
PHYSICAL REVIEW B 108, 054313 (2023)

Accelerating relaxation dynamics in open quantum systems with Liouvillian skin effect
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We investigate a non-Hermitian model featuring nonreciprocal gradient hoppings. Through an in-depth anal-
ysis of the Liouvillian spectrum and dynamics, we confirm the emergence of the Liouvillian skin effect resulting
from the nonreciprocal nature of hoppings in this model. Furthermore, we observe that the presence of gradient
hopping strength leads to an accelerated relaxation time for the system. Through numerical investigations of the
Liouvillian gap, relaxation time, and steady-state localization length, we discover that the relaxation time in this
model cannot be explained by the currently established relationship associated with the Liouvillian skin effect.
This discrepancy highlights the need for further exploration and theoretical advancements to fully comprehend
the intricate mechanisms underlying quantum relaxation processes. Motivated by these findings, we propose
a theoretical approach to realize this non-Hermitian model in an atomic system with a sideband structure by
employing an adiabatic elimination technique. These results contribute to our deeper comprehension of quantum
relaxation dynamics and provide theoretical backing for the development of techniques aimed at controlling
quantum relaxation processes.
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I. INTRODUCTION

The study of open quantum systems, which takes into
account interactions with the surrounding environment, is
a fundamental and captivating research field [1,2]. Many
open quantum systems can be effectively described by non-
Hermitian Hamiltonians, which have attracted widespread
attention in the past two decades [3–9]. Unlike closed quan-
tum systems, open quantum systems experience a breakdown
of time reversibility due to the stochastic coupling with the
environment. This breakdown leads the open quantum system
to eventually reach a steady state, where it remains throughout
the evolution. This evolution is referred to as the relaxation
process and occurs on a characteristic timescale known as
the relaxation time, denoted as τ . The relaxation time serves
as a significant intrinsic timescale for understanding open
quantum systems. In a specific class of open quantum systems
characterized by the Markovian Lindblad master equation, the
relaxation time τ is typically inversely proportional to the
Liouvillian gap � of the system [10,11].

Furthermore, considerable attention has been given to the
skin effect in Markov process-based open quantum systems.
The existence of the skin effect in such systems was re-
cently confirmed and was named the Liouvillian skin effect
(LSE) [12,13]. Compared with the non-Hermitian skin effect
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that describes the localization of non-Hermitian Hamiltonian
eigenstates [3–9], the LSE denotes the localization of Liou-
villian eigenmodes. In the LSE, the system tends to relax
towards the boundaries of system. Interestingly, it has been
discovered that the relaxation processes are slowed down in
the presence of the LSE, even without the closing of the
Liouvillian gap. The relationship between the relaxation time
τ and the Liouvillian gap � is modified by the ratio of the
system size N to the localization length ξ of the Liouvillian
skin mode [12]:

τ ∼ 1

�

(
1 + N

ξ

)
. (1)

This relationship significantly advances our understanding of
relaxation physics in open quantum systems. It raises the
question of its universality across all open quantum systems
with the LSE. Moreover, if the relationship is not universal, it
prompts further investigation into whether systems deviating
from it exhibit even more intriguing Liouvillian dynamics.

To address these inquiries, we investigate a non-Hermitian
model with nonreciprocal gradient hopping. First, we estab-
lish the existence of the LSE by examining the Liouvillian
eigenmodes and dynamics of the model. Additionally, we
observe a significant acceleration of the relaxation process
towards the steady state due to the presence of gradient non-
Hermitian hopping, which modifies the relaxation relation
stated in Eq. (1). Furthermore, we propose a method to im-
plement this non-Hermitian model in atomic systems based
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on the sideband structure, utilizing the adiabatic elimination
technique.

In the following, we introduce the non-Hermitian model
and confirm the presence of the LSE through an analysis of
the Liouvillian spectrum and dynamics in Sec. II. We then
delve into an investigation of the relaxation time of the non-
Hermitian model in Sec. III. Next, we discuss our proposal
for realizing the non-Hermitian model in atomic systems in
Sec. IV. Finally, we present our concluding remarks in Sec. V.

II. LIOUVILLIAN SKIN EFFECT

Here, we study the non-Hermitian model described by the
Lindblad master equation as follows:

˙̂ρ = −i

[
N−1∑
n=0

En|n〉〈n|, ρ̂
]

+
∑
n=1

∑
j=L,R

D[L̂n, j]ρ̂, (2)

where the Lindblad superoperator is defined as D[Â]ρ̂ =
Âρ̂Â† − {Â†Â, ρ̂/2} and the Lindblad jump operator L̂n,L(R)

is denoted

L̂n,L = √
Jn,L|n − 1〉〈n|, L̂n,R = √

Jn,R|n〉〈n − 1|, (3)

with Jn,L being the left hopping strength and Jn,R being the
right hopping strength. N is the number of sites {|n〉}, i.e.,
the system size. In this model, both on-site energy En and
noncoherent hoppings Jn,R(L) can be gradient. The Lindblad
master equation we consider in Eq. (2) can be rewritten as

˙̂ρ = L[ρ̂], (4)

where L is the Liouville superoperator defined in an N2-
dimensional Hilbert space [1]. Then the right and left
eigenmodes of L are defined as

L
[
ρ̂r

k

] = λk ρ̂
r
k ,

L†[ρ̂ l
k

] = λ∗
k ρ̂

l
k, (5)

with k = 0, 1, 2, . . . , N2 − 1. Here, r (l) denotes the normal-
ized right (left) eigenmode as Tr[

√
(ρ̂r(l )

k )†ρ̂
r(l )
k ] = 1. Thus,

any initial state of the system ρ̂ini can be expanded in terms
of the eigenmodes as

ρ̂ini =
N2−1∑
k=0

ck ρ̂
r
k , (6)

where the coefficients ck are given by ck = Tr[(ρ̂ l
k )†ρ̂ini]/

Tr[(ρ̂ l
k )†ρ̂r

k ]. As a result, the system evolves to the state

ρ̂(t ) =
N2−1∑
k=0

ckeλkt ρ̂r
k , (7)

where λk represents the decay rate associated with the eigen-
mode ρ̂r

k .
The time evolution of an open quantum system is charac-

terized by quantum dynamical semigroups, which indicates
that the fate of the system is determined by the steady state
ρ̂s, while the contributions from all other eigenmodes decay
completely. The steady state ρ̂s corresponds to the eigenmode
of the Liouvillian superoperator L with a zero eigenvalue

(excluding purely imaginary eigenvalues, which would lead to
nonstationary steady states [14,15]). In other words, L[ρ̂s] =
0. This implies that the real parts of all other eigenvalues
are negative, allowing us to order the eigenvalues λk in de-
scending order of their real parts as 0 = λ0 > Re[λ1] � · · · �
Re[λN2−1]. The Liouvillian gap, denoted as � = |Re[λ1]|, is
defined as the real part of the eigenvalue of the Liouvillian
superoperator with the largest nonzero real part. This gap is
typically associated with the asymptotic decay rate [16]. The
time-dependent density matrix can be expressed as [12]

ρ̂(t ) = ρ̂r
s +

N2−1∑
k=1

ckeλkt ρ̂r
k . (8)

To investigate the LSE in our system, we first numeri-
cally solve Eq. (5) to obtain the Liouville spectrum as shown
in Fig. 1, considering a system with 20 sites. As depicted
in Fig. 1(a), the eigenvalues with nonzero imaginary parts
appear within a central region, indicating their contribution
to the periodic oscillations in the relaxation dynamics. The
inset confirms the uniqueness of the steady state, primar-
ily resulting from the breaking of all the symmetries of the
system by the Lindblad jump operator in Eq. (3) [17]. In
contrast, Fig. 1(b) displays the spectrum when the gradient
of the hoppings is turned off, resulting in reduced absolute
values of the real parts of the eigenvalues. Furthermore, the
distribution of the real parts of the eigenvalue modes with
nonzero imaginary parts in the middle section of the spec-
trum becomes more uniform, indicating a more consistent
decay rate for these modes. Figure 1(c) demonstrates that
when the on-site potential gradient is eliminated, eigenmodes
with nonzero imaginary parts disappear. In all cases shown in
Figs. 1(a)–1(c), the steady state remains unique, as depicted
in the insets, indicating that the nonreciprocal hoppings do
not alter the symmetry of the system. Additionally, Figs. 1(a)
and 1(b) show that the Liouvillian gap is larger when gradient
hopping is present, suggesting a faster relaxation rate towards
the steady state. In Fig. 1(d), we present the density matrices
of the eigenmodes labeled in Fig. 1(a). The steady state is
localized at the left boundary of the system [see Fig. 1(d),
panel (i)], and as the real part of the eigenvalues increases,
the corresponding eigenmodes tend to occupy sites near the
right boundary [see Fig. 1(d), panel (iv)]. For eigenmodes with
nonzero imaginary parts of eigenvalues, their density matrices
exhibit nonzero off-diagonal elements, leading to oscillatory
decaying behavior during the relaxation process towards the
steady state.

Taking the system size to be N = 101 and setting the
initial state of the system to |n = 50〉, we make noteworthy
observations. When the system undergoes reciprocal hoppings
[Figs. 2(a) and 2(b)], it displays symmetric dynamical evolu-
tion across the system. However, in the case of nonreciprocal
hoppings [Figs. 2(c) and 2(d)], the system’s symmetric dy-
namical evolution breaks down, and it evolves towards the
boundaries, remaining there indefinitely. This intriguing phe-
nomenon is known as the LSE. Furthermore, consistent with
the findings in Fig. 1, when the hoppings in the system are
gradient [Figs. 2(a) and 2(c)], the system relaxes to the bound-
aries at a faster rate. As the hoppings in our model exhibit a
gradient nature, we will quantitatively study the key factors
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FIG. 1. Liouvillian spectrum. The eigenvalues of the Liouvillian operator (a) with both the on-site potential and nonreciprocal hoppings
being gradient [En = nE , Jn,R(L) = nJR(L)], (b) with only the on-site potential being gradient [En = nE , Jn,R(L) = JR(L)], and (c) with only the
nonreciprocal hoppings being gradient [En = E , Jn,R(L) = nJR(L)]. (d) The eigenmodes of the Liouvillian operator as indicated in (a). The
number of sites is N = 20. Other parameters: E = 1.0 MHz, JL = 184.3 Hz, and JR = 118.0 Hz.

influencing the relaxation process under such special hop-
pings: the Liouvillian gap, relaxation time, and localization
length.

III. RELAXATION TIME

The relaxation time in a quantum open system refers
to the characteristic duration it takes for the system to
reach its equilibrium or steady state [1]. This time span is
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FIG. 2. Liouville dynamics. The hopping strengths are gradient
in (a) and (c) (Jn,R(L) = nJR(L)) and are homogeneous in (b) and
(d) (Jn,R(L) = JR(L)). (a) and (b) show the absence of the LSE with
hopping strengths JR = JL = 184.3 Hz, and (c) and (d) confirm the
LSE with nonreciprocal hopping strengths JR = 100JL = 184.3 Hz.
The number of sites is N = 100. Other parameters: En = nE and
E = 1.0 MHz. The panels in the same row have the same y axis.

influenced by several factors, including the strength of the
system’s interaction with the environment, the properties of
the environment itself, and the specific dynamics governing
the system. Experimental determination of the relaxation time
involves observing the temporal evolution of relevant ob-
servables or analyzing the decay rates of specific quantities.
Understanding the relaxation time is crucial in the study of
open quantum systems because it provides valuable insights
into system behavior, stability, and timescales associated with
achieving a steady state. Moreover, it holds significant im-
portance in practical applications like quantum information
processing, where effective control and mitigation of relax-
ation processes are essential for preserving the coherence and
reliability of quantum states and operations [18].

To discuss the variation of the Liouvillian gap and relax-
ation time with system size and the hopping strength, we
consider, without loss of generality, the case in which the
steady state of the system ρs localizes on the left boundary site
|0〉, namely, Jn,L > Jn,R. Therefore, we initialize the system
in the right boundary site |N − 1〉 and define the relaxation
time τ as the time when the decay of the population of the
right boundary site |N − 1〉 reaches 1/e of ρs,N−1. Then the
relaxation time τ is given by

ρs,N−1 − ρN−1(τ ) = ρs,N−1

e
, (9)

where ρs,n represents the occupation probability of the steady
state on site |n〉.

In Fig. 3, we consider two cases: homogeneous hopping
strength [Figs. 3(a) and 3(c)] and gradient hopping strength
[Figs. 3(b) and 3(d)]. When the system undergoes reciprocal
and homogeneous hoppings [double-dot-dashed purple lines
in Figs. 3(a) and 3(c)], we observe that the relaxation time τ

(proportional to N2) and the Liouvillian gap � (proportional
to N−2) follow the relationship τ ∝ 1/�, reflecting diffusive
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FIG. 3. Liouvillian gap and relaxation time. The hopping
strengths are homogeneous in (a) and (c) (Jn,R(L) = JR(L)) and are
gradient in (b) and (d) (Jn,R(L) = nJR(L)). The solid gray lines give
a reference of the size scaling. Other parameters: En = nE , E =
1.0 MHz, and JL = 184.3 Hz. The panels in the same row have the
same y axis.

relaxation [12,19–21]. However, when the hopping strength is
gradient and reciprocal, the system relaxes to the steady state
at an accelerated rate (τ ∝ N), as indicated by the double-dot-
dashed purple lines in Figs. 3(b) and 3(d). Interestingly, when
the hopping strength is nonreciprocal and homogeneous, the
simple relationship τ ∝ 1/� is broken. As nonreciprocity
increases, the value of � tends to remain invariant with the
system size [see the double-dot-double-dashed blue lines in
Figs. 3(a) and 3(b)], while the relaxation time τ still scales
with the system size [see the double-dot-double-dashed blue
lines in Figs. 3(c) and 3(d)]. In this case, the relationship
between the Liouvillian gap and the relaxation time needs
to be described by Eq. (1), where the localization length ξ

is size independent. However, as shown in Figs. 3(b) and 3(d),
when the hopping is gradient, with increasing nonreciprocity,
the value of � still does not change with the system size, but
the relaxation time τ scales as N1/5. This result indicates that
the gradient significantly accelerates the relaxation process.
Furthermore, if the system still follows Eq. (1), i.e., τ ∼
�(1 + N/ξ ) ∝ N1/5, this implies that the localization length
of the system ξ is size dependent and scales as ξ ∼ N4/5.

To verify whether the localization length of the system fol-
lows the above analysis, we present a plot of the localization
length as a function of size in Figs. 4(a) and 4(b). We observe
that when the system exhibits the LSE, regardless of whether
the hopping strength is homogeneous [Fig. 4(a)] or gradient
[Fig. 4(b)], the profile of the steady states for smaller systems
is overlapped by the profile of steady states for larger systems,
indicating that the localization length of the steady state is
independent of the system size. This size-independent behav-
ior is further supported by Figs. 4(c) and 4(d), which show
that the localization length of the steady state is solely deter-
mined by the nonreciprocal hopping ratio JR/JL, regardless
of whether the hopping strength is homogeneous [Fig. 4(c)]
or gradient [Fig. 4(d)]. Therefore, the relaxation behavior of
our model cannot be described by Eq. (1). This indicates
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FIG. 4. Localization length. The hopping strengths are homo-
geneous in (a) and (c) (Jn,R(L) = JR(L)) and are gradient in (b) and
(d) (Jn,R(L) = nJR(L)). (a) and (b) show the profile of steady states
for different system size with

√
JR/JL = 0.8. (c) and (d) show the

localization length of the steady states. Other parameters are the same
as in Fig. 3. The panels in the same row have the same y axis.

that the general relationship governing the relaxation time
for open quantum systems with the LSE has not yet been
discovered.

To gain further insight into the physics underlying our
results, we closely follow the analysis presented in [12]. The
acceleration of the relaxation process can be understood us-
ing Eq. (8). Among all the eigenmodes, the real part of the
eigenvalues of ρr

1 has the smallest absolute value, leading to
the slowest relaxation to the steady state. Consequently, the
entire relaxation timescale is determined by the coefficient
corresponding to ρr

1, denoted as c1. It is always possible to
prepare the initial state ρ̂ini with an overlap of O(1) with ρ l

1.
When the system exhibits the LSE under homogeneous hop-
ping, all the eigenmodes are localized near the boundary and
decay exponentially, resulting in c1 = O(1)/Tr[(ρ̂ l

1)†ρ̂r
1] ∼

eO(N/ξ ) (without LSE, c1 is independent of the system size
N , and the relaxation law is 1/�). At this point, the relax-
ation time τ is determined by eO(N/ξ )e−τ� ∼ e−1, leading to
the relation given in Eq. (1). In Fig. 5(a), we numerically
calculate − ln |Tr[(ρ̂ l

1)†ρ̂r
1]| and verify the size scaling N for

the homogeneous hopping. Furthermore, we observe that for
the gradient hopping, − ln |Tr[(ρ̂ l

1)†ρ̂r
1]| shows a tendency

to converge to N1/5 as the system size increases. Following
the analysis above, we infer that c1 = O(1)/Tr[(ρ̂ l

1)†ρ̂r
1] ∼

eO(N1/5/ξ ) for the gradient hopping. Consequently, based on
the results in Figs. 3–5, we deduce that the relaxation time
for our model is τ ∼ �−1(1 + N1/5/ξ ) in the thermalization
limit. We numerically check the size scaling N1/5 in Fig. 5(b),
where the relaxation time shows the tendency of convergence
to N1/5 in the larger system size. This can be understood as
the system size N being effectively shortened to N1/5 by the
gradient hopping, which breaks the translation symmetry of
the system by inducing an additional effective force. As a
result, regardless of whether the system evolves from the left
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to the right or from the right to the left, the overall dynamics
are accelerated, with the only difference being the time stage
for the accelerations. To precisely verify and prove our results,
we need to find new methods, such as modifying the one
used to solve the problems like SU(1,1) dynamics [22–24],
to analytically solve Eq. (2). This remains our primary focus
for future research.

IV. PROPOSAL FOR A NON-HERMITIAN MODEL
WITH GRADIENT HOPPING

We use the trapped-ion system as an example to illustrate
the effective non-Hermitian model. The method employed
here is applicable to other atomic systems that possess the mo-
tional sideband structure [25–27]. As depicted in Fig. 6(a), the
trapped-ion system consists of two internal electronic energy
levels: the ground state |g〉 and the excited state |e〉, which are
described by the Hamiltonian (we set h̄ = 1 throughout this
work)

Ĥi = ω0

2
(|e〉〈e| − |g〉〈g|). (10)

The trap employed here provides dynamical confinement in
the y-z plane and static confinement in the x direction [28].
The motional sidebands of the internal states are constructed
using the energy levels {|n〉, n = 0, 1, 2, . . . } of the harmonic
trap in the x direction, which are separated by the frequency ν

and given by

Ĥe =
N−1∑
n=0

(
1

2
+ n

)
ν|n〉〈n|, (11)

with N being the system size (the number of motional
sideband levels). We introduce two independent lasers for
coupling the internal states to the external motional sideband
states. The couplings are described by

V̂j = 	 j (|g〉〈e| + |e〉〈g|) cos(k j x̂S − ω jt + φ j ), (12)

where k j, ω j, φ j , and 	 j correspond to the wave vector,
frequency, initial phase, and Rabi frequency of laser j,

FIG. 6. Illustration of the proposed non-Hermitian model. (a) The motional sidebands structure of a trapped-ion system encoded with two
internal states |g〉 and |e〉. � and ν are the level spacings of the internal states and the motional sidebands states, respectively. δr,b, ηr,b, and 	r,b

are, respectively, the detunings, Lamb-Dick parameters, and Rabi frequencies of the independent red-detuned laser and blue-detuned laser.
γ is the decay rate of the excited internal state |e〉. (b) and (c) The adiabatical elimination processes of the excited state |e, n − 1〉 via the
red-detuned laser and of the excited state |e, n〉 via the blue-detuned laser. nJr,b is the effective hopping strength. (d) The ground internal state
|g〉 based effective non-Hermitian model with nonreciprocal gradient hoppings nJr,b.
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respectively. Here, the subscripts j = r, b refer to the red-
detuned laser (ωr < ω0) and the blue-detuned laser (ωb > ω0),
respectively.

We apply the rotating wave approximation to the sys-
tem in the rotating frame ÛR = e−i(Ĥi+Ĥe )t , resulting in the
Hamiltonian of the trapped ion:

ĤRWA
R =

∑
j=r,b

	 j

2
e−i[k j x̂R−(ω j−ω0 )t+φ j ]|g〉〈e| + H.c., (13)

with x̂R = Û †
R x̂SÛR. The system enters the Lamb-Dicke regime

when the spatial extension of the ion x0 = √
1/2Mν (M is the

mass of the ion) is much smaller than the wavelengths of all
the applied lasers. In this regime, the recoil energies of the
lasers have a negligible impact on the trap frequency ν. Hence,
the Lamb-Dicke parameter satisfies η j = k jx0 � 1 ( j = r, b).
We can then expand Eq. (13) in terms of η j to obtain the
Hamiltonian

ĤLD
R =

∑
n=0

√
n + 1

2
[ηr	rei(δr t−φr )|g, n + 1〉〈e, n| + H.c.]

+
∑
n=0

√
n + 1

2
[ηb	bei(δbt−φb)|g, n〉〈e, n + 1| + H.c.],

(14)

where δr = ωr − (ω0 − ν) and δb = ωb − (ω0 + ν) are the
red detuning and blue detuning of lasers, respectively, and
satisfy δr,b � ν.

The spontaneous decay of the excited sideband state |e, n〉
to the ground sideband state |g, n〉 with a decay rate γ can be
described by the Lindblad operators:

L̂n = √
γ |g, n〉〈e, n|. (15)

This leads to the Lindblad master equation for the system:

˙̂ρt = −i
[
ĤLD

R , ρ̂t
] +

∑
n=0

D[L̂n]ρ̂t , (16)

where the Lindblad superoperator D[Â]ρ̂t = Âρ̂tÂ† −
{Â†Â, ρ̂t/2}.

Our discussion is based on the resolved motional side-
bands, which require a system that both works in the
Lamb-Dicke regime and satisfies the energy scale relations
γ � ν. Furthermore, we are interested in the weak mo-
tional sideband coupling regime given by η j	 j � γ [29].
Therefore, as shown in Fig. 6(b), the trapped ion will im-
mediately decay to |g, n − 1〉 following the red sideband
hopping from |g, n〉 to |e, n − 1〉. Exploiting this fact, we can
adiabatically eliminate the unstable excited sideband states
|e, n − 1〉 and obtain the effective unidirectional hopping from
|g, n〉 to |g, n − 1〉 with strength nJr . These processes form a
dissipative cascade, cooling the system to the ground state
|g, 0〉. Figure 6(c) illustrates similar processes for the blue
sideband hoppings, which result in effective unidirectional
hopping from |g, n − 1〉 to |g, n〉 with strength nJb and lead
to a gain cascade, heating the system to ground sideband
states with higher energy. Then, as depicted in Fig. 6(d),
the effective non-Hermitian model of the ground sideband
state |g, n〉 comprises a semi-infinite ladder |n〉 with nonre-
ciprocal blue-detuned gradient hopping nJb and red-detuned

gradient hopping nJr . According to the spirit of the adiabatic
elimination method [30], the effective master equation in the
Schrödinger picture for this model can be written as (see the
Appendix for details)

˙̂ρ = −i[Ĥeff, ρ̂] +
∑
n=1

(D[L̂n,r]ρ̂ + D[L̂n,b]ρ̂ ), (17)

where L̂n,r(b) is the effective Lindblad operator, denoted

L̂n,r = √
nJr |n − 1〉〈n|, L̂n,b = √

nJb|n〉〈n − 1|, (18)

with the effective hopping strengths

Jr(b) = γ |	r(b)|2η2
r(b)

4δ2
r(b) + γ 2

. (19)

The effective Hamiltonian reads (here, we have removed the
constant terms)

Ĥeff = ÛRĤLD
R Û †

R =
∑
n=0

n(Er + Eb + ν)|n〉〈n|, (20)

where Er(b) = δr(b)|	r(b)|2η2
r(b)/(4δ2

r(b) + γ 2) is the energy
shift induced by the lasers.

We have derived a non-Hermitian model described by
Eq. (17) in trapped-ion systems. In this model, the hop-
pings between different sideband levels are governed by a
non-Hermitian quantum jump operator, and the nonreciprocal
hopping strength is achieved by adjusting parameters such as
the Rabi frequency of the laser. This non-Hermitian model is
useful for describing the sideband cooling and related side-
band phonon excitation effects [28,29,31–33].

V. CONCLUSION

We have investigated a non-Hermitian model featuring
nonreciprocal gradient hoppings, revealing the presence of
the LSE through analysis of the Liouvillian spectrum and
dynamics [12]. Furthermore, we have observed that the gra-
dient hopping strength in this model leads to an accelerated
relaxation time of the system. However, our numerical in-
vestigations of the Liouvillian gap, relaxation time, and
steady-state localization length have shown that the currently
known relaxation relation associated with the LSE does not
fully explain the behavior observed in this model. These
findings deepen our understanding of quantum relaxation
dynamics and provide theoretical support for the develop-
ment of techniques aimed at controlling and manipulating
quantum relaxation processes. We have also proposed a theo-
retical scheme, based on the sideband structure, to implement
this non-Hermitian model by using an adiabatic elimination
method. While we have illustrated the proposal using the
trapped-ion system as an example, the method is applicable to
other atomic systems possessing the motional sideband struc-
ture. Future research directions include gaining a more precise
understanding of the observed acceleration phenomenon,
deriving a general expression for the relaxation time, and ex-
ploring relaxation dynamics in other non-Hermitian models.

Note added in proof. Recently, we are aware of a few other
models that demonstrate anomalously large relaxation times
[34] or exhibit slow relaxation behavior [35]. These models
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differ from ours, which is characterized by its accelerating
relaxation phenomenon.
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APPENDIX: DERIVATION OF THE EFFECTIVE MASTER
EQUATION IN EQUATION (17)

In this Appendix, we derive the effective master equa-
tion as shown in Eq. (17) in the main text using the effective
operator formalism for open quantum systems [30].

Our system consists of two distinct subspaces, i.e., |g, n〉
and |e, n〉. In the rotating frame ÛR, the Hamiltonian only con-
tains the perturbative coupling between these two subspaces.
We first rewrite Eq. (17) as

ĤLD
R =

∑
j=r,b

∑
n=0

V̂ (n, j)
+ (t ) + H.c., (A1)

where V̂ (n, j)
+ (t ) = v̂

(n, j)
+ e−iδ j t is a time-dependent perturbative

field applied to couple |g, n〉 to |e, n〉. Each oscillator state |n〉
is coupled by two laser fields, i.e., a red-detuned laser and a
blue-detuned laser, labeled as j = r, b,

v̂
(n)
+,r = √

n + 1
	r

2
ηreiφr |e, n〉〈g, n + 1|, (A2)

v̂
(n)
+,b = √

n + 1
	b

2
ηbeiφb |e, n + 1〉〈g, n|. (A3)

Here, we consider the Lindblad operators in the rotating frame
ÛR as

L̂n,R = √
γ e−iω0t |g, n〉〈e, n|. (A4)

Then we can perform the adiabatic elimination to arrive at an
effective master equation for the subspace {|g, n〉} as

˙̂ρR = −i[ĤR,eff, ρ̂R] +
∑
n=1

D[L̂n,R,eff ]ρ̂R, (A5)

where the effective Hamiltonian in the rotating frame ÛR is
given by

ĤR,eff = −1

2

⎡
⎣V̂−(t )

∑
j=r,b

∑
n=0

(
Ĥ ( j)

NH

)−1
V̂ (n, j)

+ (t ) + H.c.

⎤
⎦ (A6)

with the transition operator V̂−(t ) = ∑
j=r,b

∑
n=0 V̂ (n, j)

− (t ),
which describes the effective transition process from |g, n〉 to
|e, n〉 and then back to |g, n〉. The strength of this effective

transition is determined by the propagator

(
Ĥ ( j)

NH

)−1 =
∑
m=0

|e, m〉 1

− i
2 L̂†

mL̂m − δ j

〈e, m|

=
∑
m=0

|e, m〉 1

− i
2γ − δ j

〈e, m|. (A7)

Then we can straightforwardly obtain the following effective
Hamiltonian:

ĤR,eff =
∑
n=0

[nEr + (n + 1)Eb]|g, n〉〈g, n|

+
∑
n=0

[Jn,n+2e−i(δb−δr )t |g, n + 2〉〈g, n| + H.c.], (A8)

where

Er(b) = |	r(b)|2η2
r(b)

δr(b)

4δ2
r(b) + γ 2

, (A9)

Jn,n+2 = ei(φb−φr )
√

(n + 1)(n + 2)	r	bηrηb

× (δr + δb)/2

4δrδb + γ 2 + 2iγ (δr − δb)
. (A10)

The first term in Eq. (A8) is the on-site energy shift induced by
the two lasers. The second term corresponds to the long-range
coherent hoppings comprising one blue detuning transition
process and one red detuning transition process.

The dissipative part of Eq. (A5) is determined by the ef-
fective Lindblad operators in the rotating frame ÛR, which are
given by

L̂n,R,eff = L̂n,R

∑
j=r,b

∑
m=0

(
Ĥ ( j)

NH

)−1
V̂ (m, j)

+ (t )

=
√

(n + 1) jre−i(δr+ω0 )t |g, n〉〈g, n + 1|
+ √

n jbe−i(δb+ω0 )t |g, n〉〈g, n − 1|, (A11)

where

jr(b) =
√

γ

−iγ /2 − δr(b)

ηr(b)	r(b)eiφr(b)

2
. (A12)

We will obtain the time-independent terms proportional to
| jb(r)|2 and the time-dependent cross terms (∼e−i(δr−δb)t )
of jr and jb when we expand the Lindblad superopera-
tor D[L̂n,R,eff ]ρ̂R = L̂n,R,eff L̂

†
n,R,eff − 1

2 {L̂†
n,R,eff L̂n,R,eff , ρ̂R} us-

ing Eq. (A11). Here, we can neglect those fast oscillating cross
terms. The long-range coherent hoppings in Eq. (A8) can also
be neglected according to the same analysis. Then we define
the hopping strength as

Jr(b) = | jr(b)|2 = γ |	r(b)|2η2
r(b)

4δ2
r(b) + γ 2

(A13)

and obtain the effective Lindblad operators in the Schrödinger
picture as

Ln,r =√
nJr |g, n − 1〉〈g, n|, (A14)

Ln,b =√
nJb|g, n〉〈g, n − 1|. (A15)
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