of the chain. Since such
a phenomenon is somewhat reminiscent of the “action at a
distance” effects in the context of allosteric biochemical pro-
cesses, we will adopt here the same label of “allosterism” to
our present case.

Closely related systems, but with the impurity being lo-
cated in the middle of a spin chain with open boundary
conditions, have been recently explored quite extensively, for
example in Refs. [1–5]. The main focus in these works is on
the (non)integrability, relaxation, and transport properties of
models which, in the absence of the impurity, are integrable,
and therefore do not approach thermal equilibrium after a
quantum quench [6–13]. Remarkably, when switching on the
impurity, those systems were numerically found in Refs. [1–5]
to become nonintegrable and thus to exhibit thermalization
after a quench. More precisely speaking, upon parametrically
changing the impurity strength, a continuous transition was
numerically observed, which becomes more and more rapid
as the chain length is increased, implying that in the thermo-
dynamic limit an arbitrarily weak impurity would be sufficient
to instantly turn a nonthermalizing system into a thermalizing
one [4] (see also [2,3]).

It is well known, yet quite remarkable in view of these
integrability-breaking effects of a midchain impurity, that the
same type of impurity at the end of the chain provably pre-
serves the system’s integrability [14–16]. Here, we will show

that even more remarkable effects, namely allosterism, may
be caused by such an end impurity.

An important difference compared to the previous
Refs. [1–5] is that we focus on systems which are at thermal
equilibrium from the outset. On the other hand, our findings
are–similar to those in Refs. [1–5]–mainly based on numerical
explorations, complemented by some analytical insights.

II. SETTING

We consider the familiar anisotropic spin-1/2 Heisenberg
chain (XYZ model), exhibiting open boundary conditions and
a magnetic impurity at the “left end,”

H = gsz
1 −

L−1∑
l=1

Jxsx
l+1sx

l + Jysy
l+1sy

l + Jzs
z
l+1sz

l , (1)

where sx,y,z
l are spin-1/2 operators at the lattice sites l ∈

{1, . . . , L} (lattice constant one), and g quantifies the strength
of the impurity.

We mostly restrict ourselves to even L and pairwise differ-
ent Jx,y,z (generalizations will be briefly addressed in Sec. IV).
The reason is that under these conditions we numerically
observed that all the subsequently explored Hamiltonians (1)
did not exhibit any degeneracies, which in turn allows us to
make some interesting analytical predictions. Hereafter, we
just state those predictions whenever appropriate, referring
to the accompanying Supplemental Material [17] for their
detailed derivation. We also prove in [17] that H necessarily
must exhibit degeneracies for g = 0 if L is odd or the Jx,y,z are
not pairwise different; hence some of our analytical predic-
tions no longer apply.

As announced, the system is assumed to be at thermal equi-
librium, described by a canonical ensemble e−βH/ tr{e−βH }
with temperature β−1 (Boltzmann constant kB = 1). Accord-
ingly, thermal expectation values of an observable A are given
by

〈A〉th := tr{A e−βH }/ tr{e−βH } (2)
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FIG. 1. Numerically obtained correlation functions Cr
t (sz

L ) from
(4) versus time [18]. Red: XYZ model (1) with g = 0.1, L = 20
(solid), L = 14 (dashed), L = 10 (dotted), Jx = 1, Jy = 1.2, Jz = 1.5,
and β = 0.2. Blue: Same, but for g = 0. Inset: Magnification for
t � 100.

and dynamic (auto)correlation functions by

Ct (A) := 〈AA(t )〉th − 〈A〉2
th, (3)

where A(t ) := eiHt Ae−iHt (Heisenberg picture, h̄ = 1). Fur-
thermore, their real (or symmetrized) part

Cr
t (A) := Re{Ct (A)} (4)

is usually of major interest [see also discussion below Eq. (7)].

III. RESULTS

Figure 1 exemplifies the correlations (4) of the magneti-
zation A = sz

L at the chain’s “right end” (l = L). The salient
point is that these correlations exhibit significant differences
depending on whether an impurity at the opposite end (l = 1)
is present (g �= 0, red curves) or not (g = 0, blue curves). The
differences become clearly visible for t � 1.5 L (see inset),
while all curves nearly coincide for t � 1.5L. Intuitively, this
may be understood as the signature of a maximal speed at
which information about the situation at one end can travel
to the other end [19–23]. Likewise, one may understand why
the growth of those differences slows down when L increases
[24]. Yet, they ultimately always approach a sizable and
asymptotically L-independent long-time limit (see also the
subsequent paragraphs); i.e., an impurity at one end quite
notably affects the correlation functions at the other end.

Similarly as in Fig. 1, we numerically explored the correla-
tion functions for various other observables, most notably for
sa

l with a ∈ {x, y, z} and l ∈ {1, . . . , L}. Again, we found that
if some non-negligible difference in the absence (g = 0) and
in the presence (g �= 0) of the impurity was observable at all,
then this difference predominantly manifested itself after suf-
ficiently long times. Henceforth, we thus restrict ourselves to
the long-time behavior of the correlations Ct (A), in particular
their long-time average

C(A) := lim
T →∞

1

T

∫ T

0
dt Ct (A). (5)

Indeed, one intuitively expects that, after initial transients have
died out, the time-dependent correlations Ct (A) stay closer
and closer to the time-averaged value C(A) as the system size
L increases. A typical example is provided by the red curves
in Fig. 1, and further examples can be seen in Figs. S3 and
S4 of the Supplemental Material [17]. We also observed this
expected long-time behavior in all other numerical examples
which we explored with respect to these specific features.
The same has even been shown analytically under very weak
assumptions regarding the spectrum of H in Ref. [25] (see
also [26]). Accordingly, we henceforth take it for granted that
C(A) faithfully captures the long-time behavior of Ct (A).

Denoting by En and |n〉 the eigenvalues and eigenvectors
of the Hamiltonian H (with n = 1, . . . , N := 2L), one readily
infers [25,27] from (2), (3), and (5) that

〈A〉th =
N∑

n=1

pn 〈n|A|n〉, (6)

C(A) =
N∑

n=1

pn [〈n|A|n〉 − 〈A〉th]2, (7)

where pn := e−βEn/
∑N

m=1 e−βEm is the population of the en-
ergy level |n〉 in the canonical ensemble, and where—in case
that H exhibits degeneracies—the eigenstates |n〉 must be
chosen so that A is diagonal in the corresponding eigenspaces
of H (see also the Supplemental Material [17]). As an aside,
we can infer from (7) that the long-time average in (5) must
be real and non-negative. Moreover, it must be equal to the
long-time average of the real part Cr

t (A) from (4).
Assuming g = 0 (no impurity), and exploiting that H ex-

hibits no degeneracies [see below Eq. (1)], we analytically
show in [17] that 〈n|sa

l |n〉 = 0 for all n, l , and a ∈ {x, y, z}.
Hence, the thermal expectation values in (6) as well as the
long-time averages in (7) must vanish for all A = sa

l . In par-
ticular,

〈sz
L〉th = 0 and C(sz

L ) = 0 if g = 0; (8)

i.e., all the blue curves in Fig. 1 must end up by fluctuating
around zero. If g �= 0, we furthermore prove in [17] that ther-
mal expectation values and long-time averages still vanish for
all A = sx,y

l , while A = sz
l must now be evaluated numerically.

Figure 2 shows such numerically obtained long-time av-
erages for A = sz

l , implying the following: (i) As analytically
predicted, C(sz

l ) = 0 for g = 0 (blue symbols). (ii) Upon in-
creasing L, the impurity effects (difference between blue and
red symbols) decrease outside the two end regions, while they
even slightly increase at the two ends. (iii) The values of C(sz

l )
and C(sz

L+1−l ) are nearly equal for g = 0.1 (red symbols).
Concerning (ii), a more detailed finite-size scaling analysis

is presented in Fig. 3. Our first remark is that crosses and
squares have been obtained by means of two entirely differ-
ent numerical methods. Their close agreement indicates that
our numerics is trustworthy. We also note that the crosses
were numerically less expensive; hence larger L values could
be achieved. Furthermore, the dotted lines in Fig. 3(a) in-
dicate that C(sz

l ) converges, for an arbitrary but fixed l ∈
{1, 2, 3}, toward a nonvanishing limit when L → ∞, and
likewise when keeping L − l ∈ {0, 1, 2} fixed. While these
limiting values clearly decrease with increasing l ∈ {1, 2, 3}
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FIG. 2. Long-time average C(sz
l ) from (7) versus chain site l =

1, . . . , L [18]. Red: XYZ model (1) with g = 0.1, L = 16 (circles),
L = 12 (triangles), L = 8 (stars), Jx = 1, Jy = 1.2, Jz = 1.5, and β =
0.2. Blue: Same, but for g = 0. Inset: Raw data. Main plot: Rescaled
x axis and interpolating lines to guide the eye.

or L − l ∈ {0, 1, 2}, it nevertheless seems reasonable to expect
that C(sz

l ) still asymptotically approaches some nonvanishing
limit whenever l or L − l is kept at an arbitrary but fixed
value as L → ∞. Indeed, the alternative option that the limit
stays finite up to some maximal distance from the chain ends,
and then strictly vanishes, appears less reasonable. On the
other hand, for an arbitrary but fixed l/L ∈ {1/4, 1/2, 3/4}
the numerical data in Fig. 3(a) apparently approach zero faster
than 1/L, while the dotted lines in Fig. 3(b) indicate that they
asymptotically decrease exponentially with L. Again, it thus
seems reasonable to expect such an exponential decay when-
ever l/L converges to a limit different from zero and unity.

(a)

(b)

FIG. 3. (a) Long-time average C(sz
l ) versus 1/L for various l

values (see legend), employing the same model as in Fig. 2 (g = 0.1).
Crosses: Numerical results by evaluating (5) for large but finite T
[18]. Squares: Numerically exact (but also more expensive) results by
evaluating (7) via diagonalization of H . Some symbols are (nearly)
covered by others. (b) Same data, but plotted semi-logarithmically
versus L. The dotted lines are a guide to the eye, suggesting for the
corresponding l values a convergence toward a positive large-L limit
in (a) and an exponential decay toward zero in (b); see also main text.

0.069

0.068

0.125 0.13

FIG. 4. Long-time average C(sz
l ) from (7) versus impurity

strength g [18] for l = 1 (blue), l = L (red), l = L/2 (black), L = 16
(solid), L = 12 (dashed), L = 8 (dotted), Jx = 1, Jy = 1.2, Jz = 1.5,
and β = 0.2. Insets: Magnifications near g = 0.13 (left) and g = 0
(right).

Additional data in support of these predictions are provided in
[17].

Altogether, we thus recover the announced allosteric im-
purity effects for long spin chains, complemented by rather
interesting finite-size scaling properties.

Next we turn to the dependence of the long-time correla-
tions C(sz

l ) on the impurity strength g. Focusing on the ends
and the center of the chain, i.e., on l ∈ {1, L/2, L}, a numer-
ical example is depicted in Fig. 4. Furthermore, a finite-size
scaling analysis analogous to that in Fig. 3(a) is provided in
Fig. 5 for a few representative g values. The corresponding
counterpart of Fig. 3(b) is available as Supplemental Material
[17]. Similarly as before, these numerical findings indicate
that C(sz

l ) converges to a nonvanishing limit for l = 1 and
l = L, and decays to zero for l = L/2. Furthermore, it seems

FIG. 5. Same as in Fig. 3(a) for l = 1 (blue), l = L (red), l =
L/2 (black), but now for different coupling strengths g (see legends).
For g = 0.5, an extremely expensive extra blue cross at L = 28 has
been generated in support of a nonvanishing large-L limit.
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again reasonable to expect that the same qualitative large-L
asymptotics will apply to any given g > 0, and likewise for
other l values (see above).

Regarding the issue (iii) from above [see paragraph below
Eq. (8)], Figs. 3–5 confirm that C(sz

l ) and C(sz
L+1−l ) are indeed

nearly indistinguishable if (and only if) g is sufficiently small.
Further interesting features of Fig. 4 are the local minima near
g = 1/2 (blue and black) and g = 1/3 (red), and the closeness
of the crossing points near g = 0.13 (left inset). Additional
details are deferred to the Supplemental Material [17] since
all these “extra features” go beyond our actual main objective,
namely to demonstrate the occurrence of allosteric impurity
effects per se.

As already mentioned, for g = 0 we analytically estab-
lished in [17] that C(sz

l ) = 0. Yet another analytical prediction
in [17] is the invariance of C(sz

l ) under a sign change of g.
This justifies our restriction to g � 0 in the numerics, and
suggests that C(sz

l ) ∼ g2 for asymptotically small g. The right
inset of Fig. 4 confirms this quadratic asymptotics, and in-
dicates that the curvature ∂2C(sz

l )/∂g2|g=0 actually diverges
as L → ∞. Overall, the behavior for g → 0 and L → ∞ is
thus quite intriguing, and in fact somewhat reminiscent of the
integrability-breaking effects of an impurity in the middle of
the chain (see second paragraph in Sec. I).

IV. GENERALIZATIONS AND DISCUSSION

Our findings for more general model parameters are sum-
marized in the following items (a) to (e), postponing their
detailed analytical and numerical substantiation to the ac-
companying Supplemental Material [17]: (a) If L is odd or
the Jx,y,z are not pairwise different [see below Eq. (1)], then
our analytical result C(sz

l ) = 0 for g = 0 is no longer valid.
Accordingly, the behavior of C(sz

l ) for g = 0, henceforth ab-
breviated as C0(sz

l ), must be numerically explored, and the
characteristic signatures of allosterism are now captured by
�C(sz

l ) := C(sz
l ) − C0(sz

l ). We numerically found that �C(sz
l )

still behaves qualitatively similarly as in Figs. 2–5; i.e., the
system again exhibits the same allosteric impurity effects as
before. (b) We also observed a qualitatively similar behavior
for various other β values in (2). (c) The same applies to other
values of Jx,y,z in (1) at least within the realm Jz > Jx,y � 0
(and excepting Jx = Jy = 0). Quite surprisingly, however, the
allosteric effects are found to disappear when Jx � Jy,z � 0
or Jy � Jx,z � 0. (d) It is sufficient to focus on non-negative
interactions Jx,y,z in Eq. (1) since the behavior in all other
cases can be inferred by symmetry arguments. (e) Instead of
the canonical ensemble in Eq. (2), one may as well employ
a microcanonical ensemble; i.e., our allosteric effects exhibit
the usual equivalence of ensemble properties [28].

Figure 4 and its discussion, as well as the above-mentioned
observation (c), indicate that figuring out the basic physical
mechanism behind our allosteric effects represents a very
challenging task. This is further corroborated by the following
two remarks: (i) As far as “ordinary” thermal expectation
values (2) are concerned, we never found any noteworthy
impact of the impurity on the system’s equilibrium properties
sufficiently far away from that impurity. In particular, for
the observable A = sz

L we thus can conclude with (8) that

〈sz
L〉th = 0 is still fulfilled in very good approximation even

if g �= 0, and provided L is sufficiently large. In other words,
our present allosteric effects only manifest themselves in the
correlation functions from (3), not in the expectation values
from (2), the key signature being a nonvanishing thermody-
namic limit of C(sz

L ) for g �= 0. (ii) Generally speaking, such
a nonvanishing thermodynamic limit of C(A) is already in
itself a quite exceptional situation [29]. The only previous
examples known to us are a few, rather special spin-chain
and central-spin models; see Refs. [24,27,30–33] and fur-
ther references therein. Most notably, XX chains with open
boundary conditions and local impurities of a different type
than in (1) have been numerically and analytically explored
in Ref. [31], explaining some of the therein observed impurity
effects in terms of localized single-particle “boundary modes”
after mapping the model by means of a Jordan-Wigner trans-
formation to a formally equivalent system of noninteracting
fermions. However, we found that our present allosterism does
not occur in those XX-chain models from [31] [see also item
(c) above], and that the analytical methods from [27,30,31]
cannot be adapted to explain our present allosteric effects.
In particular, the boundary modes from Ref. [31] become
meaningless since our present Hamiltonians (1) can no longer
be mapped to a model of noninteracting fermions. We also
remark that a similar observation as in (c) above has been
previously reported in Sec. 2.4 of Ref. [30] for an XY model in
the infinite-temperature limit, and most importantly, without
any impurity [34].

On the other hand, many essential features of the blue
curves in Fig. 1 can be analytically understood [24] by means
of so-called edge zero modes [35]. In particular, these insights
are in agreement with our numerical observation that the blue
and red curves in Fig. 1 nearly coincide for t � 1.5L. Focusing
on the thermodynamic limit L → ∞ is therefore useless for
the exploration of our present allosteric effects, as done, for
instance, in the analytical investigations in Refs. [33,36] of
certain impurity effects in the XXZ model.

Incidentally, taking for granted the so-called eigenstate
thermalization hypothesis (ETH) [9] and the usual equiva-
lence of ensembles [28], one can conclude that the long-time
average in Eq. (7) must asymptotically vanish for large L, and
that our present allosteric effects can thus be ruled out. In
fact, the same conclusion can already be deduced [25] from a
considerably weaker version of this standard ETH [9]. While
the standard ETH is a still unproven conjecture concerning
nonintegrable models, this weaker version of the ETH is prov-
ably fulfilled by a very large class of translationally invariant
models (integrable or not) with short-range interactions [37].
Overall, an indispensable (but not sufficient) prerequisite for
the appearance of our present allosteric effects thus seems to
be a violation of both the standard and the weak versions of the
ETH, which in turn require that the system must be integrable
[9] and not translationally invariant [25,37], respectively.

Altogether, it seems reasonable to suspect that our al-
losteric impurity effects might be somehow related to the
above-mentioned concepts of boundary or edge zero modes,
and to the (weak) ETH, but we are not aware of any previ-
ously established analytical tools or intuitive arguments which
would admit some seizable further progress along these lines.
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V. CONCLUSIONS

Our main result consists in the discovery of allosteric im-
purity effects in long spin chains. These effects seem to us
quite remarkable in themselves, and comparable findings in
such relatively simple many-body systems with short-range
interactions have to our knowledge never been observed be-
fore. A very interesting next step will be to explore the
behavior in response to time-dependent changes of the end-
impurity strength g in Eq. (1). In the not unlikely case that a
notable response will again be detectable at the other chain
end, but not outside the two end regions (for sufficiently long
chains), this may open up a conceptually new way of secure
quantum communication.

Superficially, our present allosteric effects might seem
to be at least conceptually somehow related to the cele-
brated nonlocality property of quantum mechanics (Einstein-
Podolsky-Rosen paradox), or to the so-called cluster decom-
position principle [38], but a closer look reveals that both of
them are in fact not very helpful for a better understanding

of our present case [41]. Likewise, our findings are somewhat
reminiscent of allosteric biochemical processes, while the un-
derlying physical mechanism and the way in which the effect
actually manifests itself are clearly very different.

Another main message of our paper is that the occurrence
(or not), as well as the quantitative details, of our allosteric
effects depends in a very subtle manner on the various model
parameters. For instance, the relative magnitude of the three
interactions Jx,y,z in Eq. (1) seems to play a decisive role.
Accordingly, an analytical or intuitive explanation of our
numerical observations amounts to a quite challenging open
problem for future studies.
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