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Observation of topological Floquet states interference
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Periodic modulation of the Hamiltonian offers a powerful method to engineer Floquet band properties and
create new gaps capable of hosting Floquet edge modes. However, there have been limited studies explor-
ing the performance of Floquet edge modes in terms of dynamic control and interference properties. Here,
we experimentally implement an array of staggered coupled plasmonic waveguides operating at microwave
frequencies based on the Floquet Su-Schrieffer-Heeger model. Our observations reveal the coexistence of
Floquet zero and π modes within a specific periodic range of the quasienergy spectrum. Through near-field
experiments, we observe a subharmonic response of the electric field propagation in the microwave, which is
confirmed by the interference of eigenfields associated with the two topological end modes. Our work not only
provides an approach for studying time-dependent Floquet Hamiltonians, but also opens the door to exploring
period-doubling nonequilibrium topological phases.
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I. INTRODUCTION

Topological states in periodically driven systems have
rapidly emerged as a thriving research area in recent years
[1–6]. In contrast to static systems, energy conservation is
absent in periodically driven systems. Instead, the concept
of quasienergy [7,8] is introduced, which is defined modulo
2π/�, where � represents the period of the driving potential.
The topological properties of periodically driven systems
are extracted from the quasienergy bands, which capture
the system’s dynamics at multiples of driving period. Novel
topological phases are identified by topological invariants of
the quasienergy bands such as Chern numbers [9,10], and by
the emergence of edge states [11,12]. Using the Floquet
band theory, Floquet topological insulators [13,14], as
dynamical analogues of topological insulators, have been
theoretically predicted and experimentally demonstrated in
a variety of platforms, including electronic [15–17], cold
atomic [18–20], and photonic systems [21–23]. In particular,
periodic modulation has enhanced the field of topological
photonics and motivated potential applications of topological
photonic devices [24].

Manipulating the driving frequency or amplitude can
induce topological phase transitions, leading to robust and
highly controllable light transport. In photonic systems,
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periodic driving has been used to investigate static network
systems, which can be mapped onto a Floquet lattice [25,26].
In the adiabatic regime, topological pumps through bulk
and edge channels have been observed [27–30]. In suitable
driving regimes, there are rich anomalous topological phases,
gauge dependence, and Floquet phase transitions [31]. In the
higher frequency regime, effective Hamiltonian governing
stroboscopic dynamics has been used to predict novel
topological properties, which are typically inaccessible in
static systems [32,33].

Most existing references focus on Floquet topological edge
states [4,14,34–38]. Taking the proof-of-principle Floquet
Su-Schrieffer-Heeger (SSH) model as an example, there
are two distinct types of topological boundary modes: the
topological zero modes and the topological π modes, residing
within the zero and π quasienergy gaps, respectively. These
two types of topological boundary states originate from
different global effects. The topological π mode arises due
to the alternating change between the two kinds of modes
in the SSH model, namely the bulk modes and boundary
modes [39,40]. On the other hand, the topological zero
mode can be regarded as arising from an existing nontrivial
topological phase without modulation [41,42]. However, the
study of the coexistence and interplay between the different
modes remains largely unexplored [38]. It is important to
understand the dynamic control and coexistence of the two
kinds of Floquet modes and the interference between them.
Addressing these challenges requires a versatile experimental
platform capable of facile frequency tuning and realizing the
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coexistence of Floquet zero and π modes. Photonic systems,
particularly waveguide arrays, have emerged as powerful tools
for investigating Floquet topological systems [39,43,44].

In our work, we conducted a joint experimental and
theoretical investigation of the driven SSH model with
time-periodic staggered coupling constants. Our experimental
implementation of the model utilized evanescently coupled
spoof surface plasmonic polariton (SPP) waveguides
operating at microwave frequencies [45–51]. SPPs are special
electromagnetic waves in the optical frequency region, which
are bound on the metal/dielectric interface. To realize high-
confinement SPPs at low frequency, plasmonic metamaterials
have been proposed, in which the corrugated metallic
structures are efficient models to support and propagate spoof
SPPs in microwave bands [46]. By exploiting the coexistence
of Floquet topological π modes and zero edge mode localiza-
tion at the system boundary, we were able to unambiguously
identify the interference property. The beating phenomenon in
our system gives rise to subharmonic dynamics, characterized
by a stable period-2� oscillation. The stroboscopic dynamics
can be derived by superimposing the eigenfields within
a certain range of driving frequencies in the quasienergy
spectrum. Our work provides a periodic modulation approach
that allows switching between the three topological states of
Floquet zero, π , and the coexistence of these states.

II. FLOQUET SSH MODEL

We employ the driven SSH model to demonstrate the ex-
istence of two distinct Floquet topological boundary modes.
The Hamiltonian is given by

H =
N∑

m=1

c†
mcm × β0 +

N−1∑

m=1

c†
mcm+1

× [κ0 + (−1)m(δκ0 + δκ (z))] + H.c. (1)

Here, N represents the total number of waveguides, and β0

denotes the propagation constant. The operators c†
m and cm

correspond to the creation and annihilation operators of the
mth waveguide, respectively. The second off-diagonal term
in the equation represents the coupling strength κ between
nearest-neighbor waveguides. The coupling strength consists
of a constant term κ0, a staggered term δκ0, and the periodic
variation of the coupling strength δκ (z), which is given by

δκ (z) = δκ1 cos(2πz/� + θ0). (2)

Here, δκ1 represents the amplitude of the variation, � is the
period of modulation, and θ0 is the phase offset. Therefore, in
our system, we observe that the Floquet regime is primarily
governed by the parameter �. When the length of one period
is much larger than the coupling length between the adjacent
waveguides (lc = π/2κ0), the system can be considered to be
corresponding to the adiabatic regime. However, as the length
decreases and approaches the coupling length lc, the system
corresponds to the Floquet regime.

We implemented waveguide arrays that fulfill the require-
ments of the driven SSH model, with simplified diagrams
illustrating the models depicted in Figs. 1(a) and 1(b). These
arrays consist of ultrathin copper structures featuring cou-
pled corrugated waveguides, which are bent and arranged as

FIG. 1. Simplified diagram of a curved waveguide array and the
quasienergy spectrum of the effective Hamiltonian. (a) and (c) show
the situation where g1 = g2 and δκ0 = 0,which corresponds to the
maximum values of κ1(z) being the same as those of κ2(z). (b) and
(d) show the situation where g1 > g2, which introduces a staggered
term, δκ0 > 0, leading to that the maximum value of κ1(z) is less that
of κ2(z).

dictated by the model constraints. The spacings between adja-
cent waveguides follow a cosine function along the z axis. The
array of ultrathin copper strips is printed on a dielectric film,
thus providing an effective platform for propagating spoof
SPP at microwave frequencies. Specifically, the position of
one of the bending waveguides was determined by the func-
tion x0(z) = ±A0 cos[(2πz/�) + θ0], where A0, �, and θ0

represent the amplitude, periodic length, and initial phase of
the cosine curve, respectively. The spacing between the bend-
ing waveguides was designed to satisfy the condition G(z) =
ga ± go ± 2A0 cos(2πz/� + θ0), where ga and go denote the
average and overall dimerization distances among the waveg-
uide arrays. For the sake of simplicity, we define the minimum
spacing between the first and second waveguides as g1 and the
minimum spacing between the second and third waveguides
as g2. Consequently, we can establish the relationship as g1 =
ga + go − 2A0 and g2 = ga − go − 2A0. Furthermore, the ef-
fective coupling constant κ is connected to the gap distance
(see the Supplemental Material [52] for details). When the
magnitude of the staggered term go ± 2A0 cos(2πz/� + θ0)
is much smaller than the average distance ga, we can approxi-
mate the effective coupling constant as κ = κ0 ± δκ0 ± δκ (z).

III. FLOQUET TOPOLOGICAL END MODES

The coexistence of the two Floquet end modes necessi-
tates significant global and periodic dimerization conditions.
These conditions can be achieved through various settings,
such as δκ0 � κ0 and δκ1 � κ0, implying that κ0 ± δκ0 ±
δκ (z) � κ0. Consequently, the coupling length is primarily
controlled by κ0, which can be expressed as lc � π/2κ0.
Moreover, δκ0 and δκ (z) contribute primarily to global and
periodic dimerization, respectively. To elucidate their im-
pact on the propagation process, we introduce the effective
Hamiltonian Heff . The dynamic process along the periodic
bending waveguides can be characterized by the time operator

U (z, z0) = T̂ e−i
∫ z

z0
H (z)dz, where T̂ is the time-order operator,
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and z0 is the initial position. Due to the bending of waveg-
uides, the time ordering operator is periodic, i.e., U (z2, z1) =
U (z2 + �, z1 + �). To describe the propagation of the electric
field through the model, we assume that z0 = 0 and define
U (z, 0) as U (z), which yields U (z + n�) = U (z)[U (�)]n for
z ∈ [0,�]. It implies that after the electric field propagates
through the system for one period, the time evolution operator
is U (�). To derive the effective Hamiltonian, we take the
natural logarithm of U (�) and divide it by �/i, resulting
in Heff = (i/� ) ln U (�) [32,39,53–55]. The formulation en-
ables us to investigate the dynamics of the electric field and
the topological properties of the model. Consequently, we can
obtain the quasienergy spectrum of one period by determining
the eigenvalues ε of Heff . Two cases of quasienergy spectra are
illustrated in Figs. 1(c) and 1(d). To investigate the conditions
that allow the coexistence of the two topological end modes,
we vary the coupling strength κ . Considering that the effective
coupling strength κ is predominantly determined by κ0, δκ0,
and δκ (z), we can set κ0 to a fixed value and modify the values
of δκ0 and δκ (z) to observe their impact on the quasienergy ε.

When δκ0 � 0, the model exhibits a typical trivial state
similar to the trivial SSH model, resulting in the absence
of a topological zero state. It is depicted in Figs. 1(a) and
1(c), where g1 = g2 (go = 0), which can result in which the
maximum value of coupling strength κ1(z) and that of κ1(z)
are the same. Consequently, in our model, the existence of
topological zero mode is prohibited. On the other hand, in
the case of δκ0 > 0, the trivial state undergoes a transition
to a nontrivial state. When g1 > g2 (go > 0), as shown in
Figs. 1(b) and 1(d), the maximum of coupling strength κ1(z)
is smaller than that of κ2(z). This leads to the emergence
of quasienergy bands corresponding to the topological zero
and π end states, allowing for the coexistence of the two
topological end modes. Therefore, the configuration supports
a nontrivial state and enables the existence of the topological
zero mode.

Regarding δκ (z), its value is affected by δκ1 and �. Unlike
the parameter δκ0, the value of δκ1 has no significant influence
on periodic dimerization. The reason for the difference is
that when the periodic staggered coupling strength is negative
(δκ1 < 0), we can transform it into an equivalent pattern with
positive coupling (δκ1 > 0) and a π phase shift. According to
the Floquet explanation, −δκ1 cos(2πz/� + θ ) is equivalent
to δκ1 cos(2πz/� + π + θ ), which means that a pattern with
negative dimerization coupling (δκ1 < 0) and gauge (θ ) is
equivalent to a pattern with positive dimerization coupling
(δκ1 > 0) and gauge (θ + π ). In addition, the parameter �

plays a crucial role in controlling both global and periodic
dimerization. The influence of � on the global and periodic
dimerization can be explained by comparing its magnitude
with the coupling length lc. To do so, we introduce the Floquet
Hamiltonian and quasienergy spectrum of the system, which
provide further insights into the system’s behavior.

The Floquet Hamiltonian is a kind of quasienergy spectrum
that emerges due to the periodic bending of the model as the
electric wave propagates through it [39,56–58]. The wave
obeys the equations [H (z) − i∂/∂z ]|ψ (z)〉 = 0, and the
solution of the equation satisfies the composed Hilbert space:
H ⊗ Z . Here, H represents the usual Hilbert space, and Z
is the periodic space (resulting from periodic bending in the

system), which is spanned by ein2πz/�, with n representing
the nth Floquet replica. In our study, we consider only the
0,±1,±2 replicas. The quasienergy spectrum, related to
the quasimomentum k, is truncated for five Floquet replicas,
revealing the states of the topological zero quasienergy band
and the π quasienergy band. To ensure the influence of the
staggered coupling strength, the initial state of the system
requires δκ0 > 0. The Floquet band schematic, as shown in
Fig. 2, demonstrates the profound connection between lc/�
and quasienergy ε. Thus, the Floquet Hamiltonian provides
insights into the role of � in global and periodic dimerization,
shedding light on the underlying dynamics of the system.

In Fig. 2(a), we observe distinct behaviors of the two
topological end modes as the lc/� ratio varies. Besides, we
calculate the Floquet topological invariants, which can char-
acterize the quasienergy gap at zero or π in a 1D periodically
driven system (see the Supplemental Material [52]). The zero
end mode appears only when lc/� > 1/2, exhibiting a gap
invariant of G0 = 1. However, beyond the range, the band gap
remains closed, indicating that the topological zero mode can
only exist stably when lc/� > 1/2. On the other hand, the
quasi-energy spectrum of the topological π end mode exhibits
a closed-open-closed pattern as lc/� varies. It is stable only
within the range of 1/3 < lc/� < 1, which corresponds to
variations in the value of the gap invariant Gπ . The specific
mode changes can be explained by the quasi-energy spectrum
of the Floquet Hamiltonian shown in Fig. 2(b). For instance,
when lc/� = 1/3, the topological quasienergy band gap of
the π mode remains closed due to a band touching between
the energy bands with n = 1 and n = −2. However, as the
lc/� ratio increases, the energy bands for the photons start to
separate from each other. At lc/� = 5/12, the energy band
gap of the π mode opens up, as depicted in the graph. As
the ratio further increases, the zero energy band gap also
opens up at lc/� = 1/2 due to the opening of band gaps for
two other energy bands (n = 1 and n = −1). The system can
sustain the two topological end modes when it satisfies the
aforementioned conditions. However, as the ratio continues
to increase, the quasienergy bands will once again intersect.
As shown in the figure, the gap for the π mode closes at
lc/� = 1, indicating that the topological π mode can only
exist stably within the range 1/3 < lc/� < 1. In summary, the
system can support the topological zero and the π end mode
simultaneously only within the range of 1/2 < lc/� < 1.

Through the preceding discussion, we have established the
conditions that support the existence of different Floquet end
modes. Subsequently, numerical calculations were performed
to obtain the projected values by projecting the different
Floquet end modes in each instantaneous eigenstate. The
projection probabilities at various locations of the waveguide
were represented by coloring the instantaneous eigenvalues in
the Supplemental Material [52]. Upon observing the results,
we can deduce that the topological π mode emerges from
an alternating interplay between the boundary modes and
bulk modes within one period. Specifically, at the middle
part of n�, the state is predominantly influenced by the bulk
modes, whereas at n�, the state is primarily determined
by the boundary modes. In contrast, the topological zero
mode arises from an existing nontrivial topological phase
without modulation. From the results, it becomes apparent
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FIG. 2. The figures offer a comprehensive analysis of the influence of different values of lc/� on the quasienergy spectrum, Floquet
topological invariants, and the Floquet replicas. Specifically, (a) illustrates the variations in the quasienergy spectrum of the Floquet
Hamiltonian and the gap invariants Gπ and G0 of the topological end modes with respect to the change in lc/�. (b) complements this by
showcasing the alterations in the Floquet replicas under various modulation frequencies.

that as the electric field propagates along the waveguide,
the state is mainly determined by the boundary modes.
What’s more, when the two kinds of Floquet end modes exist
simultaneously throughout the transmission, they interfere
with each other, resulting in the electric field at odd � being
primarily determined by the bulk modes, while at even �, it is
determined by the boundary modes. This leads to the electric
field distribution having twice the period of the model.

IV. FLOQUET INTERFERENCE EFFECT

In the previous discussion, we have determined the ap-
propriate ratio range that supports the coexistence of the
two topological end modes. Now, we present the eigenfield
distributions of the Floquet zero mode and the π mode in
Fig. 3. As depicted in the diagram, the topological zero mode
is primarily localized at the curved boundary waveguide,
while the topological π mode mainly propagates along the
two boundary waveguides. The field distributions of the two
topological modes exhibit distinct propagation profiles and
overlapping regions. Therefore, when the waveguide model
falls within the suitable range, the interference between the
two topological boundary modes becomes possible. Accord-
ing to Floquet theory, the topological edge state can be
described by the function ψ0(π )(x, z) = u0(π ) exp(−iε0(π )z),
where u(x, z) = u(x, z + �) represents the micromotion of
one period, and ε is the corresponding quasienergy of the
topological edge state. When the two end modes interfere, the
dynamic intensity of the Floquet state can be expressed as

I± = [ψ0(x, z) ± ψπ (x, z)]2

= [ψ0(x, z)2] + [ψπ (x, z)2] ± 2�[ψ∗
0 (x, z)ψπ (x, z)]

= [u0(x, z)2] + [uπ (x, z)2]

± 2�[u∗
0(x, z)uπ (x, z)] cos(|ε0 − επ |z). (3)

From the formula provided, we can observe that the sum
frequency and difference frequency components exhibit the
same periodic distribution. Since |επ−ε0| = π/� = επ , the

final field intensity distribution will repeat with a period of
twice the period of the π edge mode, i.e., I (x, z) = I (x, z +
2�), which aligns with the field distribution depicted in
Fig. 3. Based on our analysis, we can conclude that the 2�-
periodic subharmonic arises from the interference of the two
topological edge states, which can also be interpreted as a
manifestation of the interference process.

V. DYNAMIC CONTROL VIA THE GAP DISTANCES

To verify the discussion on various parameters (δκ0, δκ1,
�), we fabricate the plasmonic waveguide as shown in

FIG. 3. The figures show the dynamic evolution of the topologi-
cal end modes in a lattice of ten waveguides. From top to bottom, the
distributions are the zero mode, the π mode, and the interference field
of the two edge modes. These images illustrate how the topological
end modes evolve over time and interact with each other in the
waveguide system.
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FIG. 4. The figures present the experimental and simulation results for different topological edge states. Schematics (a), (b), and (c) depict
the experimental samples with specific parameters that can realize different topological edge states. The simulated electric field Ez distributions
for each sample are displayed in schematics (d), (e), and (f) using the CST simulation software. The corresponding experimental results are
shown in schematics (g), (h), and (i), and they exhibit good agreement with the simulation results.

Figs. 4(a), 4(b), and 4(c), in which the ultrathin copper strips,
with a thickness of 0.018 mm, are printed on a very thin
and flexible dielectric film with a thickness of 0.2 mm. The
simulation was performed on a model with a length of
400 mm, consisting of four periods (or three periods, as
mentioned in the Supplemental Material [52]). The incident
electromagnetic frequency was set at 17 GH. For numerical
calculations, we utilized the CST simulation software and
carefully selected the appropriate parameters to observe the
different topological edge modes and their interference ef-
fects. Further details of the simulation and experimental setup
can be found in the Supplemental Material [52].

We present the simulation field distribution in Fig. 4(d),
when the value of g1 is much larger than g2 (g1 = 3.2 mm,
g2 = 0.9 mm), the ratio lc/� is approximately 1.12, satisfying
the condition lc/� > 1. As a result, the coupling between the
neighboring waveguides nearly disappears, making it impos-
sible to support the existence of the π mode. Consequently,
the injected microwave only propagates along the boundary
waveguide, displaying the characteristics of the topological
zero mode while suppressing the topological π mode. On the
other hand, in Fig. 4(e), when g1 is equal to g2 (δκ0 = 0)
or when the ratio lc/� ≈ 0.69, indicating the absence of a
staggering distance, the electric field Ez distribution exhibits
the characteristic features of the topological π mode. The
injected microwave primarily localizes within the two waveg-
uides at the upper boundary, displaying a periodic oscillation
with a period of �. Regardless of these two cases, when
the model satisfies the condition 1/3 < lc < 1 with δκ0 
= 0
and has appropriate parameters (g1 = 1.9 mm, g2 = 0.9 mm)
with a ratio lc/� ≈ 0.92, the global dimerization and periodic
dimerization are sufficient to support the interference between
the topological zero and π mode. The subharmonic period-2�

evolution is depicted in Fig. 4(f). Furthermore, to demonstrate
the topological robustness of the interference phenomenon
between boundary states, we introduced specific defects to
the system and performed rigorous simulation verification
(see the Supplemental Material [52]). Moreover, the near-
field distributions of Ez components for such a plasmonic
waveguide are measured at the frequency of 17 GHz, as il-
lustrated in Figs. 4(g), 4(h), and 4(i), which have excellent
agreements.

VI. DYNAMIC CONTROL VIA
THE PERIODICAL LENGTHS

To further investigate the impact of the length of one period
on the lc/� ratio, we conducted simulations using models
with different period lengths. The results are illustrated in
Fig. 5, where the gap distance of the model is maintained at
g1 = 1.9 mm and g2 = 0.9 mm (g1 = 2.5 mm and g2 = 1 mm
in the Supplemental Material [52]); the total number of pe-
riods is chosen to be 3, 8, and 16. As depicted in Fig. 5, as
the length of one period decreases, the lc/� ratio increases
accordingly. The phenomena suggest that by adjusting the
number of periods, we can control the ratio lc/� and thereby
manipulate the interference effects between the topological
edge modes. Understanding the relationship provides valuable
insights for the design and engineering of waveguide arrays to
achieve specific interference patterns and tailor the properties
of topological edge states.

In Fig. 5, the top, middle, and bottom rows represent mod-
els with period lengths of 266 mm, 100 mm, and 50 mm,
respectively. When the length of one period is 266 mm, the
lc/� ratio is approximately 0.346, satisfying the condition
1/3 < lc/� < 1/2. As depicted in the figure, the electric field
distribution exhibits the same number of periods as the bend-
ing period of the waveguide array, indicating the presence
of the topological π mode. As we decrease the length of
one period to 100 mm, the lc/� ratio increases to approxi-
mately 0.92, meeting the condition 1/2 < lc/� ≈ 0.92 < 1.

FIG. 5. The figures show the field distributions of the waveg-
uide arrays for various period lengths, with g1 = 1.9 mm and g2 =
0.9 mm. As the period length varies, the field distribution undergoes
noticeable changes.
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In the scenario, the electric field distribution demonstrates
a period that is twice the bending period, signifying the
characteristic interference of the two topological modes. Fur-
thermore, as the length of one period is further reduced to
50 mm, the lc/� ratio increases to approximately 1.84, sat-
isfying the condition lc/� > 1. The field distribution of the
waveguide array is predominantly concentrated on the first
waveguide. If we continue to increase the lc/� ratio, the
model can be described by the static SSH model according
to the Floquet theory [32,39]. Hence, we can conclude that as
the length of the period decreases, the lc/� ratio increases,
and the electric field distributions undergo a similar transfor-
mation as when we directly modify lc.

VII. CONCLUSION

In summary, the study successfully implemented a
Floquet-engineering system and observed the emergence of
period doubling (2�) in a spoof SPPs waveguide. We demon-
strated the existence of the exotic 2�-periodic subharmonic in
staggered periodic curved waveguides, which differs from the
nontrivial Floquet π modes in periodic curved waveguides. By
applying the Floquet theorem, we analyzed the superposition
of electric field distributions of Floquet zero and π modes
and confirmed that the interference of these two topological
modes in the parent system is the underlying mechanism for
the phenomenon.

Moreover, we have identified the required driving period to
achieve interval selection of the number of topological modes,
which can be verified through the corresponding topological

invariant. Furthermore, recent researches have explored the
induction of Floquet π modes in other systems, including
approaches involving PT symmetry [43] and gauge methods
[59]. Overall, our findings contribute to the understanding
of Floquet topological physics and open up possibilities for
designing and implementing novel waveguide systems with
tunable topological properties.
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