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Intensity dependence of high-order harmonic generation in ZnO
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The laser intensity dependence of high-order harmonic generation (HHG) in ZnO is investigated theoretically.
We find that the intensities of lower-order harmonics mainly contributed by the intraband electron oscillation
increase with light intensity monotonously. However, the intensities of higher-order harmonics where the
interband electron-hole recollision dominates oscillate with light intensity. We build models of intraband and
interband electronic dynamics to study the effect of laser intensity on every single-order harmonic that is far
from the band gap. The model results are in good agreement with the numerical solution of semiconductor Bloch
equations. The nonzero initial �k positions play an important role in HHG, especially in higher-order harmonics.
With the saddle-point method, the critical distance for electron-hole recombination in the current material and
laser parameters is found to be one lattice constant in the dephasing time of a quarter of laser cycle. A unified
description of channel closing effects is proposed to explain the laser intensity dependence of above threshold
ionization and HHG in gases and solids including HHG not far from the band gap.
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I. INTRODUCTION

High-order harmonic generation (HHG), as a major branch
of strong-field physics, has been extended to interactions
between lasers and solids [1,2] and liquids [3] from gases
[4]. There are two important applications of HHG: One is
to generate new ultrashort light sources [5], and the other is
to detect structural [6–10] and dynamic information [5,11–
13] of matter. HHG in solids has been extended from bulk
semiconductors [1] to monolayer materials [14,15], tailored or
engineered solid materials [16–18], Weyl semimetal β-WP2

crystals [19], and topological insulators, including the model
system of a linear chain of singly charged ions [20], Haldane
model [21,22], and realistic three-dimensional topological in-
sulator Bi2Se3 [23,24].

In all the laser-matter interaction processes, the effects of
laser intensity and wavelength are very fundamental, as they
are basic parameters of pulses. The laser intensity dependence
of the cutoff energy of solid HHG has been experimentally
studied in ZnO [1], solid Ar, and solid Kr [25]. The laser
intensity dependence of single-order harmonic has been ex-
perimentally studied in ZnO [1,26], an Au nanoantenna array
[17], 2-mm-thick ZnSe film (HHG near and below the band
gap) [27], grating structures composed of thin Si ridges, and
bulk Si [18]. However, the mechanism behind these phenom-
ena remains to be studied. In the experimental results of ZnSe
film, the intensities of HHG below the band gap increase
monotonously with the light intensity in Fig. 3 of Ref. [27].
This phenomenon also occurs in Fig. 2 in the present study.
An oscillation appears in the laser intensity dependence of the
15th-order harmonic in bulk Si in Fig. 4(d) of Ref. [18], which
might be the footprint of the phenomena presented in Figs. 3
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and 8(c) in our current work. But this phenomenon is not the
focus of Ref. [18], and they did not explain it.

Some numerical and theoretical studies were performed in
different materials and model potentials [28–30] with differ-
ent theoretical methods. Different models were built to explain
the intensity dependence of harmonics, for example, subcycle
interferences between electrons pumped to the conduction
band at different times [28], the contribution of Floquet-Bloch
states [29], and quantum path interferences [30]. Since there
are few experimental studies on laser intensity dependencies
of solid HHG, especially for higher-order harmonics, and
there are different theoretical explanations, it is very meaning-
ful to conduct a more accurate and detailed theoretical study
on the light intensity dependence of harmonics.

In Ref. [29], Jin et al. calculated HHG from one- and
two-dimensional model potentials with the time-dependent
Schrödinger equation (TDSE) with a single �k point and the
whole Brillouin zone as the initial state, respectively. It was
found that the harmonic yield of the harmonic plateau region
and the 11th-order harmonic oscillates with the light intensity.
The Floquet-Bloch theory and the strong-field approximation
were used in Ref. [29] to explain the oscillation of harmon-
ics. The effect of multiple bands is naturally included in
the calculation of TDSE with model potentials [29,31,32].
Higher-energy bands contribute to higher-harmonic plateaus.
In moderate light intensities, the solid materials will not
be damaged, and only the first harmonic plateau can be
observed experimentally [1,26,33]. In these cases, the con-
tribution of higher-energy bands can be ignored, which is
the case in our current study. The complex solutions of
the ionization saddle-point equation were obtained with ap-
proximations in Ref. [29]. In our current work, we find
that although the ionization time determined by Eq. (24)
is important, the ionization yield has little effect on the
intensity dependence of HHG, so the band gap is disre-
garded in the ionization saddle-point equation, which is
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helpful to give a semiclassical physical picture of the electron
motion.

In Refs. [28,30], the semiconductor Bloch equation (SBE)
was numerically solved to investigate the laser intensity de-
pendence of HHG in ZnSe, solid Ar, ZnO [28], and MgO
[30]. The oscillation of harmonic yield with the light inten-
sity was explained by the interference of different ionization
events around the adjacent pulse peaks separated by a half
optical cycle [28] and the interference between short and
long quantum paths [30]. In our present study, the intensity
dependencies of different-order harmonics are obtained by the
intraband model and the saddle-point method. It is found that
the interference effect applicable to all oscillatory structures
of intensity dependence curves is more complicated than that
in Refs. [28,30]. The interference effects in the time domain
are different in different light intensities. The interference
between short quantum paths may produce a maximum or a
minimum. A minimum value might come from the interfer-
ence between short quantum paths or from the interference
between short and long quantum paths.

In the calculations of TDSE and model theories, the
case with �k = 0 as the initial state is usually considered
as a main or representative part [28,29,31,34–36] to study
the laser-material interaction even though the full Brillouin
zone integration is performed in the same time with the
TDSE [29,36] or SBE methods [28,29,31]. Beyond the single-
active-electron approximation, the contribution of electron
correlation to HHG is studied using time-dependent density-
functional theory [37–39]. The importance of contributions of
nonzero initial �k points is discussed in Ref. [40] by comparing
HHG calculated by TDSE and SBE in the same conditions.
Crystal-momentum-resolved contributions to HHG have been
studied in Refs. [36,41–44]. Electrons tunneling from regions
away from the minimum band gap have been found to play
an important role in the interaction between solids and ellipti-
cally polarized pulses [45]. However, whether and how much
the initial state of �k = 0 contributes to HHG remains to be
studied. All initial �k positions in the valence band are taken
into account in our study. We find that the point �k = 0 as the
initial state may make a great contribution to the intraband
harmonics, but it may make almost no contribution to the
interband harmonics.

The light intensity dependence of the harmonic yield in-
tegrated over a wide range of frequencies has been studied
in Refs. [28,29]. In our current work, harmonics far from the
band gap will be studied separately according to the order. We
extend the model of intraband electron oscillation to study
harmonics below the band gap. We develop the model of
interband electron-hole recombination with the saddle-point
method to study the intensity dependence of each single-order
harmonic above the band-gap region. With these more rig-
orous models, the electron dynamics behind a single-order
harmonic can be found and disassembled in the energy-�k
space and in the real space. Different explanations of the
intensity dependence of HHG can be checked. The phrase
“far from the band gap” refers to spectral regions where either
intraband or interband harmonic radiation dominates, and the
interference between them can be ignored. However, the quan-
titative boundary value of the region where interference can

be ignored has not been determined yet, which needs further
study.

The laser intensity dependencies of above threshold ion-
ization (ATI) [46–49] and HHG [47,50,51] in gases have been
studied. Resonance-like enhancements called channel-closing
effects appear in the ATI and HHG spectra. However, this
effect in solid HHG has not yet been confirmed through exper-
imental observations. In Sec. III D, we have re-examined the
intensity dependence of ATI and HHG in gases with TDSE
and compared the results to those of solid HHG. Our find-
ings indicate that the oscillations presented in the intensity
dependence of solid HHG in our current study are due to a
similar channel-closing effects, although there are some dis-
tinct differences in the properties of the oscillations between
HHG in solids and ATI and HHG in gases. We established
the connection between channel-closing effects in gases and
solids by energy-band-structure-based images.

II. THEORETICAL METHODS

A. Semiconductor Bloch equations

The interaction process between ZnO and strong laser
pulses is simulated by solving the SBE:

∂

∂t
ξ2,1( �K ) = −ξ2,1( �K )

Td
+ i �F (t ) · �D1,2( �K )

× [n1, �K (t ) − n2, �K (t )]e−iS2,1( �K,t ), (1a)

∂

∂t
nm, �K = smi �F (t ) · �D2,1( �K )ξ2,1( �K )eiS2,1( �K,t ) + c.c., (1b)

where Td = T0/4 is the dephasing time, T0 is the period of the
pulse, and nm is the population of the mth band. The valence
and conduction bands are marked with m = 1 and m = 2,
respectively. sm(s1 = 1, s2 = −1) is a sign factor for unifying
equations of different bands. The magnitude of the transition
dipole �D is denoted by D. D at � point is 3.46 [52]. The
parameters of the one-dimensional (1D) band structure along
the �-M direction provided in Ref. [53] are used in our cal-
culations. k and K are the magnitudes of the quasimomentum
�k and �K , respectively. The electric field is linearly polarized
along the �-M direction in ZnO. The pulse envelope

fe(t ) =
⎧⎨
⎩

sin2
[

π
2τu

(t − t0)
]
, t ∈ [t0, t0 + τu]

1, t ∈ (t0 + τu, t f − τd )
cos2

{
π

2τd
[t − (t f − τd )]

}
, t ∈ [t f − τd , t f ]

(2)
is trapezoidal-like, which allows the starting and end points
of the pulse and its derivative to be exactly zero. The whole
duration of the pulse (t f − t0) is seven cycles with 2-cycle
uphill (τu = 2T0) and 2-cycle downhill (τd = 2T0). The vector
potential is defined as �A(t ) = fe(t ) �F0/ω0 sin(ω0t ), where F0

and ω0 are the amplitude and angular frequency of the laser,
respectively. The electric field strength is �F (t ) = −d �A/dt .
Each cycle is discretized into 210 × 4 time points. The con-
vergence has been tested with 210 × 2 points per cycle and
210 × 6 points per cycle. Other variables and parameters are
described in Appendix A. The initial state of ZnO is selected
to be the whole valence band; 601 �k points at equal intervals
are sampled in the valence band for the initial states. The con-
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vergence has been tested with 301 and 1001 �k points. Atomic
units are used throughout the paper unless stated otherwise.

Intra- and interband currents are, respectively, defined as

�jra(t ) =
∑

m

∫
�vm( �K )nm( �K, t ) d �K (3)

and

�jer(t ) =
∑

m,n,m>n

d

dt

∫
�℘m,n( �K, t ) d �K, (4)

where

�℘m,n( �K, t ) = �Dm,n( �K )ξm,n( �K )eiSm,n ( �K,t ) + c.c. (5)

is the polarization between the mth and nth bands, and

�vm( �K ) = ∇ �K Em( �K ). (6)

The total current is

�jtotal(t ) = �jra(t ) + �jer(t ). (7)

The harmonic spectrum 
(ω) is obtained from the modulus
square of the Fourier transform of the current’s time derivative
[54–56], i.e.,


(ω) =
∣∣∣∣
∫

exp(−iωt )
d

dt
�j(t )dt

∣∣∣∣
2

= |ω �J (ω)|2, (8)

where �J (ω) = ∫
exp(−iωt )�j(t )dt . The same letter without

vector superscript is the modulus of the corresponding vector.

B. Model of intraband harmonic generation

The intraband electron oscillation has been used to qual-
itatively explain the harmonic cutoff position that increases
linearly with the increase in electric field strength [1,57].
Usually, in the model of intraband harmonic generation, the
initial state is set as �k = 0 and the electron is ionized at the
peak of the electric field. The electron motion is governed by

d

dt
�K (t ) = − �F (t ). (9)

The electron group velocity, namely Eq. (6), is used to cal-
culate the current. However, some factors are difficult to be
taken into consideration, for example,

(1) the influence of the initial �k positions of electrons on
the current,

(2) the effect of electrons ionized at different times on the
current, and

(3) the electron population evolution.
Therefore, the model of intraband electron oscillation is

difficult to quantitatively explain harmonic spectra.
We extend this model with the help of the saddle-point

method. The assumptions are listed as follows:
(1) The whole valence band is set as the initial state. The

current is obtained by integrating all initial positions �k0 in the
first Brillouin zone.

(2) Electrons are ionized only at K = 2nπ/a0, n ∈ Z
(the minimum band-gap position), where a0 is the lattice
constant, which is required by the saddle-point equation
Eq. (23).

(3) Electrons are ionized every time they pass the point
K = 2nπ/a0, n ∈ Z . Currents generated by multiple ioniza-
tion events should be added together.

(4) For each ionization event, the number of electrons
transiting to the conduction band, �n2(�k0, tion), is calcu-
lated by a product factor of the electric field strength and
transition dipole moment D at the ionization time, namely
�n2(�k0, tion) = |F (tion)|D, (K (tion) = 2nπ/a0, n ∈ Z ), which
is assumed based on the ionization part of Eqs. (11) and (12).

(5) The direction and trajectory of electrons are deter-
mined by Eqs. (6) and (9).

(6) The current is 0 before the electron being ionized.
For the numerical implementation, the procedure is pre-

sented as follows:
(1) 601 �k points are sampled in the valence band in the

first Brillouin zone uniformly.
(2) For each initial position �k0, the �k path can be calculated

as �K (t ) = �k0 + �A(t ).
(3) Find all the minimum-gap positions in the closed inter-

val [min[ �K (t )], max[ �K (t )]], denoted by k�,n(n = 1, 2, 3, . . . )
which can span across multiple Brillouin zones.

(4) Solve K (t ) = k�,m to obtain all the solutions of ioniza-
tion times tion,n, where the subscripted symbol n denotes the
nth ionization time. For one initial �k0, either no solution or
many solutions is possible.

(5) For every initial �k0 and the nth ionization time tion,n,
�K (t ) is used to calculate the electron velocity with the gra-
dient of conduction band, i.e., �v(�k0, tion,n, t ) = ∇�kEc[ �K (t )].
Before the ionization time tion,n, the velocity is set as zero,
i.e., v(�k0, tion,n, t � tion,n) = 0.

(6) The increase in conduction-band population in
the nth ionization event is estimated as �n2(�k0, tion,n) =
|F (tion,n)|D, (K (tion,n) = 2mπ/a0, m ∈ Z ).

(7) The intraband current corresponding to �k0

and the ionization time tion,n is �jra(�k0, tion,n, t ) =
�v(�k0, tion,n, t )�n2(�k0, tion,n).

(8) The total intraband current is �jra(t ) =∫ ∑
n

�jra(�k0, tion,n, t )d�k0, where the summation with respect
to n corresponds to the accumulation of multiple ionization
events, and the integration with respect to �k0 includes the
contributions of different initial positions.

(9) The intraband harmonic spectrum is obtained from
the modulus square of the Fourier-transformed current’s
time derivative, i.e., 
ra(ω) = | ∫ exp(−iωt ) d

dt
�jra(t )dt |2 =

|ω �Jra(ω)|2.
In the extended model, there are still some factors not taken

into account as follows:
(1) The reduction of electron population in the conduction

band caused by the electron-hole recollision is not considered.
(2) The depletion of electron population in the valence

band is neglected.
There are some methods to remedy these deficiencies as

follows:
(1) The electron population curves calculated by SBE can

be used to consider the depletion of valence band electron
population and the evolution of the conduction band popu-
lation.

054306-3



WANG, LIU, JIA, YAN, AND JIANG PHYSICAL REVIEW B 108, 054306 (2023)

(2) The depletion of valence band electrons can be calcu-
lated by the ionization saddle points and their corresponding
ionization probabilities.

(3) The reduction of electron population in the conduction
band can be computed by the product of the electric field
strength and the transition dipole moment at the recollision
saddle points.

However, electrons starting from one �k point or different
�k points contribute to different order harmonics. As there are
many ionization and recollision saddle points, these compen-
sation methods will greatly increase the complexity of the
intraband model. We have pointed out the drawbacks of the
intraband model we currently use and proposed remedies for
them, but these patches or remedies are not employed in our
calculations. They are only suggested to be employed when
necessary. The ionization part rather than the complete expres-
sions of Eqs. (11) and (12) for the population is used in the
intraband model, with the hopeful expectation that the results
of SBE can be reproduced with as few terms as possible,
which helps us to capture the main clue to the problem. An
exact expression for intraband harmonic generation with all
terms related to ionization, propagation, and recombination
needs further study.

C. Saddle-point method

In an appropriate range of laser parameters the Keldysh
approximation n1, �K (t ) − n2, �K (t ) ≈ 1 [52,58] is valid and can
be used to decouple equations of ξ and n in Eq. (1). Analytic
solutions of the decoupled equations can be obtained as fol-
lows:

ξ2,1( �K, t ) = exp

(
− t

Td

) ∫ t

t0

dt ′ exp

[
t ′

Td
− iS2,1( �K, t ′)

]

× i �F (t ′) · �D1,2[ �K (t ′)], (10)

nm, �K (t ) = nm, �K (t0) + [ym(t ) + c.c.], (11)

where t0 is the initial time,

ym(t ) = −
∫ t

t0

dt ′sm �F (t ′) · �D2,1[ �K (t ′)]

×
∫ t ′

t0

dt ′′ exp

[
t ′′ − t ′

Td
+ iS2,1( �K, t ′′, t ′)

]

× �F (t ′′) · �D1,2[ �K (t ′′)], (12)

and

S2,1( �K, t ′′, t ′) = S2,1( �K, t ′) − S2,1( �K, t ′′), (13)

where t ′′ is the electron ionization time and t ′ is the electron-
hole recombination time. The impact of electron ionization,
propagation, and electron-hole recombination on the evolu-
tion of electron and hole population has been described in
Eq. (12) with �F (t ′′) · �D1,2[ �K (t ′′)], exp[ t ′′−t ′

Td
+ iS2,1( �K, t ′′, t ′)],

and �F (t ′) · �D2,1[ �K (t ′)], respectively. The corresponding ana-
lytic solution in atoms has been given in Ref. [59]. Then the
interband current can be calculated by Eq. (4), which results
in

�jer(t ) = �μ(t ) + c.c., (14)

where

�μ(t ) =
∫

BZ
d�k �D2,1

{
−i

1

Td
−G2,1[ �K (t )]

}∫ t

t0

dt ′ exp

(
t ′ − t

Td

)

× exp[iS2,1( �K, t ′, t )] �F (t ′) · �D1,2, (15)

and

G2,1(t ) = E2(t ) − E1(t ). (16)

BZ denotes the first Brillouin zone. D has been assumed to be
a real number and to be independent of �K and t in the step to
get the interband current. Equation (15) can be interpreted as
a sum of probability amplitudes [59] of the processes of the
electron ionization at t ′, the electron traveling in solids from
t ′ to t , and the electron-hole recombination at t . The term
containing −i/Td will not be strictly eliminated in Eq. (14),
but it only contributes to lower-order harmonics in the current
laser parameters and material, which has been omitted in
Refs. [52,53].

The harmonic spectrum corresponds to the Fourier trans-
form of the current’s time derivative,


er(ω) = |ω �Jer(ω)|2, (17)

where

�Jer(ω) = �I1(ω) + �I2(ω), (18)

�I1(ω) =
∫ t=+∞

t=−∞
dte−iωt �μ(t )

=
∫ t=+∞

t=−∞
dt

∫
BZ

d�k �D2,1

{
−i

1

Td
− G2,1[ �K (t )]

}

× exp[iS2,1( �K, t ) − iωt]
∫ t

t0

dt ′ exp

(
t ′ − t

Td

)

× exp[−iS2,1( �K, t ′)] �F (t ′) · �D1,2, (19)

and

�I2(ω) =
∫ t=+∞

t=−∞
dte−iωt �μ∗(t )

=
∫ t=+∞

t=−∞
dt

∫
BZ

d�k �D2,1

{
i

1

Td
− G2,1[ �K (t )]

}

× exp[−iS2,1( �K, t ) − iωt]
∫ t

t0

dt ′ exp

(
t ′ − t

Td

)

× exp[iS2,1( �K, t ′)] �F (t ′) · �D1,2. (20)

We can get six saddle-point equations from the three integrals
over �k, t ′, and t in Eqs. (19) and (20). They are listed as
follows:

(1) For the integral over t ′, the saddle-point equations are

d

dt ′ [±iS2,1( �K, t ′)] = 0. (21)

They lead to the equation of ionization times

E2[ �K (t ′)] − E1[ �K (t ′)] = 0. (22)

The classical approximation of neglecting the band-gap en-
ergy [53,59] is used to get a real solution, which means

E2[ �K (t ′)] − Egap − E1[ �K (t ′)] = 0. (23)
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This results in

K (t ′) = n
2π

a0
, n ∈ Z, (24)

which determines the ionization times. The real solutions of
t ′ in the ionization equation, Eq. (24), are helpful to build a
semiclassical picture of the electronic motion for HHG.

(2) For the integral over t , the saddle-point equatons are

d

dt
[iS2,1( �K, t ) − iωt] = 0, (25)

generated from Eq. (19), and

d

dt
[−iS2,1( �K, t ) − iωt] = 0, (26)

generated from Eq. (20). The solution of Eq. (25) is

ωp = E2[ �K (t )] − E1[ �K (t )], (27)

which means the interband electron-hole recollision con-
tributes to the harmonic generation. The solution of Eq. (26)
is

ωm = E1[ �K (t )] − E2[ �K (t )], (28)

which is the negative frequency term generated in the Fourier
transform that corresponds to ωp.

(3) For the integral over �k, the saddle-point equations are

±i
∂

∂�k S2,1( �K, t ′, t ) = 0. (29)

They result in

�r1, �K (t ) − �r1, �K (t ′) = �r2, �K (t ) − �r2, �K (t ′), (30)

which means the real space recollision for the electron-hole
pair born at the same location. Through numerical tests, we
find that the saddle-point results are in good coincidence with
the SBE results when the critical distance of electron-hole
recombination is set as one lattice constant which is 5.32 a.u.
in ZnO, which means

|�r1, �K (t ) − �r1, �K (t ′) − [�r2, �K (t ) − �r2, �K (t ′)]| < a0. (31)

This is reasonable because the wave packet is delocalized and
can spread in the real space [60].

The contribution of each pair of saddle points and their sum
can be calculated by the following formulas:

�I1(ω) ≈
∑

ts

∑
�Ks

�D2,1

(
−i

1

Td
− ω

)
exp

[
−ts

(
1

Td
+ iω

)]

×
∑

t ′
s

exp

(
t ′
s

Td

)
exp[iS2,1( �Ks, t ′

s, ts)] �F (t ′
s ) · �D1,2

×F[ f (t ′
s )] F[ f (ts)] F[ f ( �Ks)], (32)

and

�I2(ω) ≈
∑

ts

∑
�Ks

�D2,1

(
i

1

Td
− ω

)
exp

[
−ts

(
1

Td
+ iω

)]

×
∑

t ′
s

exp

(
t ′
s

Td

)
exp[−iS2,1( �Ks, t ′

s, ts)] �F (t ′
s ) · �D1,2

×F[− f (t ′
s )] F[− f (ts)] F[− f ( �Ks)], (33)

where

F (z) = i

√
2π

|z| exp

[
−i

arg(z)

2

]
, (34)

f (t ′
s ) = −i∇2

t ′S2,1( �Ks, t ′)|t ′
s
, (35)

f (ts) = i∇2
t S2,1( �Ks, t )|ts , (36)

and

f ( �Ks) = i∇2
�K S2,1( �K, t ′

s, ts)| �Ks
. (37)

t ′
s and ts are the ionization-time and recollision-time saddle

points, respectively. �Ks requires that the relation between t ′
s

and ts must satisfy Eq. (30). The arg(z) is the argument of z,
and arg(z) ∈ [0, 2π ) for the current saddle-point formula.

In the derivation of all the saddle-point equations, the term,
exp( t ′−t

Td
), is not taken into the calculation of the first derivative

in the present study, as it is not an oscillatory exponential
function of t or t ′, which is the same as Eq. (5) of Ref. [52] but
different from Eq. (7) of Ref. [53]. There have been some vari-
ants of saddle-point methods for solid HHG. For example, the
saddle-point method proposed in Ref. [52] has been extended
to include Berry connections, transition dipole phases, and
electron-hole polarization energy at recollision in Ref. [60].
It has also been used to simulate the superposition of contri-
butions from a series of Gaussian wave packets in Ref. [61].
When Td is infinity, Eq. (14) in the current work will corre-
spond to Eq. (1) of Ref. [60] and Eq. (1) of Ref. [61]. Different
from the current mathematical formalism, Wannier states
rather than Bloch states are used to describe the wave function
of valence band electrons in the expansion of the time-
dependent electronic wave function in Ref. [62]. The corre-
sponding saddle-point equations in Ref. [62] can depict the
ionization and recombination at different sites in real space.

III. RESULTS AND DISCUSSION

The harmonic spectra calculated by SBE at the same wave-
length but for different laser intensities are shown in Figs. 1(a)
and 1(b). The band gap is at 8.66ω0, around which the intra-
and interband harmonic spectra have comparable strength
and the interference between intra- and interband processes
may significantly modify each other [31]. Harmonics below
the band gap are mainly contributed by the intraband elec-
tron oscillation, while harmonics above the band gap are
mainly contributed by the interband electron-hole recombina-
tion [34,35,52]. The farther the harmonic frequency is from
the band gap, the more dominant the contribution becomes
from one of the two dynamic processes.

In both the lower-intensity [Fig. 1(a)] and higher-intensity
results [Fig. 1(b)], the intensity of the third-order intraband
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FIG. 1. Laser intensity dependence of high-order harmonic generation in ZnO. High-order harmonics are generated in ZnO at the intensities
of (a) 3.1585 × 1011 W/cm2 and (b) 2.246 × 1012 W/cm2, respectively. The driving pulse wavelength is 3.2545 µm. The total (black solid
line), intraband (red dashed line), and interband (blue dotted line) harmonic spectra are shown in (a) and (b). The time-frequency analysis
is performed on the laser-induced total currents generated at [(c) and (d)] 1.3825 × 1012 W/cm2 and (e) 1.8904 × 1012 W/cm2. The time-
frequency profiles of (c) low-frequency range and [(d) and (e)] high-frequency range are displayed separately.

harmonic is about three orders of magnitude larger than that of
the interband harmonic. The difference between intensities of
the intraband and interband harmonic spectra quickly reduces
to nearly one order of magnitude at the fifth-order harmonic,
which is shown in Figs. 1(a) and 1(b) and can also be seen in
Fig. 2. In the above-band-gap frequency region in Figs. 1(a)
and 1(b), the difference between intensities of the inter- and
intraband spectra increases gradually with the harmonic order.
The difference is about four orders of magnitude or even more
in the cutoff region.

According to these phenomena, we will study the laser
intensity dependence of lower-order harmonics that are dom-
inated by the intraband electron oscillation with the intraband
model developed in Sec. II B. The laser intensity dependence
of higher-order harmonics that are dominated by the interband
electron-hole recollision will be studied with the saddle-point
method developed in Sec. II C.

Time-frequency analyses of different-order total harmonics
in different laser intensities are shown in Figs. 1(c)–1(e). The
third-order harmonic radiates at all times [Fig. 1(c)], which
is the characteristic of intraband harmonic radiation. The ra-
diation occurs at moments when the instantaneous electric

field is zero, which is due to two reasons. One reason is
that the previously ionized electron has nonzero velocity and
acceleration. The other reason is an inherent issue related to
the principle of time-frequency analysis. The wavelet function
used here is the Morlet wavelet [63],

w(tc, ω, t ) =
√

ω√
τ

eiω(t−tc )e−(t−tc )2ω2/(2τ 2 ). (38)

The wavelet function w contains a window function, given by
exp[−(t − tc)2ω2/(2τ 2)], which is used to capture a segment
of the time signal from the current. The complex oscillation
function exp[iω(t − tc)] is utilized for Fourier transform. The
emission intensity at (tc, ω) is the modulus square of

A(tc, ω) =
∫

j(t )w(tc, ω, t )dt . (39)

The time resolution is related to the cycle of the highest
frequency to resolve. Because we can never extract an instan-
taneous time signal to perform Fourier transform, the emission
intensity at the time moments when the electric field is zero
cannot be resolved to be zero unless there is no radiation for a
long period of time.
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FIG. 2. Laser intensity dependence of low-frequency harmonics.
(a) Intensity dependencies of the third-order total (blakc square),
intraband (red circle), interband (blue upward triangle) harmonics
and harmonics calculated by the model of intraband harmonic gen-
eration (green downward triangle). (b) is the same as (a) but for
the fifth-order harmonic. For comparison, results from the intraband
model are multiplied by 10−5.

Short quantum paths appear in the radiation of higher-order
harmonics [Fig. 1(d)], which is a signature of recollision. The
contribution from long quantum paths at this laser intensity
has attenuated because of the longer travel time. At a higher
laser intensity, both short and long quantum paths contribute
to the harmonic radiation, as is shown in Fig. 1(e). The oc-
currence time of radiation is earlier than that of lower laser
intensity. These relatively pure intraband and interband radia-
tions can be disassembled with our intraband model (Sec. II B)
and saddle-point methods (Sec. II C), respectively.

A. Low-order region

The laser intensity dependence of any single-order har-
monic is calculated by |J (ω)|2. The factor ω2 in 
 is constant
for a fixed frequency and thus has been discarded. The laser
intensity dependencies of the third-order harmonic calculated
by SBE and the intraband model are shown in Fig. 2(a).

With the increase in light intensity, the harmonic intensity
increases monotonously. The intraband harmonics almost ex-
actly reproduce the curve of the total harmonic radiation in
the SBE results. The light intensity dependence of the third-
order harmonic calculated by the intraband model is in good
coincidence with the intraband and total spectra from SBE.

The intraband and the total harmonic spectra at the fifth
order have a similar monotonous dependence on the laser
intensity but have some differences in the harmonic intensity,
as shown in Fig. 2(b). These differences between intraband
and total harmonic radiation indicate that the interband con-
tribution cannot be ignored. The radiation calculated by the
intraband-model oscillates with the laser intensity, which can
reproduce neither the intraband nor the total harmonic spec-
tra. Because intensities of intraband and interband harmonics
draw close to each other and their interference increases [31].
Frequent interband electron transitions make the evolution of
electron population contributing to the fifth-order harmonic
complicated. However, the intraband model cannot fully take
into consideration the evolution of electron population and the
interference between intraband and interband processes. So it
is only applicable to low-order harmonics far from the band
gap.

B. High-order region

The laser intensity dependencies of the 27th- and 29th-
order harmonics are shown in Figs. 3(a) and 3(b), respectively.
The harmonic intensities oscillate with the laser intensity,
which is different from harmonics in the low-order region
in Fig. 2. The agreement between the results of n1 − n2 = 1
(Keldysh approximation) and SBE verifies the accuracy of the
Keldysh approximation. The results of saddle-point method
also show corresponding oscillations in the intensity depen-
dence curve, and the positions of peaks and valleys are in good
agreement with SBE results, which verifies the accuracy of
the saddle-point method. The saddle-point method retains the
electron dynamic processes that make the main contribution.
The maximum values of the saddle-point method increase
more slowly with light intensity than SBE, which may be due
to the approximation of the ionization process, as the classical
approximation is made to transform Eq. (22) to Eq. (23). The
minimum values remain almost unchanged with increasing
intensity. This is because there is almost no noise background
signal in the saddle-point method, so the sum of all saddle
points near each minimum value approaches 0.

In order to find the electron dynamic processes behind the
light intensity dependence, we extract the saddle points in
the peaks and valleys for further analysis. The time-frequency
analyses and saddle-point contributions of the 27th-order har-
monic in different laser intensities marked by A, B, and C in
Fig. 3(a) are shown in Fig. 4. In Fig. 4(a) only short quantum
paths exist, which can be also checked in Fig. 1(d). The saddle
points are plotted on the time-frequency analysis line accord-
ing to recollision times. They are mainly distributed near the
peaks and valleys of the time-frequency curve.

The saddle-point method is used to pick out the dynamic
process which plays an important role in the final result from
all the processes. Even if a dynamic process contributes a lot,
if there is a corresponding comparable process to counteract it,
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FIG. 3. Laser intensity dependence of high-frequency harmon-
ics. (a) Intensity dependence of the 27th-order harmonic. The results
calculated by SBE (black square), SBE with the Keldysh approxima-
tion n1 − n2 = 1 (blue downward triangle), and saddle-point method
(red circle) are shown in (a). A, B, and C mark three extrema
in the intensity dependence curve. Their intensities are 1.3825 ×
1012 W/cm2, 1.4841 × 1012 W/cm2, and 1.8904 × 1012 W/cm2,
respectively. (b) The same as (a) but for the 29th-order harmonic. For
visual clarity, the results from the saddle-point method are multiplied
by 3 × 10−7.

then neither of these two dynamic processes will be retained
in the result of the saddle-point method. This leads to many
zero-contribution regions on the time axis in the saddle-point
results which correspond to the vacant regions in the line of
saddle-point position in Fig. 4. Therefore, it is meaningless to
directly show the intensity of each saddle-point contribution.
A new sequence of points, namely the blue upward triangle
points in Figs. 4(a) and 4(b), are set at the discrete positions
on the time axis every 1/8 cycle. All contributions, Jer(ω),
of saddle points within 1/32 cycle from each selected point
are added together. The saddle-point contribution is consis-
tent with the time-frequency analysis, which shows that the

saddle points localized in a small range of time can reflect the
corresponding short-time dynamic process.

In Fig. 4(c), the saddle points are highly concentrated at
the peaks and valleys of the time-frequency curve to form
many saddle-point clusters. Recollision times of one cluster
of saddle points are averaged to get the abscissa of one blue
upward triangle point. The ordinate is the modulus of the sum
of all complex amplitudes of saddle points in one cluster. The
peaks and valleys can be well reproduced by the saddle-point
contribution.

From the perspective of interference of quantum paths
[30,64], both results in Figs. 4(a) and 4(b) are mainly formed
by the interference of short paths. The interference of short
quantum paths can result in both maximum and minimum
radiations in the intensity dependence curve, as is shown in
A and B in Fig. 3(a). There are both short and long quantum
paths in Fig. 4(c), which can be also seen in Fig. 1(e). Then
interferences between all short and long quantum paths play
an important role in the minimum radiation of C in Fig. 3(a).

As the electron dynamics in solids are usually analyzed
in the energy-�k space, complex amplitudes of saddle points
generated from the same initial �k value are added together,

Jer(�k, ω) =
∑

t ′
s,ts, �Ks

Jer(�k, ω, t ′
s, ts, �Ks), (40)

to show a �k-resolved saddle-point contribution. The complex
amplitudes, Jer(�k, ω), of different �k values are drawn on
the complex plane in Fig. 5. It is obvious that the sum of
vectors in Fig. 5(a) will result in a larger vector, because the
vector angles of most of them are concentrated in a narrow
direction. The vectors in Fig. 5(b) counteract each other,
because they point almost uniformly in all directions. The
important information indicated by Fig. 5 is that harmonic
radiations of electrons starting from different �k points can be
synchronized or asynchronized in different laser intensities.
The sum of vectors can explain the maximum and minimum
radiations in Fig. 3(a).

C. Discussion about electron dynamics

A classical approximation has been made to the saddle-
point equation of electron ionization process in Eq. (22). It
is necessary to discuss the validity of this approximation.
The electron tunneling ionization process is partly disregarded
with this approximation [53]. Therefore, the effect of ioniza-
tion delay does not exist in our current saddle-point method.
The accuracy of ionization yield might be decreased. How-
ever, a complete ionization process remains in the calculation
results of SBE where this approximation is not made.

Since the results of electron ionization correspond to the
change of electron population in different bands, we extract
the evolution of electron population from SBE calculations
to check whether the possible effect of light intensity on
the ionization process plays a major role in the variation of
harmonic radiation with the light intensity. The evolution of
electron population with the light intensity and time is shown
in Fig. 6. Although the electron population oscillates over
time, as shown in Fig. 6(a), it does not oscillate with the light
intensity, which can be seen in Fig. 6(b). In addition, the har-
monics’ oscillation with light intensity is not lost in the results
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FIG. 4. Time-frequency analysis and saddle-point contribution of the 27th-order harmonic. The laser intensities of (a), (b), and (c) corre-
spond to the intensities of points A, B, and C in Fig. 3(a). (a) The time-frequency analysis is performed on the total current calculated by SBE
and is shown by the black dotted line. Saddle-point positions are marked by red squares. The saddle-point contribution is displayed by the blue
upward triangle line. Panels (b) and (c) are the same as panel (a) but for different laser intensities.

of saddle-point method with this classical approximation for
ionization, as shown in Fig. 3. Hence, the impact of electron
ionization yield on the oscillation of harmonic radiation with
light intensity is not evident, and this approximation for ion-
ization is valid. However, the electron excitation probabilities
may be different at different wavelengths [65] and in materials
with different orientations and sizes [66]. In these cases, the
influence of ionization process on the harmonic radiation may
be reflected, which needs further study.

If we want to build a simple model for the electron dynam-
ics, then some key points are necessary: Which initial state
does the electron start from? What process does it go through?
And what does it contribute to the final result? We extract the
contribution of electrons starting from different �k positions to
harmonics. The corresponding results as a function of initial
crystal momentum �k are shown in Fig. 7. It can be seen from
Fig. 7(a) that the radiation of the third-order harmonic that
is mainly contributed by the intraband electron oscillation
comes from a wide range of �k points, of which the biggest
contribution comes from �k = 0. However, the radiation of
the 27th-order harmonic that is mainly contributed by the
interband electron-hole recollision mainly comes from the
trajectories whose initial �k positions are far from zero, as
shown in Fig. 7(b). Therefore, a model of electronic dynamics

with �k = 0 as the initial state may contain part of the intraband
harmonic information, but it might be difficult to include the
interband harmonic information.

The six key initial positions corresponding to the six peaks
in Fig. 7(b) are discrete and symmetric with respect to �k = 0.
This feature is easy to understand according to the saddle-
point method. Because the electron motion is restricted by
the saddle-point equations of t ′, t , and �K simultaneously,
the electron that makes the main contribution to a certain
order harmonic can only recollide at the position limited by
Eqs. (27) and (30), and it can only be ionized at positions
limited by Eq. (24), then it can only come from some spe-
cific initial �k position as long as the band structure and the
external field are determined. This means not only that the
full Brillouin zone integration is important for the final HHG
spectrum in the TDSE and SBE methods but also that the
source locations of the electrons that generate a specific order
of harmonic are found.

D. A unified description of channel closing
effects in gases and solids

To get a deep understanding of the laser intensity effects
on gases and solids, we compare the dependencies of ATI in
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FIG. 5. Complex amplitudes of harmonic contribution from dif-
ferent �k positions calculated by the saddle-point method. The laser
intensities are (a) 1.3825 × 1012 W/cm2 and (b) 1.8904 × 1012

W/cm2, which corresponds to the intensities of points A and C in
Fig. 3(a), respectively.

gases, and HHG in gases and solids, on light intensity. We find
that although there are some different characteristics in the
three spectra shown in Fig. 8, the laser intensity dependencies
of ATI and HHG in gases and solids can be described in a
similar way in the energy-band-structure picture.

The laser intensity dependencies of ATI in gases have been
studied in Ref. [46] by TDSE, in Ref. [47] by a modified
version of the strong-field approximation with one act of
rescattering, and in Ref. [67] by a bicircular field. The kinetic
energy of the ionized electron is

E ≈ nω0 − Ip − Up, (41)

where n is the number of photons absorbed by the electron,
Ip is the ionization potential of hydrogen atom, and Up is the

FIG. 6. Laser intensity dependencies of the electron population
in the conduction band calculated by SBE. (a) Intensity and time
dependencies of the electron population in the conduction band.
(b) Intensity dependencies of the electron population at 2.5 T0 (black
square), 3 T0 (red circle), and 3.5 T0 (blue downward triangle). The
curves in (b) are extracted from (a).

ponderomotive potential,

Up = I

4ω2
0

. (42)

We solve the 1D-TDSE numerically using the split
wave-function method [68–70]. The electric field is
F0 sin(ω0t ) sin(πt/tp)2 with 5-cycle zero-value tail after the
end tp of the pulse with 20-cycle duration. The wavelength
of the pulse is 630 nm; 3000 points are sampled per cycle.
The coulomb potential of hydrogen atom is modeled by a
soft-core potential V (x) = −1/

√
2 + x2. The “internal zone”

ends at 610 a.u. The “matching zone” starts at 130 a.u. The
“external zone” in the calculation can reach 3584 a.u. The
real space in the internal zone is discretized into 4896 points.
The momentum space for external electrons is discretized into
22 564 points. The obtained laser intensity dependence of ATI
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FIG. 7. Initial k resolved contribution to harmonic generation at
the laser intensity of 1.3825 × 1012 W/cm2 [corresponding to the
intensity of point A in Fig. 3(a)]. (a) Contribution to the third-order
harmonic calculated by the model of intraband harmonic generation.
(b) Contribution to the 27th-order harmonic calculated by the saddle-
point method.

spectra in the hydrogen atom is shown in Fig. 8(a). The ATI
peaks shift to lower orders with the increase of laser intensity.
This phenomenon can be well explained by the white dashed
lines calculated by Eqs. (41) and (42).

For HHG in gases, the harmonic energy according to the
three step model [71] is

E ≈ Ip + p2

2
cycle averaged−−−−−−−→ E ≈ Ip + Up. (43)

The laser intensity dependence of HHG in hydrogen is investi-
gated by numerically solving the 1D-TDSE with an absorbing
boundary function in the real space [−300,300] a.u. sampled
with 2648 points. The pulse is the same as that defined in
Sec. II A but with a wavelength of 800 nm. Each cycle is
discretized into 4096 points for the time evolution. The HHG
spectra are shown in Fig. 8(b). The harmonic peaks shift
towards higher orders with the increase of light intensity. The
dashed lines in Fig. 8(b) calculated by Eqs. (43) and (42) can
well explain this phenomenon. By comparing Eqs. (41) and
(43), we can see that the opposite slope of dependence of
ATI and HHG on light intensity is due to the opposite sign
before Up.

The stripes of ATI and HHG spectra in gases shown in
Figs. 8(a) and 8(b) are linear and uniformly distributed. How-
ever, significantly curved arc structures appear in the stripes
of dependencies of solid HHG on light intensity in Fig. 8(c).
Moreover, solid HHG spectra no longer oscillate with laser
intensity in a uniform period, as shown in Figs. 8(c) and 3. At
first glance, the intensity dependence of solid HHG appears to
be significantly different from that of ATI and HHG in gases.

(a)

(b)

(c)

FIG. 8. Laser intensity dependencies of (a) ATI in hydrogen and
HHG in (b) hydrogen and (c) ZnO. The z-axis data represented
by color is logarithmic. The dashed lines in (a), (b), and (c) are
calculated by the channel closing theories of ATI [Eq. (41)], HHG
[Eq. (43)] in gases, and HHG in solids [Eqs. (50) and (51)], re-
spectively. The dashed lines are separated by one photon energy in
(a) and two photon energies in (b) and (c). Other lines translated from
dashed lines are omitted to avoid obscuring the stripes on the color
maps.
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FIG. 9. Schematic diagram of channel closing effects in (a) gases
and (b) solids. The coordinate axes are marked with the bold letters.
(a) The free electron energy p2/2 for the negative p and the ground-
state energy are depicted by the black dashed lines. The lines of
positive p are symmetric with the negative ones about the OE axis,
so they are omitted in (a). The same energy curves are drawn in the
p2 axis with red solid lines in (a). �E and �p2 are the distances
in the energy and p2 axes. (b) The energy difference between the
conduction and valence bands of ZnO is plotted in the k and k2 axes.
Other elements are similar to those in (a).

In addition, the channel closing effect is usually considered
as a resonant ionization process in gases. As shown in Fig. 6,
the electron population in ZnO does not exhibit oscillations
with respect to light intensity, which appears to be in contrast
to the channel closing effect observed in gases. However,
we find that if the channel closing effect is considered as a
process including ionization, propagation, and recollision (in
HHG), then we can provide a unified explanation for the laser
intensity dependence of ATI in gases and HHG in gases and
solids by considering gas energy levels as energy bands.

The unified description of channel closing effects is shown
in Fig. 9. It will be explained in detail in the following text.
If we want to describe the electron dynamics on the field-free
energy band structure, then the key is to establish the relation
between laser parameters, electron motion and the horizontal
and vertical coordinates of the energy band structure. For
an ionized electron in gases, its kinetic energy follows the
relation

E (p) = p2

2
≈ nω0 − Ip − I

4ω2
0

, (44)

where E (p) is the energy band on the p axis. There is a linear
relation between p2 and I in Eq. (44), which means

�p2 ∝ �I. (45)

The slope of the E (I ) curve is −1/(4ω2
0 ). Therefore, we can

definitely see the effect of light intensity on the kinetic energy
of ionized electrons directly in E (p2) function space.

The energy band structure of electrons in gases is shown in
E (p) and E (p2) spaces in Fig. 9(a). The parabola in the p axis
becomes a straight line in the p2 axis. E (p2) is linear on the
p2 axis, that is, if electrons absorb the same energy, then the
required increase in light intensity is the same, which means

�E2 = �E1 ⇒ �p2
2 = �p2

1 ⇒ �I2 = �I1. (46)

So ATI spectra vary linearly as a function of light intensity and
the oscillation period remains constant, as shown in Fig. 8(a).
For HHG in gases, there exist analogous relations and physical
pictures, which can be also described in Fig. 9(a).

In solids, according to the acceleration theorem,

dk(t )

dt
= −F (t ) = −

√
I fF (t ), (47)

where fF (t ) is the t-dependent term. Because the time-
dependent parts of k(t ) and fF (t ) contain only the laser
frequency and not the field strength, the derivative of k(t ) with
respect to t does not generate a term that depends on laser
intensity. Therefore, k(t ) is a linear function of

√
I , and

�k ∝ �
√

I, (48)

which is universal. To obtain the proportional coefficient be-
tween k and

√
I , we take the electric field of cosine form

F (t ) = F0 cos(ω0t + ϕ) as an example, since we are using
a monochromatic pulse in this research. Integrating Eq. (47)
yields:

k(t ) = k(t0) −
√

I

ω0
sin(ω0t + ϕ). (49)

The amplitude of k(t ) is

k0 =
√

I

ω0
, (50)

with k(t0) = 0. Therefore, the proportional coefficient be-
tween k and

√
I is found to be −1/ω0. This establishes the

relation between laser parameters, electron motion and the
horizontal axis of energy band structure. The relation asso-
ciated with the vertical axis E of energy band structure can
be established based on the fact that the interband harmonic
energy is determined by energy difference Eq. (27). The har-
monic energy is

E = E2(k2) − E1(k2). (51)

Therefore, the reason for the dependence of solid HHG on
laser intensity can be found in E (k2) space, which has been
drawn in Fig. 9(b). From Fig. 9(b), we can clearly see the
following relation:

�E2 = �E1 ⇒ �k2
2 > �k2

1 ⇒ �I2 > �I1. (52)

This is why the oscillation period of solid HHG increases with
the light intensity, which has been shown in Figs. 3 and 8(c).
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The dashed lines in Fig. 8(c) correspond to the minima of the
spectra, which confirms the fact shown in Fig. 7(b) that the
initial zero-k point has a small contribution to the interband
harmonics.

IV. SUMMARY AND CONCLUSION

We have theoretically studied the laser intensity depen-
dence of HHG in ZnO. We find that a large difference
between intraband and interband harmonic spectra can ex-
ist in harmonics far from the band gap. In these regions,
HHG is mainly contributed by either the intraband electron
oscillation or the interband electron-hole recombination. The
intraband harmonic radiation increases with the light intensity
monotonously. The interband harmonic intensity oscillates
with the light intensity. The model methods based on the
intraband or the interband mechanisms can well explain the
corresponding harmonic radiation.

For interband harmonics, the contribution of long quantum
orbits is more likely to occur at high laser intensities. The
electron ionization yield has little effect on the intensity-
dependent oscillation of interband harmonic generation.
Nonzero initial �k points play an important role in HHG,
especially in the interband harmonic radiation. The critical
distance of electron-hole recombination is found to be nearly
one lattice constant in the current material and laser parame-
ters with the dephasing time of Td = T0/4. With this critical
distance, the saddle-point results are in good agreement with
the SBE results. When the dephasing time increases, a larger
distance of electron-hole recombination might give contribu-
tions to harmonic radiation, because a longer dephasing time
slows down the attenuation of electron and hole wave packets.
Therefore, the critical distance of electron-hole recombination
in the saddle-point method should be modified at different
dephasing times.

A unified description of channel closing effects in gases
and solids is proposed to explain the laser-intensity depen-
dence of ATI and HHG in gases and solids. The unified theory
can well explain the shift and extremum positions of ATI and
interband HHG spectra, including almost all the interband
HHG plateau. A small-enough step size of laser intensity
maybe helpful to experimentally observe this laser-intensity-
dependent oscillation and the curved arc stripes in solid HHG.
The curved arc stripes in Fig. 8(c) can be seen as a measure-
ment of the energy difference between valence and conduction
bands. With the help of density-functional theory, the valence
band can be obtained with high accuracy. Then an all-optical
measurement of the conduction band can be performed with
the measurement of laser intensity dependence of HHG.

The theoretical models can be used in multicolor pulses
[13,43] and other materials including semimetals and semi-
conductors in the laser-solid interaction processes. As the
saddle-point method contains the phase information of the
electron dynamic process and harmonic radiation, it can be
used to study various interference processes. The extension
of our current saddle-point method with complete complex
solutions [72,73] can be used to study the tunneling ionization
process, which is expected to obtain the electron tunneling
time in solids.

Further studies are needed to determine whether the ef-
fects presented in our current research also manifest in two
or three-dimensional simulations, as well as in multiband
simulations, other wavelengths, materials with nonparabolic
bands, and after macroscopic propagation. The light intensity
dependencies of electronic excitation processes in the cases of
resonance in GaAs [74], valley polarization in graphene [65],
and channel-closing effects in the Mathieu-type potential [32]
have been studied, respectively. The specific embodiments of
these electronic excitation effects in HHG need further study.
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APPENDIX A: DERIVATION OF SBE FROM TDSE

The TDSE within the dipole approximation in the length
gauge

i
∂

∂t
|ψ (t )〉 =

[
�̂p2

2
+ V (�r) + �̂r · �F (t )

]
|ψ (t )〉 (A1)

governs the laser-matter interaction process. In a periodic
solid material, the time-dependent wave function can be as-
sumed as the superposition of Bloch states,

|ψ (t )〉 =
∑

n

∫
|φn,�k〉cn,�k (t )d3�k, (A2)

where φn,�k = ei�k·�run,�k is the Bloch state. Substituting Eq. (A2)
into Eq. (A1), the equation of expansion coefficient can be
obtained as follows:

i
∂

∂t
cm, �k′ (t ) = �F (t ) ·

∑
n

∫
〈φm, �k′ |�̂r|φn,�k〉cn,�k (t )d3�k

+ Em, �k′cm, �k′ (t ). (A3)

With the relation of transition dipole [75]

〈φm, �k′ |�̂r|φn,�k〉 = −i
∂

∂�k δm,nδ(�k − �k′) + δ( �k′ − �k)

×
∫

d�r〈um,�k|�r〉i
∂

∂�k 〈�r|un,�k〉, (A4)

the coefficient equation, Eq. (A3), goes into the form

∂

∂t
cm,�k (t ) = −iEm,�kcm,�k (t ) − �F (t ) · ∂

∂�k cm,�k (t )

− i �F (t ) ·
∑

n

∫
d�r〈um,�k|�r〉i

∂

∂�k 〈�r|un,�k〉cn,�k (t ).

(A5)

By introducing two transformations,

�K (t ) = �k + �A(t ), (A6a)

cm, �K (t ) = bm, �K (t )e−i
∫ t
−∞ Em, �K dt ′

, (A6b)
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FIG. 10. Effects of dephasing time. The laser intensity dependencies of HHG in ZnO with different dephasing times are shown in (a) Td =
T0/2, (b) Td = T0, and (c) Td = ∞. Other laser parameters are the same as those in Fig. 8(c).

terms about the derivative of c with respect to �k and
Em,�kcm,�k (t ) vanish. The equation of coefficient c, Eq. (A5),
is transformed into the equation of b,

∂

∂t
bm, �K (t ) = −i �F (t ) ·

∑
n

�Dm,n( �K )bn, �K (t )eiSm,n ( �K,t ), (A7)

where

�Dm,n( �K ) =
∫

d�r〈um, �K |�r〉i ∂

∂ �K 〈�r|un, �K 〉, (A8)

and

Sn,m( �K, t ) =
∫ t

−∞
En[ �K (t ′)] − Em[ �K (t ′)]dt ′. (A9)

By introducing two new variables,

nm, �K = b∗
m, �K bm, �K (A10)

and

ξm,n( �K ) = b∗
m, �K bn, �K , (m �= n), (A11)

and using their derivatives with respect to t and Eq. (A7), we
get the two band density matrix equations Eq. (1). D has been
assumed to be a real number in this step.

The derivation of SBE from TDSE is performed following
the procedure given in Ref. [52]. In order to avoid the am-
biguity of semantics and symbols, we give the derivation in
Appendix A. Another reason for the derivation is that if we
want to extend D to be complex numbers and k dependent, we
need to know at which step D was approximated and what
kind of approximation was made. In the current work, the
transition dipole moment is not extended to be a complex
and �k-dependent number. If D is a complex number and �k
dependent, then some additional terms, including the Berry
connection and different forms of transition dipole moments,
would arise in the SBE. The relation between transition dipole
moments between different bands (for example, D1,2 and D∗

2,1)
will be dependent on the material symmetry [76]. The analytic
solutions of the SBE and the saddle-point method would be
more complicated. The �k-dependent transition dipole moment
provided in Ref. [52] [Eq. (8) in the supplemental material]

is only a good approximation for small �k around the � point.
Therefore, the complex and �k-dependent transition dipole mo-
ment needs further study.

APPENDIX B: EFFECTS OF DEPHASING TIME

Since the dephasing time in the process of laser-material
interaction remains undetermined, different dephasing times
are tested to check the robustness of the laser intensity depen-
dencies of HHG in ZnO discussed in the main text. Harmonic
spectra in ZnO with different dephasing times are shown in
Fig. 10. The harmonic intensity oscillation with light intensity
and the curved arc stripes still exist in different dephasing
times, even in the infinity dephasing time. However, as the de-
phasing time increases, the oscillation of the harmonic spectra
may not be as clear as that under smaller dephasing times.
Whatever the dephasing time is, it is still possible to observe
this laser-intensity-dependent oscillation and the arc stripes.

APPENDIX C: SADDLE-POINT SIGNATURE
OF HARMONIC RADIATION

There is a maximum value at t = 4T0 in Fig. 4(b). The
reasons for its occurrence are analyzed here. The readers will
have a knowledge of what level of precision can be expected in
different results. From the physical perspective, the population
of electrons and holes is always evolving and not fixed. The
amount of ionized electrons is influenced by the intensity of
light and the number of electrons at the time of ionization.
The electron population in the valence and conduction bands
is not periodic in the time evolution, so the amount of ionized
electrons varies in different laser cycles. In the earlier part of
the pulse, there are fewer recollision times, but in the later part
of the pulse, there are more recollision times, and the effect
of multiple recollisions will be more pronounced in the later
part. The multiple recollisions have different trajectories and
periodicities, which disrupts the relatively good periodicity of
the harmonic radiation caused by the first-resollision trajecto-
ries. The positions of saddle points are more scattered in the
later part of the time axis than in the earlier part, as shown in
Fig. 4(b). These reasons can cause the current and harmonic
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radiation of a specific frequency to be physically nonperiodic.
These nonperiodicities may be amplified in the saddle-point
method.

From the mathematical perspective, the intensity depen-
dencies of harmonics calculated by the saddle-point method
have been shown in Fig. 3, which are in good agreement with
the SBE results. In Fig. 3, the contributions from all initial
k points and all saddle points at various ionization and rec-
ollision times have been summed together in the calculation
of harmonic radiation intensity under a certain light intensity.
Because the saddle-point method is a mathematical technique
used to preserve the processes that make the main contribution
to the final result in an integration, many processes that cancel
each other out are not retained in the saddle-point method,
which correspond to the blank spaces between the red points
in Fig. 4. Therefore, we cannot expect that the time-resolved
harmonic contribution obtained by the saddle-point method
can reproduce the curve of time-frequency analysis at every
time point. However, we want to check whether the saddle
points finally retained can describe the main electronic dy-
namics information in a relatively short time range (locally
near the peak and valley of the time-frequency analysis curve).
For this reason, we uniformly select certain points (abscissas
of the blue upward triangle points) near the peaks and valleys
of the time-frequency curve. Then, we sum the contributions
from the saddle points within a specific range centered around
these sample points to obtain the ordinate of the blue points.
This allows us to evaluate whether the saddle-point method
can produce peaks and valleys in almost the same positions
of the time-frequency curve. The selected interval range for
summation may not encompass saddle points that have op-
posite phases. Therefore, the modulus of a single saddle-point
contribution may be large due to the absence of corresponding
cancellation terms.

Saddle points are mainly retained in some extremum po-
sitions of the integrand function and are generated at times
with strong and weak radiation. Their amplitudes can differ
significantly in magnitude. The distributions of the amplitudes
and phases of the saddle points depend on the specific material
and pulse. All the contributions of saddle points are calcu-
lated in detail and shown in Fig. 11(a) separately. The largest
contribution around t = 4T0 in Fig. 4(b) is found and marked
with the red circle marker dashed line in Fig. 11(a). The red
saddle point is found to originate from the initial position
of k = −0.3150 × (2π/a0). The k-resolved contributions of
saddle points are shown in Fig. 11(b). The red saddle point
comes from the initial position that makes the main contri-
bution to the harmonic radiation, which is the saddle-point
signature of harmonic radiation. In Fig. 11(a), the magnitude
of the red saddle point exceeds 1300. Due to the introduction
of saddle points ionized in the same position, the magnitude
at k = −0.3150 × (2π/a0) is reduced to be less than 1200
in Fig. 11(b). After summing up the saddle points within a
range of 1/16 cycle, the peak intensity in Fig. 4(b) is reduced

FIG. 11. Detailed analysis of saddle-point contributions at the
laser intensity of 1.4841 × 1012 W/cm2 [corresponding to the in-
tensity of point B in Fig. 3(a)]. (a) The contributions of saddle points
at different times of recollision are separately drawn on the complex
plane. The red dashed line with circles as the initial and end points
marks the largest amplitude of saddle-point contributions near the
recollision time of t = 4T0. (b) The initial-k-resolved contributions
of saddle points.

to be nearly twice the magnitude of other cycles. When all
the saddle points are summed together, a minimum radia-
tion value appears in the laser intensity curve at point B in
Fig. 3(a), which is experimentally measurable and consistent
with the SBE results. All these results are physically and
mathematically self-consistent.

Therefore, the amplitude of the blue triangle line in Fig. 4
is influenced by the physical nonperiodicity, multiple recol-
lisions, the inherent issue of the saddle-point method, the
approximation made in the solution of saddle-point equations,
and the range of the summation interval in the time axis.
The radiation decay caused by the dephasing time has been
included in the saddle-point method. What we expect is for
the saddle-point method to generate extremum values at ap-
proximately the same positions as the time-frequency curve.
In Fig. 4(b), the peak value of saddle-point contributions near
t = 4T0 is about twice the magnitude of the saddle-point con-
tributions in other cycles, which we think is reasonable, and
even a larger difference is acceptable. The present results are
good enough to show that the saddle-point method can capture
the short-time-range dynamics information near the peaks and
valleys of the time-frequency curve.
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