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Shock-driven nucleation and self-organization of dislocations in the dynamical Peierls model
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Dynamic nucleation of dislocations caused by a stress front (“shock”) of amplitude σa moving with speed
V is investigated by solving numerically the dynamic Peierls equation with an efficient method. Speed V and
amplitude σa are considered as independent variables, with V possibly exceeding the longitudinal wave speed cL .
Various reactions between dislocations take place such as scattering, dislocation-pair nucleation, annihilation,
and crossing. Pairs of edge dislocation are always nucleated with speed v � cL (and likewise for screws with
cL replaced by cS , the shear wave speed). The plastic wave exhibits self-organization, forming distinct “bulk”
and “front” zones. Nucleations occur either within the bulk or at the zone interface, depending on the value
of V . The front zone accumulates dislocations that are expelled from the bulk or from the interface. In each
zone, dislocation speeds and densities are measured as functions of simulation parameters. The densities exhibit
a scaling behavior with stress, given by [(σa/σth )2 − 1]β , where σth represents the nucleation threshold and
0 < β < 1.

DOI: 10.1103/PhysRevB.108.054309

I. INTRODUCTION

Shock loading of metals [1,2] involves a high rate of dis-
location [3] generation [4,5]. Realistically accounting for it
remains a challenge for dislocation-based multiscale models
of shock-loaded solids aimed at very high strain rates [5–9],
in spite of a vast amount of data from atomistic simulations
[10–16]. Shock-induced plasticity has also been explored
using two-dimensional, nonsupersonic, elastodynamic dislo-
cation simulations with retarded interactions and separate
nucleation criterion and mobility law [17]. At high strain
rates, line multiplication from traditional sources [18] via
the Orowan mechanism is no more the dominant generation
mechanism [19], and nucleation must be considered instead
[17]. Although standard thermally activated homogeneous nu-
cleation [20] is usually invoked below the nucleation stress
threshold, no consensus exists for larger driving stresses.
However, newly nucleated dislocations can trigger further nu-
cleation events [21,22].

Most dislocation-based models rely on the assumption that
the plastic strain rate is proportional to the density and speed
of mobile dislocations by Orowan’s equation [23,24]. Thus,
speed is also a much debated issue. In uniaxial compression,
the Hugoniot elastic limit [2,25] where plasticity comes into
play is first attained for shear on planes inclined 45◦ from the
compression axis. Dislocations accompanying a compression
wave of (longitudinal) speed cL should then move with su-
personic speed v = √

2 cL [26]. Early models [27] postulated
layers of intersonic or supersonic edge dislocations [28] at
the shock front to accomodate shock-induced compression,
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with residual dislocation density in the bulk. To dispense
with supersonic dislocations, alternative proposals [26,29]
considered dislocation loops homogeneously and repeatedly
nucleated behind the shock front by the deviatoric stress set
up by uniaxial strain, moving thereafter only short distances
at subsonic speeds. Scarce information is available concern-
ing supersonic dislocation speeds in shocks, and in absence
of direct evidence the experimental status of supersonic dis-
locations in metals remains unsettled [29]. Still, atomistic
simulations have revealed that intersonic or supersonic dislo-
cations are quite possibly involved [30–32], although current
dislocation-based density evolution models disregard this pos-
sibility.

Leaving aside thermal effets [25,33,34], which are pre-
sumably irrelevant [26] at high stress except for changes in
elastic constants, wave speeds, and phonon drag, the present
work investigates nucleation of perfect dislocations in a one-
dimensional (1D) idealized model for straight dislocations
on a single slip plane, with driving stress exceeding the nu-
cleation threshold, and variable “shock” speed. To this aim
we use the (elasto-) dynamic Peierls equation (DPE) [35,36],
which we solve numerically [37]. This equation for the plas-
tic slip rests on minimal assumptions within the small-strain
formulation of continuum mechanics, assuming fixed elastic
constants. Its properties with regard to dislocation nucleation
and collective behavior are unexplored so far. By construc-
tion, it accounts for stress-wave emission and scattering [38]
by or on dislocations in elastodynamic interaction. Disloca-
tions are free to glide (i.e., all mobile) with no obstacles or
Peierls stress. Supersonic motion is allowed. Once nucleated
as pairs of opposite signs [26], they interact via retarded
elastodynamic interactions. Dislocation trajectories as well
as quantities usually considered in constitutive models, such
as the plastic strain rate ε̇p, dislocation density ρ, speed
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FIG. 1. Single-dislocation steady-state stable branches of the
mobility law for screw and edge dislocation in the DPE for cL/cS = 2
and α = 0.05 (see below for a definition of this quantity). Edge
case: The solid-line part depicts states accessible under single-step
loading; the dashed part depicts states accessible under double-step
loading [36]. The jump between subsonic and intersonic branches
occurs at σa = σc (see text).

v and stress, are monitored. Our approach is motivated by
simplicity and a direct connection between this continuum
description and Orowan’s equation. More accurate analogous
lattice-based dislocation models [39] might be less suitable to
this purpose.

The DPE is reviewed and cast in Sec. II in a form suitable
to numerical solution (see Appendix B for the method). Sec-
tion III is devoted to simulations. After the setup is explained,
the plastic structure arising from dislocation trajectories is
discussed, with mean dislocation speeds and speed proba-
bility densities measured. Nucleation is addressed next, and
mean dislocation densities are computed over a wide range of
“shock” speeds and driving stresses. A scaling in stress of the
density is proposed on the basis of a supersonic-train solution
derived in Appendix C. Concluding remarks close the paper
(Sec. IV). Appendixes are devoted to the numerical method.
Our numerical results privilege the edge dislocation, as its
behavior is more involved than the screw’s. Additional results
for screws are reported in the supplemental material [40].

II. DYNAMICAL PEIERLS EQUATION

A. Overview and former results

The DPE extends the classical Peierls model of a dislo-
cation [3,41] to elastodynamics [42–45]. It reduces to the
Weertman equation [46–48] for steady motion under uni-
form applied stess σa. In Ref. [36]—hereafter referred to as
(I)—and for a sinusoidal (Frenkel) pull-back force, the elasto-
dynamic solution of the DPE was approached via a collective-
variable approximation (CVA), using a single-dislocation
ansatz depending on two collective variables—dislocation po-
sition and width, for which evolution equations were obtained.
The CVA is such that its stable steady-velocity states at large
times match those of the DPE for one dislocation, which
are given by the single-dislocation solution of the Weert-
man equation. The resulting mobility law [36,47] is recalled
in Fig. 1, where σth = μb/(2πd ) ∼ μ/10, is the theoretical
shear stress (lattice shear strength) [3,23,49] defined in terms

of the shear modulus μ, the Burgers vector b, and the inter-
plane distance d [3]. Hereafter cS and cL denote the shear and
longitudinal wave speeds of the medium. The screw disloca-
tion has only one subsonic branch that saturates at v = cS .
The edge dislocation has two stable branches: one subsonic
(|v| < cS) and the other one intersonic (cS < |v| < cL). The
subsonic branch saturates at the Rayleigh velocity v = cR �
0.93 cS . No single-dislocation mobility law exists for σa > σth

in this model, and the speed is undetermined if σa = σth. The
inclusion of a gradient term provides a means to overcome
this limitation [47]. However, our study demonstrates that
under high-stress “shock” conditions the DPE yields mul-
tidislocation supersonic solutions without needing any such
modification.

Atomistic calculations for an edge dislocation [30] sug-
gested a dependence of branch selection on the way the
external loading is applied. This was further investigated in
(I), leading to the following predictions: (a) when σa is sud-
denly applied and thereafter maintained (single-step loading),
a critical stress σc exists that separates regimes with subsonic
or intersonic terminal dislocation speeds. This transition is
represented at σc � 0.41 σth in Fig. 1. Thus the model ac-
counts for the jumps from one velocity branch of the mobility
law to the other as stress increases; (b) the terminal speed
is dynamically selected and depends on the history of load-
ing. Two-step loading, where a first stress level is imposed
and subsequently modified after some time, grants access
to asymptotic states forbidden under single-step loading
[36]. In anisotropic materials more branches come into play
[31,50–53].

B. The equation

The DPE for the plastic slip function η(x, t ) of a system of
straight dislocations moving along the x axis reads

− μ

π

∫
dx′

∫ t

−∞
dt ′Ka(x − x′, t − t ′)

∂η

∂x
(x′, t ′)

− κα
a

μ

2cS

∂η

∂t
(x, t ) + σa(x, t )

= f (η(x, t ) + ηe(x, t )). (1)

The left-hand side of this equation represents the local stress
σ (x, t ) on the slip plane. The quantity σa(x, t ) is an exter-
nally applied stress, which depends on both position and
time. The local stress is balanced by the pull-back force
f (η), which derives from the generalized stacking-fault γ -
potential of the lattice [54]. We use here the Frenkel force
f (η) = σth sin(2πη/b), which implies perfect dislocations,
but our numerical method applies as well to any other force.
This force favors locking of η on integer multiples of b.
Dislocations lie where a transition between two successive
multiples take place. The theoretical shear stress σth is its
maximal value, which identifies with the nucleation stress [26,
10,55] (see Sec. III B 4 below). Equation (1) implies that the
local stress in the system is always limited by σth, that is,
|σ (x, t )| � σth, whatever σa. In (1) the function ηe represents
the elastic part of the slip, i.e., the dislocation-free solution
of the equation f = σa if |σa| � σth. It increases with σa up
to its saturation value b/4 for σa = σth and by convention
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remains fixed to that value if σa > σth [36]. Kernel Ka(x, t )
accounts for retarded elastodynamic self-interactions on the
slip plane of the field η(x, t ). It depends on the dislocation
character a = s (screw), g (glide edge), and c (climb edge).
The local instantaneous term with ∂η/∂t is proportional to the
dimensionless constant [56],

κα
a = κa(1 + α). (2)

Although κa embodies radiative losses associated with Ka, the
contribution ακa with α > 0 accounts phenomenologically for
phonon drag. The inclusion of the phonon-drag term ensures
a well-defined mobility law in the subsonic range depicted
in Fig. 1, while also providing the required linear mobility
behavior at low speeds [36,46,47]. Expressions of Ka(x, t )
and κa are reported in Appendix A. It is worth noting that the
elastic waves propagated by Ka undergo no damping. Indeed,
bulk elastoviscosity, or anelasticity, is insignificant in pristine
metal crystals [57]. Additionally, the potential inclusion of
inertia in the pull-back force [42], while unexplored at present
and lacking documentation, is intentionally disregarded in
order to maintain tractability of equations in the steady state.
The emphasis in the current work is placed on simplicity to
enable improved control and facilitate interpretations based
on existing references [36,47].

Evolution starts at t = 0. Prior to this instant, σa(x, t ) = 0,
and the system can, e.g., be assumed to contain one disloca-
tion at rest of shape η0. The initial state η0(x) ≡ η(x, 0) is a
solution of the Peierls-Nabarro (PN) equation

−μKa

π
p.v.

∫
dx′

x − x′
∂η0

∂x
(x′) = f (η0(x)), (3)

where p.v. denotes Cauchy’s principal value, Ks = 1/2 or
Kg,c = 1/[2(1 − ν)], and ν is Poisson’s ratio. Indeed, the
DPE reduces to the latter in statics [35].

The dynamic solution is defined relatively to this state as

η(x, t ) = η0(x) + δη(x, t ), (4)

where δη(x, t ) ≡ 0 for t � 0. For t > 0 the equation to be
solved for δη(x, t ) is, with same dependency on (x, t ) as above

−μ

π

∫
dx′

∫ t

−∞
dt ′Ka

∂δη

∂x
− κα

a

μ

2cS

∂δη

∂t
= F, (5a)

where F (x, t ) is

F ≡ f (η0 + δη + ηe ) − f (η0) − σa. (5b)

In absence of initial dislocation, one simply takes η0(x) ≡ 0.
Throughout the paper, the longitudinal wave speed is cL =

2 cS (which corresponds to a Poisson ratio ν = 1/3) and the
drag coefficient is α = 0.01 [36]. Results will be given in
dimensionless form, with time in units of τ0 = d/cS , positions
in units of d , speeds in units of cS , and stresses in units of σth

so that the values of μ, b, and d need not be precise.
The numerical method of solution is sketched in

Appendix B. Prior to going further, the numerical solution
of the DPE for one pre-existing single dislocation has been
cross-checked against the collective-variable approximation
with good overall agreement. In particular, predictions of the
CVA regarding the subsonic-intersonic transition for an edge
dislocation [36] are fully confirmed (see the Supplemental
Material [40]).

stressed
zone

FIG. 2. Time-dependent applied stress profile σa(x, t ) expanding
with speed V for σa = 1.05.

C. Local form of Orowan’s equation

The “microscopic” dislocation density ρ and plastic strain
rate ε̇p are

ρ = − 1

db

∂η

∂x
, ε̇p = 1

d

dη

dt
, (6)

where d is the interplane distance [3]. If we neglect core-shape
changes and let η(x, t ) = η(x − ξ (t )) represent a dislocation
train moving with velocity v = ξ̇ , a local instance of Orowan’s
equation [23] is retrieved from (6) as

ε̇p = bρv. (7)

However, accounting for dynamical core-shape changes via
an intrinsic time dependence of η yields the more general
relationship

ε̇p = bρv + bρ
∂η

∂t
. (8)

On ensemble and time averaging, this expression should pro-
duce a correction to (7) of a type different from the one, of
density-rate origin, proposed by Armstrong and Zerilli [4,5]
to account for nucleation. Indeed, Orowan’s equation (7) was
derived assuming a constant dislocation density [23]. Never-
theless, this equation can always (formally) be enforced at the
macroscopic level by defining the mean speed as

v := ε̇
p
/(bρ), (9)

where the overbar encompasses all relevant averages [58].
With Eqs. (8) and (9), the mean speed may turn out very dif-
ferent from that resulting from the mobility law of individual
dislocations.

III. “SHOCK” SIMULATIONS

A. Setup

Highly simplified “shock”-like conditions are simulated
by uniformly loading with stress σa > σth a region expand-
ing from the center of the system with expansion speed V
(hereafter referred to as “shock speed”); see Fig. 2(a). Here-
after σa denotes the plateau value of the function σa(x, t ).
The stress varies spatially from 0 to σa over a small width
constant over time. Thus, for simplicity, our “shocks” are
merely moving stress steps. For investigation purposes, we
assume σa and V to be independent parameters. In shock
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physics, however, these parameters are connected via the
pressure-shock speed relation determined by the Rayleigh
line on the Hugoniot [2,25]. The parametric domain explored
is 1.05 � σa/σth � 2.0 (11 values) and 0.1 � V/cS � 3.0
(31 values), using cL = 2cS . If V is moderate with respect
to wave speeds, then the loading operates over an expanding
region as does a nanoindentation process in pressure [18,59–
61]; if instead V > cL for edges (respectively cS for screws),
then it mimics a shock of speed exceeding the upper wave
speed relevant to the dislocation character considered. In
shock physics the regime V > cL where the shock overruns
elastic waves is often referred to as overdriven [14,62,63].
We emphasize that physical shocks possess inherent nonlin-
ear characteristics that are beyond the scope of our “shock”
model, as further discussed in the concluding Sec. IV. For
the time being, we will omit the quotation marks around the
term “shock,” although it is crucial to remain aware of the
simplifications made with regard to shock physics.

Simulations have been carried out on systems of size
L = (160π )d for screw dislocations, and L = (320π )d for
edge dislocations, discretized into 4096 spatial points, with
periodic boundary conditions (PBCs), and inner time step
δt = 3 × 10−2τ0 further subdivided by the algorithm when
necessary. Derivatives ∂η/∂x and ∂η/∂t are estimated by fi-
nite differences using the inner time step. For each run, the
various components of the DPE (self-stress, applied stress,
and viscous term) are output for 1000 equidistant times during
the run, which results in an effective time step �t 	 δt . These
data are postprocessed to extract dislocation positions and
velocities. At each time step, the DPE is satisfied numerically
with maximal absolute error of order 10−6 [37]. Due to PBCs,
σa(x, t ) becomes uniform and steady once boundaries of the
simulation box have been reached. Initial conditions consist
of zero or one pre-existing dislocation at rest.

Typical evolutions of η(x, t ) are represented in Fig. 3.
Hills at large times on both sides of the figures are due to
collisions with reentrant dislocations. The asymmetry of the
single-dislocation initial state in (a) is enhanced at large times
through nucleation events.

B. Results

1. Trajectories and overall system dynamics

Accounting for spatial discretization over x of η(x, t ),
individual dislocation trajectories [64] ξi(t ) (i is a dislo-
cation index) are identified by linear interpolation between
discretization points as values ξi of ξ for which |η(ξ, t )/b|
is half-integer. Figure 4 displays trajectories for σa = 1.2 σth,
and increasing values of V , for an initial state with one dislo-
cation at rest (the smaller the slope of the trajectory, the larger
the dislocation speed).

The plots show that the dynamics starts off by successive
nucleations of pairs near the center. This transient step is soon
followed by nucleation by bursts in the bulk, with strong ap-
parent randomness in positions and instants. It is emphasized
that through the function η(x, t ), the Peierls model naturally
embodies the variability of the local Burgers vector at nu-
cleation [65]. Nucleations occur where the applied stress is
maximal at the beginning of simulations, and afterwards pref-
erentially near to pre-existing moving dislocations in reactions

(a)

(b)

FIG. 3. Edge dislocations. Evolution of η(x, t ) for σa = 1.2 σth

(system size L = 160 π ). (a) One initial dislocation at rest; (b) void
initial state. “Shock” speeds V as indicated.

such as in Fig. 5, as was previously reported in a Frenkel-
Kontorova model [21]. Although the distance is variable, this
feature suggests a heterogeneous nucleation process, possibly
involving nucleation avalanches [22] (but the system is too
small to conclude on the latter point). Note, however, that the
terminology heterogeneous nucleation [18,66,67] is usually
reserved to nucleation near to pre-existing defects other than
previously nucleated moving dislocations.

The leading dislocations cross the box’s boundaries via
PBCs at time t = tBC. Afterwards, the system is expected
to enter a later steady regime (in a statistical sense) that
has not been explored. In order to eliminate initial tran-
sients and the effect of PBCs, mean quantities will be
extracted hereafter from data restricted to the time window
t ∈ Tav = [(2/3)tBC, tBC]. A strong hypothesis of the forth-
coming measurements of mean dislocation density and speeds
is that within this window, the system achieves a state rea-
sonably close to some steady state. This might, however, be
invalid due to finite-size and time effects. This potential lim-
itation could be overcome by considering larger system sizes
and simulation times.

2. Reactions

The various reactions observed in Fig. 4 are categorized
in Fig. 5. The quasielastic reaction 1 is observed at small V .
Reactions 2 to 6 are the most frequent ones. Contrary to the
frequent isolated nucleation 2, annihilations are only observed
in close connection with previous crossing events, 7. However,
the annihilation-scattering process at the center of 8 (a time-
reversed version of 5) has not been observed individually. The
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FIG. 4. Edge dislocation trajectories for maxx σa(x, t ) = 1.2 σth, and various “shock” speeds V as indicated, with one dislocation in the
initial state. Negative (respectively, positive) dislocations are in blue (respectively, orange).

apparent “preacceleration” of 5 is explained by shape changes
in the initial stages of pair nucleation.

Dynamic collisions and crossings of dislocations of oppo-
site signs and speeds occur via pair annihilation on collision
and subsequent renucleation [68]. After annihilation, the
available energy locally transferred to the elastic displacement
field flows away with elastic wave speed from the region of
collision. In absence of applied stress the crossing can be
completed by subsequent renucleation only if the dislocations
possess enough initial momentum to re-create the pair before
energy has escaped [68]. Here, with σa > σth, renucleation
just after collision is almost always guaranteed unless some

perturbation reduces the local stress level for long enough
a time to prevent it. This composite sequence (typically, 3)
may look quasi-instantaneous as in 4, without appreciable
differences between the “in” and “out” dislocations speeds
(here v � cL for both).

3. Dislocation speeds

Once positions ξi(t ) have been determined as explained
above, individual dislocation speeds vi(t ) are estimated ei-
ther as �ξi(t )/�t (method M1) or by Eqs. (6) and (7) as
vi(t ) � −∂tη(ξi(t ), t )/∂xη(ξi(t ), t ) (method M2). Method M1
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FIG. 5. Dynamical reactions observed in calculations (blow-ups
on trajectories such as in Fig. 4, with same orientation and color
coding).

requires following the trajectories by continuity to perform
the numerical time differentiation, which is problematic in
presence of reactions such as above, except for isolated dis-
locations. Method M2 is free of the latter drawback but can be
inaccurate due to the unavoidable time variations of the dislo-
cation cores embodied in its defining formula; see Eq. (8).

Of special importance is the speed vlead of the leading
(i.e., outermost) dislocations evoked in Sec. III B 1 above.
Speed vlead, estimated with method M1 (the trajectory being
unambiguous here), is displayed in Fig. 6 versus V for screw
and edge dislocations, for a range of values of σa/σth. Speeds
have been time-averaged over the interval Tav. The outlier in
Fig. 6(b) is an artifact. The plot shows that vlead � V what-
ever V , with vlead = V for V � cS (respectively, cL) for screw
(respectively, edge) dislocations. Therefore, dislocations are
always present ahead of or on the “shock” front. The observed
low-stress dependence of the data for vlead < cS is attributed
to the dislocations not having reached their asymptotic sub-
sonic velocity within the simulation window, due to slow
relaxation [36]. Disregarding this, the data suggest that vlead

is quasi-independent of σa, except for remarkable transitions
of the edge dislocation from a subsonic branch of asymptotic
states (with speed close to the Rayleigh velocity cR) to an
upper intersonic stable branch. This transition takes place at a
stress-dependent shock-speed threshold Vc(σa) that decreases

 (a) screw  (b) edge 1.05
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00

FIG. 6. Speed vlead of leading dislocations versus “shock” speed
V (method M1) for various σa. Inset in (b): eye-estimated stress-
dependent shock-speed threshold Vc(σa) for transition from subsonic
to intersonic branch versus stress σa, with fit Vc/cS � 1.70–
0.62(σa/σth ).

(a) (b)

FIG. 7. Definition of the Bulk and Front averaging zones in (x, t )
representation for an edge dislocation and for (a) “shock” speed V <

cL and (b) shock-speed V > cL . In both cases the stressed zone is
|x| < V t . For a screw dislocation, cL should be replaced by cS .

linearly as σa increases (see inset), which reveals a two-branch
structure of vlead(V ) akin to that of the stress-velocity curve of
an edge dislocation (Fig. 1). Both are most certainly related. In
fact, the simulations reported in Fig. 4 suggest that a two-step
loading process (see Sec. II A) takes place for V < cL, as the
leading edge dislocation is nucleated within the loaded zone
with local stress σ � σth but is afterwards expelled out of
the latter into the unloaded zone ahead where it only experi-
ences the weaker long-range stress of the train of dislocations
behind.

Remarkably, although the present model admits no steady-
state mobility law of a single edge dislocation for σa > σth and
only allows for speeds restricted to the domain v < cL, dy-
namically nucleated dislocations can nonetheless reach steady
speeds v > cL. Such speeds are not determined by σa but
instead by the “shock” speed. So leading dislocations are
“pushed” forward by the dislocations continuously nucleated
behind to accomodate shock advance. These differences of
nature between the regimes V ≶ cL prompt us to introduce
the notions of bulk and front zones, as depicted in Figs. 7(a)
and 7(b), of time-dependent widths �bulk = min(V, cL )t and
�front = � − �bulk, where �(t ) = vlead t is the total extension
of the process zone for x > 0. The case V > cL figures an
overdriven shock [14].

The steady-state speed of the “bulk” dislocations after
completion of the nucleation event (but not necessarily at
larger times, due to reactions) can be understood from the
following nonrigorous but intuitive argument. The absolute
value of the local stress, |σ (x, t )|, is less than σth but ap-
proaches that value in the majority of the bulk region, as
Fig. 11 demonstrates. Then the driving stress experienced by
each dislocation of a newly nucleated pair is presumably close
to σth, too. It can thus be substituted to σa in the stess-velocity
law of Fig. 1. Since for edges it is obviously larger than the
branch-selection threshold σc, the velocity branch selected is
the upper one, with speed cL, which is the maximal admissible
one at σa = σth. Likewise, the mobility law of a screw dislo-
cation is single branched, with speed cS at σa = σth, which
determines the nucleation speed of screws. The argument is
made complete by considering that supersonic dislocations
within each pair cannot interact via wave propagation and can
therefore be considered independent. Note that steady glide at
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 (a) screw front

1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00 (b) screw bulk

FIG. 8. Screw dislocations. Mean dislocation speed v, Eq. (10),
vs. shock speed V for various σa (data sets in different colors)
obtained from averages over (a) the front zone and (b) the bulk zone.

the shear wave speed of screw dislocations in dipole pairs was
observed in atomistic simulations [69].

The dislocation speed v averaged separately over the front
and bulk zones is represented versus V in Fig. 8 (respec-
tively, Fig. 9) for screw (respectively, edge) dislocations. It is
computed as

vz =
〈

1

Nz(t )

∑
i∈z

|vi(t )|
〉

t∈Tav

. (10)

where the vi are estimated by method M2, the zone label z is
bulk or front, and Nz(t ) is the number of dislocations in the
zone. In Fig. 8(a) front dislocations move with mean speed
increasing with shock speed V , dominated by a leading-order
proportionality to the latter. Figure 9(a) displays weak overall
dependence with respect to σa, which is absent for screw
dislocations in Fig. 8(a) and might be a finite-size artifact. By
contrast, the mean speed in the bulk in Fig. 9(b) is markedly
stress dependent. This has two different causes: For V < cS ,
the lowering of the mean speed at high stress is presumably
due to the contribution of bulk dislocations nucleated close
to v = cL that become subsonic after having “bounced” on
the zone boundary. This effect, specific to edge dislocations,
becomes predominant in the range cR < V < cS whatever σa

and is absent for screw dislocations in Fig. 8(b). On the other
hand, the high nucleation rate for V > cL increases the num-
ber of transient speeds v 	 cL sampled close to nucleation. It
is present for both edge and screw dislocations.

 (a) edge front  (b) edge bulk

1.05
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1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00

FIG. 9. Edge dislocations. Mean dislocation speed v, Eq. (10),
vs. shock speed V for various σa (data sets in different colors)
obtained from averages over (a) the front zone and (b) the bulk zone.

)b()a(

)d()c(

(f)(e)

FIG. 10. Edge dislocations. Speed distributions P (v) for
σa/σth = 1.2 and shock speeds V (dashed, red) as indicated.

Typical multimodal speed distributions for σa = 1.2σth,
normalized to unity, collected over the whole simulation du-
ration and over both regions, are displayed in Fig. 10 for
edge dislocations. A peak close to v = cL = 2.0 cS is always
present, which corresponds to the “bulk” dislocations at their
nucleation speed. By contrast, no large-amplitude peak is
associated with the shock speed V until V > cL. Moreover,
the system becomes populated with an appreciable amount of
intersonic dislocations (cS < v < cL) as soon as V exceeds
the transition threshold Vc(σa = 1.2 σth) � 0.96 cS (see inset
of Fig. 6). These intersonic dislocations form a well-defined
peak if cS < V < cL. Quite strikingly, the system stands free
of subsonic dislocations (v < cS) if V > 1.3 cS: Then plastic
deformation essentially consists of intersonic or supersonic
dislocations. Finally, even for V < cL distributions display
a small but appreciable amount of speeds v 	 cL. Indeed,
newly nucleated dislocations, until fully formed, induce huge
apparent measured transient speeds, as can be seen from tra-
jectories in Fig. 4.

4. Nucleation and local stress

As recalled in Sec. II B the athermal homogeneous nu-
cleation threshold of a dipole identifies with the theoretical
shear stress. Nucleation relieves the local excess stress in
between the two components of the nucleated dipole [13,70].
As these components move away from one another (which
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FIG. 11. Edge dislocations. Main plot: At t/τ0 = 39.93, local
stress σ (x, t ) for σa/σth = 1.5 and V = 0.30 cS (black), superim-
posed with simultaneous σa(x, t ) (orange) and dislocation density
ρ(x, t ) (green) divided by 50 for better representation. Top in-
set: Blow-up of same dislocation density for 0 � x/d � 20 × 2π .
Bottom inset: Blow-up of same σ (x, t ) within this range.

would correspond to loop expansion in higher dimensions)
this screening becomes less effective, until at some separation
distance a new pair pops up to reinstate locally a condition
|σ |/σth � 1.

Figure 11 displays, for subsonic V , a typical profile of
σ (x, t ) at some intermediate time, together with the corre-
sponding nucleated dislocation density (only half the system
is shown). The local density ρ being defined by Eq. (6)1, the
insets focused on the bulk-front boundary between show that
the stress and the dislocation cores are well resolved in our
calculations. They also fluctuate, and stress heterogeneity [17]
is different ahead of and behind the shock front. The main
plot evidences a forward stress tail. It arises in the form of
a wave emitted by the first nucleated dislocation and is after-
wards reinforced in a cumulative way as more dislocations are
nucleated behind. Its own front (unnoticeable on the figure)
propagates with speed cL. At the time represented, it is qua-
sicomplete and its maximal amplitude does not change much
thereafter. Similar pulses were observed in atomistic simula-
tions [14]. The strong shape variations of dislocation cores
under the action of the surrounding wave system explains the
difficulty of accurately estimating dislocation velocities with
method M2 in the previous section.

Although the exact triggering events for nucleation could
not be pinpointed, obvious candidates are fluctuations in the
bath of elastic waves emitted and scattered by dislocations.
The role of waves in “randomly” (i.e., pseudorandomly) trig-
gering nucleations is hinted at by considering cases V > cL.
Then the system entirely consists of supersonic dislocations
with v > cL (see Fig. 9). Elastic waves from these supersonic
dislocations are radiated as Mach cones out of the slip plane
without any possibility of disturbing η. This makes interac-
tions bewteen edge dislocations essentially local, so that a
decrease in the number of “random” nucleation events is ex-
pected. This is precisely what Fig. 4(i) illustrates at the highest
shock speed V = 3 cS where a regular array of supersonic
dislocations [27] is produced, to be investigated further below
and in Appendix C. Thus, for supersonic dislocations at very
high shock speeds, nucleation turns out fully kinematic [19].

FIG. 12. For V � cL , dislocation spacings vs. V for reduced
stresses τ = 1.05, 1.1, 1.2, . . . , 2.0 from top (blue) to bottom (red)
in the front zone (a) and the bulk zone (b) (in log scale). Markers:
measurements. Dashed lines: Eqs. (11) in (a) and (12) in (b).

5. Dislocation spacings and densities

Dislocation densities can be understood in terms of dis-
location mean spacings. The overdriven case V � cL such
as in Figs. 4(g), 4(h) and 4(i) is approximately addressed
remarking that the front zone consists of a regularly spaced
array of supersonic dislocations of same sign moving with
speed v � V . Based on the Weertman equation, a model of
dislocation spacing �x(v, τ ) in the array is derived in Ap-
pendix C, leading to the dislocation spacing in the front zone,

�x f (V, τ ) = (2π )d Bα (V )/
√

τ 2 − 1 (V � cL ), (11)

where Bα (v) is the drag coefficient at supersonic speed v and
τ = σa/σth is the reduced stress.

Figure 4 suggests that for V 	 cL dislocation pairs are
almost exclusively nucleated at the bulk-front boundary, with
one dislocation going into the bulk zone and the other one
into the front zone. Under this assumption, the nucleation rate
(number of dislocations nucleated per unit time) for each zone
is the relative speed �v at which dislocations move away from
the boundary, divided by the mean dislocation spacing. This
speed being �v = 2cL in the bulk zone, and �v = V − cL

in the front zone, equating nucleation rates �v/�x gives the
following estimate for the mean spacing for dislocations of
same sign in the bulk zone as

�xb(V, τ ) � 2cL

V − cL
�x f (V, τ ) (V 	 cL ). (12)

In Fig. 12 measurements of spacings between dislocations
of same sign, averaged over over a few outermost dislocations
in the front zone, and over a few dislocations in the bulk, are
compared to Eqs. (11) and (12). Figure 12(a) shows excellent
overall agreement with (11), in spite of deviations at small
V for the lowest σas, which indicate that the steady state has
not been reached there. In Fig. 12(b) by constrast, Eq. (12)
gives a correct order of magnitude only when V 	 cL, due to
the crude nature of our argument (data relative to parameter
values for which a relevant spacing could not be determined
due to excessive reaction-induced perturbations have been
omitted in the plots). Indeed, an ordered “steady state” in
the bulk for V > cL consists of two arrays of dislocation of
opposite signs steadily moving in opposite directions, which
periodically annihilate one another [e.g., Fig. 4(i)]. Such a
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FIG. 13. Edge dislocations. (a) Mean density ρ in the front zone
vs. V for various stresses and (b) data collapse with rescaling expo-
nent β = 1/2.

pattern is intrinsically dynamic and escapes the Weertman
equation used to derive (11).

Using Eq. (6), the mean (unsigned) dislocation density ρ is
estimated via measurements in bulk and front zones as

ρz =
〈∫

z
dx |ρ(x, t )|/�z(t )

〉
Tav

, (13)

where the zone label z is front or bulk. The integral is evalu-
ated as a Riemann sum. A further average is then made over
time within the useful time window.

For V > cL, Eqs. (C6) and (C8) in Appendix C suggest a
steady-state mean density in the front zone

ρ f (V, τ ) = (b�x f )−1 ∝
√

τ 2 − 1. (14)

This estimate does not compare quantitatively well with the
data and is not considered further. This may be due to various
causes among which dislocation core shapes varying much
more strongly than in the theoretical model (see Fig. 9).

However, our data are consistent with a generalized scaling
factor in stress of the form Sβ (τ ) = (τ 2 − 1)β with 0 < β < 1
an empirical complexity-related zone-dependent rescaling ex-
ponent. Figure 13(a) displays measured densities in the front
zone for edge dislocations. Apart from deviations attributed
to finite-size effects, the rescaling in Fig. 13(b) is consistent
with an exponent β = 1/2 over the whole range of V . The
transitions for V < cS in Fig. 13(b) should be brought together
with those in Fig. 6. Mean density data in the bulk zone are
reported in Fig. 14(a), while in (b) exponents were needed for

edge bulk 1.05
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00

(raw)
edge bulk
(rescaled)

(a) (b)

sc
al

in
g 

A

scaling B

FIG. 14. Edge dislocations. (a) Mean density ρ in the bulk zone
vs. V for various stresses and (b) data collapse with different rescal-
ing exponents β = 3/4 in region A and β = 1/2 in region B.

S(τ ) in regions A (V < cS) and B (V > cS) as indicated in the
caption. See the Supplemental Material [40] for data similar
to Figs. 13 and 14 for screw dislocations.

IV. CONCLUDING DISCUSSION

Within a 1D model, we investigated high-stress multiple
nucleations of dislocation pairs on a single slip plane under
(elasto)dynamic conditions by means of an original method.
Although the framework is free of side complexities such as
Peierls stress or forest hardening [71], the outcome turns out
surprisingly rich.

With regard to dislocation-based constitutive models, the
study suggests that the notion of a local dislocation-density
nucleation rate (such as usually considered in models) may not
straightforwadly apply to an advancing shock. Indeed, in ab-
sence of forest interactions, dislocations are continuously and
kinematically nucleated so as to maintain a quasisteady den-
sity of geometrically necessary dislocations [72] that screens
out the (macroscopic) applied stress. This is much alike the
findings of Zhakhovsky et al. in atomistic simulations [14] and
of Gurrutxaga-Lerma et al. in subsonic discrete dislocation
elastodynamic simulations [17]. Of relevance as well is the
observation that whatever this applied stress, the inner stress
that drives dislocations and determines their speed via the
mobility law should never exceed the nucleation threshold.
A distinction between the applied stress and this local stress
should therefore presumably be included in models.

Applying the model to a highly idealized “shock” situa-
tion, we found the system to spontaneously separate into two
“bulk” and “front” zones. Although Meyers [26], opposing
Smith’s views [27], considered dislocation generation rather
than motion responsible for the accomodation of lattice devi-
atoric strains, the present work suggests that both generation
and motion are equally important in shocks: Here dislocations
are generated only either in the bulk zone or at the interface
between the bulk and front zone, at supersonic speed, and can
be expelled into the nucleation-free front zone. In particular,
supersonic “shock” speeds cause supersonic dislocations to
transit from the bulk to the front zone in this model.

An accurate theory is presently lacking to account for the
densities reported in Figs. 13 and 14 over the whole domain
of parameters. However, dislocation densities were found to
scale as [(σa/σth)2 − 1]β , where σa is the applied stress, σth is
the theoretical shear stress (nucleation stress), and 0 < β < 1.
Exponent β does not depend on the shock speed V in the front
zone, where it is of order β ∼ 0.5. In the bulk zone, it differs
depending on whether V < cS (β ∼ 0.75 for edges, and ∼0.66
for screws) or V > cS (β ∼ 0.5 for both characters). These
values should, however, be reexamined on larger systems for
better statistics. Moreover, they may depend on the γ poten-
tial, since the base form [(σa/σth )2 − 1]1/2 (Appendix C) is
very much related to the sine Frenkel form. A scaling of the
type [(σa/σth )β1 − 1]β2 with two variable exponents might,
however, hold more generally. Because the DPE includes no
nontrivial equation of state (EoS), in spite of some similarities
the present two-zone picture differs from the one discovered
by Zhakhovsky et al. in the overdriven regime [14]. One major
difference is that our front zone is continuously expanding, but
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this can be due to 1D steric effects and may not occur in higher
dimensions.

Our model’s approximations may affect the results in
at least three aspects. First, our framework assumes lin-
ear elasticity, except for the pull-back force. However, real
shocks involve nonlinear elasticity due to the nontrivial EoS.
This would result in pressure-dependent elastic constants and
higher wave speeds behind the shock front compared to ahead
of it. However, in compressed metals, Poisson’s ratio remains
approximately constant in the absence of phase transforma-
tion. Consequently, the wave-speed ratio γ = cL/cS in the
kernels presented in Appendix A would remain unchanged by
compression [2]. Hence, uniformly compressed stress steps
should yield similar outcomes within the loaded region (en-
compassing both the “bulk” and “front” zones) with same
dislocation reactions. On the other hand, if the wave speeds in
the loaded “bulk” zone are higher than those in the unloaded
“front” zone for the case of V < cL, then the self-organization
of the front might change.

Second, the underlying physics of the DPE may not be
complete. Introducing local inertia in the pull-back force, as
discussed in Sec. II B, would likely alter the dynamics and
introduce additional delays in nucleation and reactions.

Third, in our 1D simulations, all dislocations turn out mo-
bile. Overcoming this limitation would require expanding the
analysis to higher dimensions to account for junctions and
other reactions [17,73]. These three issues require detailed
investigations that extend beyond the scope of this paper.

Nevertheless, in spite of these possible limitations, the
present study embodies full inertia of radiative origin [36,74],
drag, wave propagation, and retarded interactions on the slip
plane, nucleation and annihilations, and supersonic motion,
within one self-contained field equation without the need for
extra inputs. Therefore, it might serve as a one-dimensional
reference point for linear-elastic, discrete elastodynamic sim-

ulations, as well as a tool to evaluate future nucleation-related
equations for dislocation density evolution.
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APPENDIX A: KERNELS AND THEIR TRANSFORMS

The various kernels needed are as follows (the climb-edge
[75] case is reported for completeness only, as it is not used
in our simulations). Kernels Ka(x, t ) [35,74] vanish for t < 0
and are given below for t > 0 together with their associated
constants κa. Their spatial Fourier transforms (FT) Ka(k, t ),
of wavemode k, are expressed in terms of functions Cα (τ ),
which also vanish for t < 0, as

Ka(k, t ) = −i
π

2
cSk Ca(cSkt ). (A1)

Bearing in mind the usual correspondence between disloca-
tion characters and fracture modes, the Ca(τ ) are reproduced
hereafter from Refs. [76] in terms of the wave-speed ratio
γ = cL/cS > 1 and of the integral

W (τ ) = 1 −
∫ τ

0

dq

q
J1(q), (A2)

which admits a closed-form expression [77]. Finally, the
numerical method of solution (see Appendix B) needs the
Laplace transforms (LT)

Ca(s) =
∫ +∞

0
dτ Ca(τ )e−sτ , (A3)

which we give here in a slightly reorganized form with respect
to Ref. [76] to prepare for Eq. (A5) below.

Thus for t > 0,

screw: Ks(x, t ) = 1

2cS

x

t2

(
c2

St2 − x2
)−1/2

+ with κs = 1, (A4a)

Cs(τ ) = J1(τ )

τ
, (A4b)

Cs(s) =
√

1 + s2 − s, (A4c)

glide edge: Kg(x, t ) = 2c2
S

x3

[
1

cL

(
2c2

Lt2 − x2
)(

c2
Lt2 − x2

)−1/2

+ − 1

cS

(
2c2

St2 − x2
)(

c2
St2 − x2

)−1/2

+

]

+ x

2cSt2

(
c2

St2 − x2
)−1/2

+ + cS

2
x Pf

(
c2

St2 − x2
)−3/2

+ with κg = 1, (A4d)

Cg(τ ) = J1(τ )

τ
+ 4τ [W (γ τ ) − W (τ )] − 4

γ
J0(γ τ ) + 3J0(τ ), (A4e)

Cg(s) = − 4

s2

[√
1 + (s/γ )2 − (1 + s2/2)2

√
1 + s2

]
− s, (A4f)

climb edge: Kc(x, t ) = −2c2
S

x3

[
1

cL

(
2c2

Lt2 − x2)(c2
Lt2 − x2)−1/2

+ − 1

cS

(
2c2

St2 − x2)(c2
St2 − x2)−1/2

+

]

+ cL

2c2
S

x

t2

(
c2

Lt2 − x2
)−1/2

+ + c2
S

2cL

(
c2

L

c2
S

− 2

)2

x Pf
(
c2

Lt2 − x2
)−3/2

+ with κc = γ , (A4g)
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Cc(τ ) = γ 3 J1(γ τ )

γ τ
+ 4τ [W (τ ) − W (γ τ )] + (4γ − γ 3)J0(γ τ ) − 4J0(τ ), (A4h)

Cc(s) = − 4

s2

[√
1 + s2 − (1 + s2/2)2√

1 + (s/γ )2

]
− γ s, (A4i)

where Pf denotes Hadamard’s finite part and (x)α+ = xα if
x > 0 and 0 otherwise [78]. Equations (A4a) and (A4d) are,
respectively, Eqs. (7a) and (7b) of Ref. [74], written differ-
ently. Equation (A4g) derives from Eqs. (43a) and (43b) of
Ref. [35] and the transformation explained in Ref. [74]. Let-
ting s = iv/cS , both terms within brackets in (A4f) and (A4i)
are proportional to the Rayleigh function. Their common root
v∗ = cR is the Rayleigh wave speed of free-surface waves [79,
p. 18], equal to cR � 0.9325 cS if cL = 2 cS as in the present
work.

Quite remarkably, expressions (A4c), (A4f), and (A4i)
show Laplace transforms Ca(s) to be directly connected to
the so-called prelogarithmic steady-state Lagrangian func-
tions [74,80] La(v) for each character a, with v the dislocation
velocity, via the relationship (w0 = μb2/(4π ) is the character-
istic line energy density)

Ca(s) = − 1

w0
L(icSs) − κa s. (A5)

This connection went previously unnoticed to the best of our
knowledge. Moreover, the constant κa can be obtained in all
cases from L(v) as

κa = − 1

w0
lim

s→∞
1

s
L(icSs), (A6)

which is the same limit as Eq. (66) of Ref. [74], formulated
otherwise.

APPENDIX B: NUMERICAL METHOD

The main difficulty of (5a) lies in the integrodifferential
convolution operator, which is nonlocal in time and space.
Nevertheless, this operator is diagonalized by the Fourier
transform in space, followed by a Laplace transform in time.
Our method crucially relies on this property. Although used in
a different way (notably, with respect to the time convolution)
those transforms are central as well in the approach of Rice
and coworkers in the elastodynamic crack problem, which
moreover involves the same elastodynamic kernels [76]; see
Appendix A.

In the rest of the section, the substitution cSt → t is implied
to simplify notations, so that time has dimension of space.
Using Eq. (A1) the DPE reads in Fourier form

κα
a ∂tδη(k, t ) + k2

∫ t

−∞
dt ′ Ca(|k|(t − t ′))δη(k, t ′)

= −(2/μ)F (k, t ). (B1)

The kernels involved are stiff in space and time because of
their proportionality to k2 and because the kernel Ca[|k|(t −
t ′)] oscillates faster and faster as k → ∞. The simulation
interval of the x axis is discretized with step �x and the
continuous FT is approximated by the discrete FT using fast

Fourier transform (FFT) routines. For simplicity of exposi-
tion, the discrete character of the Fourier modes is left implicit
hereafter.

In statics, the FFT technique has been employed repeatedly
to solve the PN equation [48,81]. Since here all functions are
smooth, Gibbs oscillations are not a problem and no filtering
or modification of the wavemodes is required. However, use
of the DFT makes δη periodic in space. No attempt has been
made to mitigate this drawback, which could partially be
overcome using zero-padding [37,82]; see also Ref. [76].

Then time integration requires first re-expressing (B1) as

δη(k, t ) = − 2

μ

∫ t

0
dt ′ Ra(|k|(t − t ′))F (k, t ′), (B2)

where the resolvent Ra appears as the Fourier transform
of the fundamental solution ga—more precisely ga(k, t ) =
−(2/μ)Ra(|k|t ). The latter is the solution of the instance of
(5a) associated with a point source F (x, t ) → F point(x, t ) =
δ(t )δ(x). The advantage of (B2) over (B1) is that the stability
properties of the convolution operator, which are hidden in
the oscillations of Ca, appear more explicitly as a long-range
decay of Ra [37] (this has beneficial numerical consequences.)

Then, for time integration, we make use of Lubich and
Schädle’s so-called fast and oblivious method [83], where
the adjective oblivious actually indicates that the information
storage of the past times is “parsimonious.” This method
proved the most efficient one in terms of accuracy, speed, and
memory requirements, among the wide variety of strategies
thoroughly tested and compared for the present problem by
the second author (M.J.) [37]. The main ideas of the method,
which rests on a numerical inversion of the Laplace transform,
are as follows.

Equation (B2) is solved by a LT as

δη(k, s) = − 2

μ

1

|k|Ra(s/|k|)F (k, s), (B3)

where F (k, s) is the LT of F (k, t ) and where

Ra(s) = 1

κα
a s + Ca(s)

(B4)

is the LT of the resolvent

Ra(τ ) =
∫

�B

ds

2iπ
Ra(s) esτ , (B5)

where �B is a Bromwich inversion contour. To evaluate (B2),
the continuous integral in the Laplace inversion of Ra must
be done numerically in discretized form. Knowledge of the
poles and cuts in the complex s plane of Ra is necessary.
(These functions can be expressed so that their cuts lie hor-
izontally parallel to the real axis.) Following Lubich, Schädle,
and coworkers, the Bromwich contour �B is deformed into a
set of nonoverlapping Talbot contour(s) �l with l an integer
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index, suitably parametrized to enclose from the right the
poles and branch cuts. Being confined within horizontal strips
of the complex plane, Talbot contours are well suited to this
inversion problem.

Integral (B5) is then approximated by a Riemann sum of d
exponential terms, as

Ra(|k|t ) �
d∑

j=1

w j

2iπ
Ra(s j )e

s j |k|t , (B6)

where {s j} j=1,...,d is a |k|t-dependent discrete sample of
points on the set of contours and the w j are parametrization-
dependent weights for trapezoidal integration. We employed
the discretization parametrization of Ref. [83], which enjoys
spectral approximation error. Typically, the number d is not
too large—of order 100–500 for accuracy better than 10−8

on Ra; see Ref. [37, Fig. 8.7]. However, exponentials in (B6)
explode for t large when Re(s j ) > 0. To ensure stability quan-
tities Re(s j )|k|t are kept under control by making contours
tighter around singularities as time grows, whenever |k|t falls
into specific intervals of values.

Substituting (B6) into (B2) gives

δη(k, t ) �
d∑

j=0

w ju j (k, t ), (B7a)

with for j = 1, . . . , d ,

uj (k, t ) ≡ − 2

μ

Ra(s j )

2iπ

∫ t

0
dτ es j |k|(t−τ )F (k, τ ). (B7b)

Further differentiating (B7b) with respect to time then yields
evolution equations for the u j (k, t ) as

du j

dt
(k, t ) = s j |k|u j (k, t ) − 2

μ

Ra(s j )

2iπ
F (k, t ). (B8)

Thus, the integral equation (B1) has been replaced by a sim-
pler system of d first-order evolution equations. This approach
avoids keeping in memory the F (k, τ ) for 0 < τ < t , in favor
of advancing the u j (k, t ) in time for each s j . A hierarchi-
cal handling of the past information on the contour-related
intervals of |k|t confers the algorithm its excellent scaling
properties in time. We refer to the original publications [83]
and to Ref. [37] for details on the (delicate) procedure for
selecting the suitable contour at each time step. In practice,
Eqs. (B8) are discretized in time by means of the so-called
Radau II A Runge-Kutta method of order O(�t5), with a
fixed time step �t common to all modes k. Its stability [84]
makes this method particularly advantageous to address the
stiffness of Eq. (B8). If T is the number of time steps, and M
is the number of points in the spatial grid, then the algorithm
has a complexity of O(dM log M × T log T ) and requires a
memory of O(dM log T ), to be compared with O(M2T 2) and
O(MT ), respectively, for a naive evaluation of the time con-
volution in (B1).

To summarize, starting from initial conditions η0(x), and
u j (k, 0) = 0 for each discrete wavemode k, and given the
expressions of Ra(s), sets of discretization points s j on suit-
able Talbot contours, and a model for σa(x, t ), the algorithm
consists in looping over the following tasks for each time
step tk: (i) compute the elastic slip ηe(x, tk ) associated with

σa; (ii) evaluate F (x, tk ) in direct space as (5b); (iii) going to
the Fourier domain, compute F (k, tk ) by FFT; (iv) evolve for
each discrete wavemode k the u j (k, t ) to the next time step
tk+1 by means of (B8); and (v) reconstruct δη(k, tk+1) from
the u j (k, tk=1) using (B7a) and deduce δη(x, tk+1) by inverse
FFT. At tk the plastic slip is η(x, tk ) = η0(x) + δη(x, tk ).

APPENDIX C: SUPERSONIC DISLOCATION ARRAY

The following applies to the front region, for V > cL. Once
divided by σth, and on setting τ = σa/σth, Weertman’s equa-
tion [36,47] reduces, in the supersonic regime |v| > cL for
edges and |v| > cS for screws, to

2π
d

b
Bα (v)

∂η

∂x
(x) + τ = sin

(
2π

b
(η(x) + ηe)

)
(C1)

in the comoving frame of speed v. Here Bα (v) is the radia-
tive drag coefficient augmented by its empirical phonon-drag
contribution of dimensionless viscosity parameter α > 0, and
ηe is the background elastic slip [36]. Because of the su-
personic regime, the integral term of the full Weertman
equation [47] is absent from (C1). Letting βL =

√
v2/c2

L − 1,
βS =

√
v2/c2

S − 1, and sv = sgn v, the supersonic radiative
drag coefficient reads

Bedge(v) = 2sv

(cS

v

)2
{

βL +
[
1 − v2/

(
2c2

S

)]2

βS

}
, (C2a)

Bscrew(v) = sv

2
βS, (C2b)

and Bα (v) = B(v) + αv/cS .
In the strong-stress case |τ | > 1, ηe = (b/4) sgn τ [36]

and Eq. (C1) admits a multiple-dislocation solution akin to a
Smith array of dislocations of speed v. Eshelby only briefly
evoked its existence, describing it as “a linear function of
x − vt with a superimposed periodic ripple” [85]. Its master
analytical form was given by Movchan et al. [86], albeit in
a different context that did not require the function Bα (v)
(see the latter reference for a plot). It can be built from the
following base solution of (C1) indexed by k ∈ Z,

ηbase
k (x) = − b

4
sgn τ + b

π
arctan

(
1

τ
−

√
τ 2 − 1

τ

× tan

(
π

x

�x(v, τ )
− Q(τ )

))
− k b, (C3)

where the integration constant

Q(τ ) = arctan
√

(|τ | − 1)/(|τ | + 1) (C4)

has been adjusted so that ηbase
k=0(0) = 0. The function ηbase

k is
bounded, periodic, and discontinuous at points.

xdisc
k = �x(v, τ )

[(
k − 1

2

)
+ 1

π
Q(τ )

]
, (C5)

but with continuous derivative. Its spatial period, which cor-
responds to the distance between dislocations in the array, is

�x(v, τ ) = 2π |Bα (v)|d√
τ 2 − 1

. (C6)
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The array solution itself stems from assembling pieces of ηbase
k

in a continuous way, as

ηarray(x) = ηbase
[[(x−xdisc

0 )/�x(v,τ )]](x), (C7)

where the value of k in ηbase
k results from taking an integer part

(denoted by [[·]]), which involves xdisc
k=0. The mean dislocation

density in the array is, as expected,

ρ =
∫ �x

0

dx

�x

∣∣∣∣∂ηarray

∂x

∣∣∣∣ = 1

�x(v, τ )
. (C8)
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