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Thermal Drude weight in an integrable chiral clock model
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We calculate the finite temperature thermal conductivity of a time-reversal invariant chiral Z3 clock model
along an integrable line in the parameter space using the time-dependent density matrix renormalization group.
The thermal current itself is not a conserved charge, unlike in the case of XXZ model, but has a finite overlap with
a local conserved charge Q(2) obtained from the transfer matrix. We find that the Drude weight is finite at nonzero
temperature, and the Mazur bound from Q(2) saturates the Drude weight, allowing us to obtain an asymptotic
expression for the Drude weight at high temperatures. The numerical estimates of the conductivity are validated
using a sum rule for thermal conductivity. On the computational side, we also explore the effectiveness of the
ancilla disentangler in the integrable and nonintegrable regimes of the model. We find that at high temperature,
the disentangler helps by localizing the entanglement growth around the quench location allowing us to obtain
the Drude weight in the integrable model. The improvement is insufficient to extract the asymptotic value of
the correlator in the nonintegrable regime. The ancilla disentangler also provides no additional advantage at low
temperatures.

DOI: 10.1103/PhysRevB.108.054304

I. INTRODUCTION

One-dimensional quantum systems host many experimen-
tally realizable and theoretically tractable models that exhibit
a rich set of quantum phenomena, including phase transi-
tions, anomalous quantum transport, Luttinger liquids, etc.
Transport setups that measure energy, spin or charge currents
generated in response to weak external field gradients are
widely used in characterization of such systems. Related ques-
tions of dynamics in weakly non-equilibrium situations have
garnered considerable theoretical interest [1] and inspired the
development of efficient algorithms [2–5] for their study. The
spin-1/2 XXZ chain is an analytically tractable model that
can be realized in certain one-dimensional quantum magnets
[6,7]. Attempts to understand their measured transport prop-
erties led to many early works on isolated XXZ chains and
closely related bosonic and fermionic models. These studies
have revealed a connection between integrability and anoma-
lous transport applicable not just in magnets but also in exper-
imentally realizable bosonic and fermionic systems [8–11].

Based on the seminal works by Mazur and Suzuki which
relate the value of time-averaged correlations with overlaps of
operators and conserved charges [12,13], it was argued [14]
that the conductivity of integrable systems such as the XXZ
chain should have an anomalous zero frequency singularity
(Drude weight). XXZ model is associated with two physically
accessible conserved charges, namely energy and total spin
quantum number along the z direction. The possibility of
a finite Drude weight for thermal and spin conductivity, as
well as broader features of associated transport, have been
investigated in the XXZ model and its variants (including the
cases with impurity [15,16] or noise [17]) over the past several
decades [18–23].

In the gapless phase of the XXZ model, corresponding
to the easy plane anisotropic case, early studies using Bethe

ansatz suggested a finite zero temperature spin Drude weight
which monotonically decreases with temperature [24]. The
spin Drude weight decreases towards zero at all tempera-
tures as the isotropic Heisenberg point is approached [25].
Numerical studies using exact diagonalization and a finite
temperature generalization of the Kohn’s formula [26–28]
hints at vanishing spin Drude weight at finite temperatures
in gapped phase when the system has net zero magnetiza-
tion [29–32]. Results using generalized hydrodynamics and
thermodynamic Bethe ansatz approach also indicate zero spin
Drude weight in the gapped phase and finite spin Drude
weight in the gapless phase [25]. Broadly the results also
agree with time-dependent density matrix renormalization
group (tDMRG) calculations which can access large finite size
systems [20]. These results pertain to the zero magnetization
ensembles; the spin Drude weight is finite in ensembles with
finite magnetization even in the gapped phase [30]. Though
the spin Drude weight has been found to be finite in the
gapless phase, contrary to the expectation, the spin current
operator is orthogonal to all local conserved charges obtained
from the transfer matrix [14,33]. The finite Drude weight has
been understood in terms of the Mazur bound related to the
overlap of the spin current with certain additional quasilocal
conserved charges [34,35].

The thermal current operator in the XXZ model is a
conserved charge [14], and consequently the dynamical ther-
mal conductivity has no finite frequency contribution. For
the gapped phase, numerics and Bethe ansatz [14,36,37] ap-
proaches reveal a power-law decay of thermal Drude weight
with temperature (T ) at high temperatures and an exponential
decay with 1

T at low temperatures, separated by a maximum at
finite temperature. The trend is similar for the gapless regime,
but the low temperature behavior [38] is linear in T there.

Besides the calculation of the Drude weight, other re-
lated aspects of ballistic transport have also been explored.
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These include studies on Fourier’s law violations in non
equilibrium steady state currents generated in response to
a potential gradient [2,15,16,39–43], studies of currents in
ray-dependent steady states after quench from a bipartitioned
system [44–50], and studies on the nature of spread of initial
spin or energy packets [22,51–53]. Breaking the integrabil-
ity in such models, for instance, by next nearest neighbor
interactions or noise, results in vanishing of the Drude peak
and transfer of the conductivity weight to finite frequencies
[17,31,54–56].

While the XXZ model and equivalent fermionic and
bosonic models have been explored in great detail, not much
has been systematically explored in other models [57]. In this
work, we investigate the Z3 chiral clock model with a spa-
tial chirality [58–61]. The model hosts a rich phase diagram
[62] and exhibits dynamics [44,63,64] of interest in Rydberg
atom systems [65]. More importantly, for our current interest,
the model is integrable in a certain part of the parameter
space [66].

We numerically calculate the dynamical thermal conduc-
tivity in the integrable regime using techniques developed and
applied successfully in the XXZ model and characterize the
Drude weight as a function of the temperature and model
parameters. The Drude weight is found to be finite at all finite
temperatures and the temperature dependence qualitatively
matches that of the thermal Drude weight in the XXZ model.
We then borrow results on the transfer matrix of the classical
chiral clock model [66] to construct local conserved charges
for the quantum model. The Mazur bound from the simplest
nontrivial charge Q(2) is found to saturate the numerically
calculated Drude weight, which indicates that the current has
a finite overlap only with Q(2). This allows us to obtain an
asymptotically exact expression for Drude weight in the large
temperature limit. The thermal current is not a conserved
quantity, unlike the XXZ model and has a component that is
not conserved and therefore orthogonal to all other conserved
charges; we expect this to result in coexistence of diffusive
and ballistic components in the dynamics of energy packets in
this model.

In the past, several numerical techniques have been utilised
to address the questions on transport phenomena in interacting
quantum systems. Exact diagonalization techniques can esti-
mate correlator of local observables with high accuracy but
suffers from severe finite-size effect making the results unre-
liable in thermodynamic limit [30–32,67–70]. Tensor network
based tDMRG method has also been used to investigate large
system sizes and therefore, practically approaching thermody-
namic limit with tunable error and computation cost [5,71]. A
modified tDMRG approach based on the ancilla purification is
found to be able to significantly reduce the computational cost
of the simulation [20,72]. We use the latter in our calculation
of the relevant correlators.

This paper is organized as follows. In Sec. II, we introduce
the model. Next, in Sec. III, we present the expressions for the
energy density and energy current; and introduce the relation
between the conductivity and the current-current correlator
which we use in the numerical calculations. We also discuss
constraints satisfied by the thermal conductivity namely the
sum rules and Kramers-Kronig like relation which we use in
subsequent sections to validate our numerical results. We dis-

cuss the Mazur bound and the conserved charges in Sec. III D.
Derivation of the conserved charges from the transfer matrix is
presented in Appendix A. In Sec. IV, we outline the tDMRG
method that was used to obtain the numerical results. Finally,
in Sec. V, we present our key results including the Drude
weights as a function of temperature and parameters and com-
parison with estimates from Mazur bound. This section also
discusses the frequency content of the regular part of the
dynamical thermal conductivity. In Sec. V D, we present our
empirical observations regarding the efficiency of the ancilla
disentangler used in tDMRG calculations and we conclude
and summarize the results in Sec VI.

II. THE QUANTUM Z3 CHIRAL CLOCK MODEL

In this section, we introduce the Z3 symmetric quantum
chiral clock model in one spatial dimension [58,60,61,73].
We assume open boundary conditions throughout unless
mentioned otherwise. The model can be motivated as a gen-
eralization of the Z2 symmetric transverse-field Ising model
[59]. The Hamiltonian is given by

H = −
L∑

j=1

[ᾱ1τ j + ᾱ2τ
†
j + α1σ jσ

†
j+1 + α2σ

†
j σ j+1], (1)

where the operators τ and σ satisfy the following algebra:

τ 3 = σ 3 = I; τ † = τ−1; σ † = σ−1; στ = ωτ σ,

and ω ≡ exp( 2π ı
3 ). These can be explicitly represented by the

following matrices.

σ =
⎛
⎝1 0 0

0 ω 0
0 0 ω2

⎞
⎠, τ =

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠. (2)

The algebra of the operators σ and τ generalizes that of the
Pauli matrices Sz and Sx which appear in the Ising model.

The Hamiltonian is parameterized by complex scalar pa-
rameters α1 and ᾱ1, whose complex conjugates are denoted
by α2 and ᾱ2, respectively. We emphasize that the bar does
not indicate complex conjugates and the convention follows
the one that has been used in literature [66].

Alternatively, we can use the following parametrization:

α1 = Jeıθ , α2 = Je−ıθ ,

ᾱ1 = f eıφ, ᾱ2 = f e−ıφ, (3)

where f � 0 is local Zeeman field and J � 0 is the nearest
neighbor coupling. θ is a scalar parameter that governs the
chirality. Nonzero φ breaks the time-reversal symmetry.

Depending on the parameters θ , φ, the model can have
discrete symmetries, e.g., charge conjugation (σ ↔ σ †, τ ↔
τ †), spatial parity( j ↔ L − j + 1) and time-reversal (H ↔
H∗) symmetry. In this work, we focus on θ �= 0 and φ =
0 regime (i.e., ᾱ1 = ᾱ2 = f ∈ R) where the model exhibits
time-reversal symmetry. The model has a spatial chirality in
this regime as the energy of left and right domain walls are
not equal. The Z3 chiral clock model has a phase diagram
with a disordered ( f � J) phase and a Z3 symmetry bro-
ken ordered phase (J � f ); the latter contains a topological
regime [62,74,75]. The phases are separated by a surface of
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second-order quantum phase transition points that passes
through the critical point at J = f , θ = φ = 0 [76] for three
state Potts model.

The model is integrable along the line [66]

f cos(3φ) = J cos(3θ ) (4)

and superintegrable when θ = φ = π
6 [77,78]. This work aims

to understand aspects of the model along the integrable line.
For simplicity, we consider only the parameter range where
time reversal invariance holds and study the properties as θ

varies keeping φ to be 0, leaving the calculations in the finite
φ regime for a future work.

III. ENERGY DENSITY, THERMAL CURRENT
OPERATOR AND DRUDE WEIGHT

A key signature of an integrable model is the nonzero
Drude weight which refers to a zero frequency δ-function
peak in the conductivity. In this work, we explicitly calculate
the Drude weight in thermal conductivity as a function of
temperature and Hamiltonian parameters. In the following
subsections, we present the expressions for the energy density,
thermal currents, conductivity, and its Drude weight.

A. Local energy density and thermal current operator

In order to calculate the Drude peak (and dynamical
thermal conductivity in general), we study the two-point cor-
relator for the thermal current whose definition depends on
the choice of the form of the local energy density operator.
We choose the local energy density as a three-site operator,

Hi = −α1

2
(σi−1σ

†
i + σiσ

†
i+1) − ᾱ1τi + h.c. (5)

The thermal current operator, Ii acting on the bond between
site i and site i + 1 can be inferred from continuity equation as
Ḣi = ı[H, Hi] = −{Ii+1 − Ii}. The local current operator Ii has
the form

Ii = ı
ᾱα1

2

(
I (1)
i + I (2)

i

) + h.c., (6)

where

I (1)
i = (ω2 − 1)σi(τi + τi+1)σ †

i+1,

I (2)
i = (ω − 1)σi(τ

†
i + τ

†
i+1)σ †

i+1. (7)

The total current operator is defined as I = ∑L
i=1 Ii. Symmetry

considerations imply that the current operator has zero expec-
tation value in any thermal state [43].

B. Thermal conductivity and sum rule

Fourier transform of thermal conductivity in the linear
response regime is given by [79,80]

κ (k,�+) = lim
L→∞

1

h̄T kL

∫ 0

−∞
e−ı�+t 〈[Î (k, 0), Ĥ (−k, t )]〉 dt,

(8)

where operators with hat (Î and Ĥ ) represent the correspond-
ing spatial Fourier transformed form, �+ = � + ı0+, T is

temperature (in unit of J), L is the number of sites. Inte-
grating Eq. (8) by parts and subsequently using continuity
equation and the Kubo-Martin-Schwinger (KMS) condition
[81] on the resulting expression, the thermal conductivity in
the long wavelength limit (k → 0) reduces to

κ (�) = 1 − e−β�

T �

∫ ∞

0
eı�t lim

L→∞
〈I (t )I (0)〉

L
dt, (9)

which can be used to numerically evaluate the thermal con-
ductivity (hereafter we use thermal conductivity to refer to
its long wavelength limit only). The current-current corre-
lator is directly accessible in the numerical time evolution
which we implement using finite temperature tDMRG meth-
ods [4,20,45,52,71,82].

As shown in Ref. [83], thermal conductivity satisfies the
following sum rule:

∫ ∞

0
Re κ (�) d� = lim

L→∞
π

2h̄T L
〈〉, (10)

which we can use to validate the numerically estimated con-
ductivity. We set h̄ = 1 throughout this work. Here  is called
the thermal operator for which an exact expression is given by

 = − lim
k→0

d

dk
[Î (k), Ĥ (−k)]. (11)

The expectation value in Eq. (10) is calculated in the thermal
ensemble. For the specific choice of current and energy oper-
ator,  can be expressed in terms of local real space operators
as follows:

 = ı

2

∑
i

[Ii,−3Hi−1 − Hi + Hi+1 + 3Hi+2]. (12)

C. Drude weight

The extensive number of conservation laws in the in-
tegrable model can result in a nonzero value for the
current-current correlator at asymptotically large time, result-
ing in a divergent zero frequency contribution to the thermal
conductivity. The real part of conductivity in the Fourier space
has the following decomposition:

Re κ (�) = 2πDthδ(�) + κreg(�), (13)

where

Dth(T ) = lim
t→∞ lim

L→∞
〈I (t )I (0)〉

2LT 2

= lim
t→∞ lim

L→∞
〈I (t )IL/2(0)〉

2T 2
. (14)

We have invoked spatial translation invariance in the second
equality. This can be directly evaluated in tDMRG calcula-
tions.

As shown in Ref. [72], thermal conductivity can be calcu-
lated from the real or the imaginary part of the current-current
correlator; and the difference between the two can be used as
an estimate of the error in the calculated thermal conductivity.
First, the real regular part of the dynamical thermal conductiv-
ity [Eq. (13)] can be obtained directly from Eq. (9). Moreover,
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thermal conductivity Re κreg(�) can also be estimated using

Re κreg(�) = − 2

T �
Im

∫ ∞

0
eı�t Im

[
lim

L→∞
〈I (t )I (0)〉reg

L

]
dt,

(15)

where 〈I (t )I (0)〉reg is obtained from 〈I (t )I (0)〉 by subtracting
〈I (t )I (0)〉t→∞ from 〈I (t )I (0)〉. In addition to the sum rule,
discussed in the previous section, we use this to estimate error
in the calculated regular part of thermal conductivity (See
Appendix D).

D. Mazur bound

The Drude weight is related to conserved charges of the
integrable model through Mazur’s inequality [12,13]. Assum-
ing that the correlator has a steady asymptotic value, we
can express this as the long time average of current-current
correlator expectation value. For averages over a sufficiently
large time window, the fluctuating contributions vanish from
the spectral expansion, and we get [84]

lim
�→∞

1

�

∫ �

0
dt〈I (t )I (0)〉 =

∑
m,n

En=Em

e−βEn

Z
|〈n|I|m〉|2, (16)

where Z = Tr[ρ], ρ = e−βH and Em denotes the energy of the
mth eigenstate, |m〉 and β = 1

T is the inverse temperature.
We denote the extensive set of Hermitian local conserved

charges by {Q( j) : [Q( j), H] = 0}. The conserved charges can
always be made orthogonal (under the operator inner product
〈A, B〉ρ = Tr[ρA†B]) i.e., 〈Q( j), Q(k)〉 ∝ δ jk .

Any operator that is diagonal in the energy basis must
be a conserved charge for the Hamiltonian. This implies in
particular that the diagonal part of current operator, I is a
constant of motion. Consequently, the total current operator,
I can be expanded as

I =
∑
k=1

akQ(k) + I ′, (17)

where

ak = 〈Q(k), I〉ρ
〈Q(k), Q(k)〉ρ

and I ′ is a purely off-diagonal matrix in any energy eigenbasis,
i.e., 〈m|I ′|n〉 = 0 if Em = En. Using the expression for I from
Eq. (17) in Eq. (16), we obtain the following expression for
the asymptotic value for the current-current correlator

lim
�→∞

1

�

∫ �

0
dt〈I (t )I (0)〉 =

∑
k

|〈Q(k), I〉ρ |2
〈Q(k), Q(k)〉ρ , (18)

where sum is over conserved charges. Equation (18) can be
used to get the following expression for the Drude weight in
terms of overlap of current operator and conserved charges:

Dth(T ) = lim
L→∞

1

2LT 2

∑
k

|〈Q(k), I〉ρ |2
〈Q(k), Q(k)〉ρ . (19)

The right-hand side is a sum of non-negative terms, and in the
absence of a complete set of conserved charges the expression
still provides a lower bound on the Drude weight.

There exists a one parameter family of 3L dimensional
transfer matrices T (u) [66,85] parametrized by u for the
classical chiral Clock model in periodic boundary condition.
For parameters that satisify Eq. (4), T commutes with the
quantum Hamiltonian as well as with each other (i.e., [T (u),
T (u′)] = 0).

An extensive number of local conserved charges for the
quantum model can be obtained from a formal Taylor expan-
sion of ln(T ) in powers of u (see for instance Ref [86]):

lnT (u) =
∞∑
j=1

Q( j)u j . (20)

The simplest conserved charge Q(1) is the quantum Hamil-
tonian. The next term in the expansion namely Q(2) is a
three- local conserved charge with the following form (See
Appendix A for details):

Q(2) =
∑

k

Ik + ı

(
1

2
+ ω

)(
α2

1 ᾱ

α2
− ᾱ2

)
τk

+ ı

(
1

2
+ ω2

)(
α2

1 ᾱ

α2
− ᾱ2

)
τ

†
k . (21)

The expression for Q(3) is presented in Appendix A.
The thermal current has a finite overlap with Q(2) and zero

overlap with Q(1) and Q(3); this can be explicitly computed for
the infinite temperature ensemble, and numerically observed
to hold at all finite temperatures. This is similar to the case
of the XXZ model [14]. Further, the numerical results in
the subsequent sections show that the thermal current has
a finite overlap only with Q(2) as the bound on the Drude
weight calculated from only Q(2) using Eq. (19) saturates the
Drude weight calculated from asymptotic value of the finite
temperature current-current correlator. However, unlike the
XXZ model, the thermal current is not a conserved quantity in
itself and Q(2) is not proportional the current. Only at critical
point (α1 = α2 = ᾱ), conserved charge Q(2) coincide with the
thermal current operator [Eq. (21)].

IV. NUMERICAL METHOD

To calculate the dynamical current-current correlator in
Eq. (14), we employ a time-dependent DMRG method
(tDMRG) implemented using matrix product states. We re-
alize the finite temperature system as the subsystem of a
bigger system containing the L physical and L ancilla de-
grees of freedom in a pure entangled state ψβ such that
reduced density matrix of the physical degrees of freedom
is e−βHphy/Z [87]. Hphy is the Hamiltonian in Eq. (1) applied
only on the subsystem of physical sites. To prepare the state
ψβ we start with a state where each physical site is max-
imally entangled with one neighboring ancilla, representing
the purification ψ0 of an infinite temperature physical system.
The purification of the physical system at inverse temperature
β is obtained through an imaginary time evolution of the
initial state: |ψβ〉 ∝ e− β

2 Hphy ⊗ 1anc|ψ0〉. Both imaginary and
subsequent real time evolutions are implemented through a
fourth-order Trotter decomposition [5].

To slow down the bond dimension growth and access the
largest possible time scale, we exploit the fact that purification
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is not unique as outlined in Ref. [20], due to the invariance
of the reduced density matrix of the physical system under
arbitrary unitary transformations of the ancilla subsystem.
Entanglement growth can be slowed down by applying a
suitable disentangler unitary on the ancilla subsystem. For
XXZ model, U = Iphys ⊗ e+ıHanct where Hanc is the same as
the Hamiltonian for the physical system (Hphy) but, acting
instead on the ancilla subsystem only (See Refs. [20,82,88]
for details).

In this model [Eq. (1)] as well, we observe empirically that,
within a restricted class of unitaries considered, the above
unitary is optimal (See Appendix C). This particular choice
of Uanc makes the time evolution of thermal state |ψβ〉 nearly
trivial, and for the quenched state (the thermal state perturbed
by the operator, i.e., IL/2|ψβ〉 in the present case), entangle-
ment buildup gets confined in the vicinity of the site where the
current operator is applied. We found that for our calculations,
it was sufficient to use a maximum bond dimension of χ of
900–1200 and a singular value cutoff (ε) of 10−9 − 10−12 for
truncation to get results with sufficient convergence. We re-
peated the calculation for multiple system sizes, cut-off bond
dimensions (χ ) and truncation weight cutoffs (ε) to confirm
the convergence of our results (See Appendix B).

One further optimization often carried out in such nu-
merical calculations of correlator is to exploit the time
translation invariance in correlator where we write 〈A(t )B(0)〉
as 〈A(−t/2)B(t/2)〉 [89]. Unlike the case for the two-point
correlator between a pair of local observables, we have a task
of evaluating a correlator of the form 〈I (t )I L

2
(0)〉 where one of

the two operators is a sum of local observables. The alternate
strategy of calculating the required correlator as the sum of
correlators of local objects 〈Ii(t/2)I L

2
(−t/2)〉 has a cost that is

typically higher [89,90].
All the numerical calculations in the following sec-

tion were carried out using code built on ITensor [91,92].

V. NUMERICAL RESULTS

In this section, we present the results from the numerical
calculations using methods discussed in the previous section.
All the results presented in the main text are for a system of
L = 60 physical sites. The time step for tDMRG evolution
is 0.05. This section is organized as follows. The general
features of the dynamical current-current correlations and
thermal conductivity are presented in Sec. V A and verifi-
cation of the sum rule is discussed in Sec. V B. The main
results of the work, namely the variation of Drude weight with
temperature and parameters, as well as a comparison with the
Mazur bound are described in Sec. V C. Lastly, we present an
analysis of the efficiency of the disentangler unitary that we
chose in Sec. V D. Except in the last subsection, we consider
only the integrable line, along which the chirality θ is fixed by
the integrability condition Eq. (4); as f increases from 0 to 1,
θ decreases from π/6 to 0.

A. Current-current correlator and thermal conductivity

Figure 1(a) shows the time dependence of the real part
of the current-current correlator for a range of temperatures
at a fixed Hamiltonian parameter f = 2/5. The black dotted

(a)

(b)

FIG. 1. (a) Evolution of the current-current correlator. The black
dotted lines are lower bound on asymptotic value of current-current
correlator at different temperatures obtained from Mazur bound. The
maximum bond dimension for MPS is kept at 900–1200 with a cutoff
for truncation ∼10−9 − 10−12. J = 1, f = 2/5, θ = 1

3 cos−1(2/5).
(b) Evolution of the current-current correlator for different f along
the integrable line at T = 5. Cutoff for truncation, ε ∼ 10−9 − 10−12.

lines show the estimates from the Mazur bound Eq. (18). The
calculated asymptotic value of current-current correlator is
in excellent agreement with the Mazur bound. Generally, the
time taken to reach the asymptotic value is longer at lower
temperatures. Time dependence of the real part of the current-
current correlator at a fixed temperature T = 5 and different
points along the integrable line is shown in Fig. 1(b). Note
that in the time series plot shown in Figs. 1(a) and 1(b) or the
Fourier transforms presented below, we have not used any ex-
trapolation on the time series data [93] obtained from tDMRG.
All the data shown are from the actual tDMRG evolution. We
did not find any qualitative changes to the results upon using
the extrapolated data.

Fourier transform of the conductivity can be calculated
from the current-current correlator using Eq. (9). Figure 2(a)
shows the variation of the regular part of the thermal con-
ductivity as a function of � across a range of Hamiltonian
parameter f . The 0 frequency contribution is not shown in the
plot. As f increases from 0 to 1 (simultaneously θ varies from
π/6 to 0 along the integrable line), the peak broadens but, for
f close to 1 the peak rapidly decreases in height and vanishes
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(a)

(b)

FIG. 2. (a) Real part of Fourier transformed regular thermal con-
ductivity T = 0.5 as a function of �. Different lines correspond to
different values of Hamiltonian parameter f along the integrable line.
(b) Similar to (a) but for different values of temperature (T ). Results
shown are for J = 1, f = 2/5, θ = 1

3 cos−1(2/5), φ = 0.

at f = 1. In particular the κreg is exactly 0 for all frequencies
at the critical Potts model point ( f = 1, θ = 0, φ = 0).

κ (�) has a δ-function peak arising from the Drude weight,
the remaining regular part κreg of the conductivity as a func-
tion of the frequency is shown in Fig. 2(b). κreg is near zero at
the highest accessible frequency and is finite for � → 0. This
finite DC value indicates a finite diffusive part (∝ T κreg(� →
0)) in the energy transport in addition to the ballistic part. In
the gapped phase of the XXZ model, when the spin Drude
weight is 0, the regular part of the conductivity has a large
finite peak as � → 0. This appears to diverge at zero tempera-
ture [72] qualitatively consistent with the semiclassical model
proposed in Refs. [94,95]. Due to errors arising from finite
time data (See Appendix D), we cannot detect the temperature
dependence of κreg(� → 0) reliably. At an intermediate range
of frequencies (3.0 to 7.5 in this case) there is a finite peak
whose height decreases with increasing temperature. This fre-
quency range is independent of the temperature.

Now we consider the location of the peak in relation to
the spectral gap. For the value of f considered in Fig. 2, the
gap above the ground state is � = 1.2551 (calculated using
DMRG in a system of size 60). This should correspond to

FIG. 3. Verification of the sum rule by comparing RHS of
Eq. (10) (solid line) where the expectation value of  is calculated
numerically using Eq. (12). The dots indicate the integral of real part
of Eq. (9) obtained from real time correlatlor 〈I (t )I L

2
〉 evaluated using

tDMRG. The different lines show results for different points on the
integrable line.

the lowest energy domain wall quasiparticle. Energy of the
domain wall with the opposite chirality should be higher due
to finite chirality θ [63]. Insertion of the current operator IL/2

is expected to generate a pair of opposite chirality domain
walls (τ operators in Eq. (7) flips a single spin, generating a
pair of domain walls around it) whose energy should be more
than ∼2� consistent with the low-frequency end �low of the
peak. An alternate possibility is that a chain of three domain
walls |...11...ωω...ω2ω2...11...〉 of same chirality costing an
energy of ∼3� determines the location of low-frequency end.
Within the resolution possible for �low, the two scenarios
cannot be distinguished. As the critical point is approached,
f → 1, θ → 0, the spectral gap vanishes, which is consistent
with vanishing �low in Fig. 2(a).

B. Sum rule

We now verify the sum rule for thermal conductivity
following Eq. (10). Figure 3 shows the integrated value of
(numerically calculated) real part of thermal conductivity,
Re κ (�) (LHS of Eq. (10) shown as dots in the figure)
compared with the expected sum (RHS of Eq. (10) shown as
continuous lines) as a function of temperature. We find good
agreement between the two, implementing a partial check on
the current-current correlator calculated numerically.

The T in the denominator of Eq. (10) results in a spike at
low temperature in Fig. 3. The sharp increase in integrated
thermal conductivity at low temperature arises from the inter-
mediate frequency peak in Fig. 2 that gets more significant
at low temperatures. The finite temperature peak in the sum
rule arises from the singular, zero frequency part, i.e., Drude
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FIG. 4. Drude weight calculated from tDMRG as a function of f
showing the monotonic increase of Drude weight with increasing f .
θ is chosen accoding to f along integrable line. The solid line is a
linear interpolation between data shown as a guide to the eye.

weight of the thermal conductivity. Fig. 3 has a similar trend
as in Fig. 5 at intermediate and high temperature.

C. Variation of Drude weight with temperature
and Hamiltonian parameters

In this section, we present the results for the numerically
calculated Drude weights as a function of the temperature
and comparison with the Mazur bound. Figure 4 shows the
Drude weight computed from tDMRG as a function of the
f for different temperatures showing a monotonic (nearly
quadratic at small f ) increase with f . Drude weight changes
non-monotonically with temperature as can be inferred from
comparing the plots for T = 0.5, 1, 5.0.

Figure 5 shows the Drude weight numerically computed
using tDMRG (dots in the figure) as a function of temper-
ature for different values of f ; and as mentioned before,
the temperature dependence is nonmonotonic. The solid lines
show the Mazur bound calculated numerically using Eq. (19)
considering only the Q(2) charge (See discussion in Sec. III C
and Appendix A). The Mazur bound from Q(2) saturates the
estimated Drude weight indicating that the thermal current has
no overlap with any other conserved charge.

Drude weight tends to zero at zero temperature and in-
creases rapidly as temperature is increased till it reaches a
finite temperature peak around T = 1. The high temperature
asymptotic behavior of the Mazur bound from charge Q(2) can
be estimated to be

Dth(T = ∞) = 1

2T 2

〈
I, Q(2)

i

〉
ρ=I〈

Q(2)
i , Q(2)

i

〉
ρ=I

= 1

2T 2

24 f 2

5 − f 2
. (22)

For f � 1, the above expression suggests a quadratic varia-
tion with f consistent with Fig. 4. Figure 5 (inset: high temp)

FIG. 5. Variation of the Drude weight with temperature for dif-
ferent values of f . The solid lines show the Mazur bound Eq. (19).
Dot markers show the Drude weight estimated from tDMRG data
Eq. (14). Temperature axis starts from T = 0.1. (Inset) High temp:
Asymptotic expression for Drude weight is represented by the dashed
lines Eq. (22). The dots are from tDMRG estimates. Low temp:
Drude weight from Mazur Bound in the low temperature regime.
Behavior for the critical point is consistent with a linear scaling with
T while for the gapped phase the trend is consistent with e− δ

T .

shows the agreement (asymptotically) of Eq. (22) with data
obtained from tDMRG at high temperature.

In the low temperature (inset: low temp) regime, Drude
weight decays linearly with T for the critical system. The be-
havior is qualitatively different in the gapped system ( f �= 1),
where we observe a decay to 0 as e− δ

T . We can extract δ by
fitting this to our data. For the two cases we considered here,
f = 0.4 and 0.6, we find δ ∼ 1.19 and 0.98, which are close
to the corresponding spectral gap of 1.25 and 0.95 above the
ground state, respectively.

D. Efficiency analysis of the tDMRG with ancilla disentangler

The results presented in the previous sections were
achieved using a disentangler unitary (See Sec. IV) on the an-
cilla subsystem in the tDMRG calculations. The disentangler
slows entanglement growth in general and makes accessing
longer time scales possible. The effectiveness of this approach
however, varies with the parameter and temperature regimes;
qualitatively similar to what was found in the case of XXZ
model [82]. In this section, we present our empirical observa-
tions along with some quantitative data on the efficacy of the
disentangler approach across model parameters and tempera-
ture for the model studied here.

In Figs. 6(a) and 6(b) we show the variation of the max-
imum bond dimension after time evolution of the quenched
(I L

2
|ψβ〉) and thermal (|ψβ〉) states, respectively. In each case,
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time-evolution from 
thermal state

J J

time-evolution after 
quench from thermal state

(a)
(b)

FIG. 6. (a) Growth of maximum bond dimension under real time
evolution for the matrix product state (MPS) quenched from thermal
state at different values of β. The dotted line indicates tDMRG with-
out application of disentangler and the solid line is for disentangled
tDMRG. (b) Same as panel (a) but, for time evolution of thermal
MPS without any quench. The parameters for the Hamiltonian are
J = 1, f = 2/5, θ = 1

3 cos−1(2/5), φ = 0 (integrable point). The
truncation cutoff,ε = 10−9.

we compare the bond-dimension growth with and without dis-
entanglers applied to the ancilla. From Fig. 6(a), we observe
that the maximum bond dimension of the quenched matrix
product state (MPS) grows much faster (up to 2.5 times) for
tDMRG without disentangler (dotted line) in contrast to the
tDMRG with disentangler (solid line). At low temperatures,
on the other hand, both methods show almost similar growth
in maximum bond dimension with time. In Fig. 6(b), we
see that the tDMRG with disentangler almost fully elim-
inates bond dimension growth of the thermal MPS under
unitary evolution. In contrast, unitary evolution of thermal
MPS (|ψβ〉) implemented using tDMRG without disentangler
shows rapid growth of maximum bond dimension with time.

In Fig. 7, we show the bond dimension of the time evolved
states, as a function of the bond position contrasting the
cases of real-time evolution with and without disentangler.
We notice a uniform growth of bond dimension throughout
the system in the state that evolved without the ancilla dis-
entangler in contrast to localized growth of bond dimensions
near the quench site in case of tDMRG with disentangler. The
spatial support of the operator is expected to spread linearly
with time evolution; this increase is manifested in the excess
growth of entanglement around the quench site (center in our
case). Without disentangler, however, there is an additional
uniform buildup of entanglement everywhere in the system.
In Fig. 8, we show local bond dimension at low temperature.
Here, in both cases (tDMRG with and without disentangler
unitary), local bond dimension shows similar behavior indi-
cating no significant gain in efficiency from the application of
ancilla disentangler.

We, so far, focused on the local bond dimension growth.
However, time evolution calculations are dominated by ma-
trix multiplications and singular value decomposition (SVD)
operations with a computational complexity of O(d3) where d

(a)

(b)

FIG. 7. Bond dimension as a function of bond position for the
state quenched from a high temperature (T = 6.25J) thermal state.
(a) data for tDMRG without disentangler and panel (b) shows data
for tDMRG with disentangler. Different lines correspond to differ-
ent times. The MPS bond dimension growth is localized about the
quench site in case of tDMRG with disentangler. Results shown are
for the integrable point J = 1, f = 2/5, θ = 1

3 cos−1(2/5), φ = 0.
The truncation cutoff, ε = 10−9.

(a)

(b)

FIG. 8. Similar to Fig. 7, this plot shows the spatial distribution
of bond dimension but at a low temperature point T = 0.1 (in unit
of J). The parameters for Hamiltonian are J = 1, f = 2/5, θ =
1
3 cos−1(2/5), φ = 0. The truncation cutoff is ε = 10−9.
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(a)

(b)

(c)

(d)

FIG. 9. Computational complexity as a function of β and
time. (a) and (b) are for integrable model (J = 1, f = 2/5, θ =
1
3 cos−1(2/5), φ = 0) with and without disentangler unitary, re-
spectively. (c) and (d) are for nonintegrable point J = 1, f = 2/5,
θ = 0.3, φ = 0 with and without disentangler unitary, respectively.
Colors indicate a measure of the computational cost. Contour lines
connect points of same computational cost. The truncation cutoff was
maintained at ε = 10−9 throughout the calculations.

is the dimension of the matrices involved. Denoting the local
bond dimension at site i of the MPS by Mi, the computational
cost can be quantified by

∑
i M3

i [82]. In Fig. 9, we provide a
contour plot showing the variation of the computational cost∑

i M3
i with inverse temperature β and time, while keeping

the truncation cutoff fixed at 10−9.
We first compare Figs. 9(a) and 9(b) where, we show the

contour plot for integrable points. We observe that the tDMRG
with disentangler affords us an improvement in the accessible
time scale — the same computational cost (the contour lines)
is reached at a later time if the disentangler is applied, as
compared to the case without the disentangler. However, the
improvement is most significant at higher temperatures, where
the bond dimensions growth is generally much faster and is,
therefore, a relevant consideration. At low temperature where
the bond dimension growth is a lesser issue, the disentangler
performs slightly worse. These observations are consistent
with Fig. 7 and Fig. 8.

Finally, we discuss Figs. 9(c) and 9(d) where we study a
nonintegrable point. The plots suggest a minor gain in ac-
cessible time scales from ancilla disentangler. However, at
nonintegrable points, we find that the time scales required
for the transients in the current-current correlator to decay
away is much larger compared to the integrable points; the
improvements afforded by the disentangler is not sufficient
for us to reach these time scales.

VI. SUMMARY AND OUTLOOK

The constraints imposed by the extensive number of local
conservation laws in integrable systems manifest in many dif-
ferent ways, such as failure to thermalize to a Gibbs ensemble,

long-term memory of initial states which strongly influence
equilibrium steady state properties, unusual features in energy
spectral correlations, and anomalous signatures in measur-
able long-time response functions such as conductivity. The
precise relation between these features has been extensively
investigated in the past several decades. This study uses exten-
sive tDMRG calculations to characterize the anomalous zero
frequency peak parametrized by the thermal Drude weight at
integrable points of the Z3 chiral clock model, extending the
features observed through past studies in the XXZ model.

The thermal Drude weight is nonzero at all finite tempera-
tures. It vanishes as a power law ∼1/T 2 at large temperatures
and appears to decay exponentially with 1/T at low tem-
peratures. At the critical point, the low-temperature Drude
weight fits a linear behavior with T till the lowest temperature
we studied (T = 0.1). These observations are consistent with
what was observed in the gapped and gapless phases of the
XXZ model.

The numerically obtained Drude weights (from current-
current correlator) show excellent agreement with the Mazur
bound based on the simplest nontrivial conserved charge Q(2)

[Eq. (21)] derived from the transfer matrix and suggests that
the thermal current has finite overlap only with one conserved
charge. Consistent with this, explicit calculations show that
the next order conserved charge Q(3) is orthogonal to the
current.

The thermal current operator is however not identical to the
conserved charge Q(2). This corresponds to a scenario where
part of the energy current is conserved, manifesting as the
finite Drude weight. The difference between the current and
the conserved charge results in a nontrivial finite frequency
part to κreg. This is unlike the case of the XXZ model, where
the thermal current is a conserved charge and κreg = 0.

The regular part of the dynamical conductivity shows a
broad peak at frequencies which could be correlated with
the energies of the simplest domain walls. We also find a
small finite conductivity near zero frequency, suggesting the
possibility of a diffusive component to the energy transport in
addition to the ballistic part.

We used the ancilla disentangler to increase the maximum
times up to which we could compute the correlator. For the
integrable points, this allowed us to efficiently access the
asymptotically long-time behavior of the correlator. However,
for the nonintegrable points we checked, the improvement
afforded by the method was insufficient to access features of
the correlators at sufficiently long times to see the asymptotic
behavior. More careful choice of the nonintegrable parameter
regime, use of other disentangler schemes [88], alternate com-
puting schemes [96] or truncation methods [97,98] may help
access longer time scales.

In this work, we have characterized the anomalous trans-
port properties at the chiral but time-reversal invariant points
in the integrable parameter space of the model. The sim-
ilarities of our results with the XXZ model highlights the
universality of the relation between integrability and anoma-
lous transport, and suggests similar qualitative features for
the time reversal broken (φ �= 0) regime as well. However
it will be interesting to understand how broken time-reversal
invariance manifests in the anomalous transport features. The
model also provides an interesting arena to study dynamics
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and transport at superintegrable [77,78] points and effects of
integrability breaking perturbations on them.
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APPENDIX A: TRANSFER MATRIX
AND CONSERVED CHARGES

In this section, we give an outline for the derivation of the
conserved charges of quantum Z3 chiral clock model from the
transfer matrix for a classical 2D chiral clock model. Here we
borrow the results for the transfer matrix from Ref. [66].

The energy density of the classical 2D model is [60]

E = −2Re
∑

j,k

[E vZj,kZ†
j+1,k + EhZj,kZ†

j,k+1], (A1)

where E v and Eh are complex coupling strengths along
vertical and horizontal directions of the 2D square lattice,
respectively, and Z takes values from {1, ω, ω2}. ( j, k) label
site coordinates on the 2D lattice.

The transfer matrix (with periodic boundary conditions)
can be written as

T =
2∑

j=0

(σ †
M ) j l j

⎡
⎣ M−1∏

k=−M

(LkLk+ 1
2
)

⎤
⎦ LM (σM ) j, (A2)

where the sites are indexed from [−M, M].

Lk (u) =
2∑

n=0

l̄n(u)τ n
k ,

Lk+ 1
2
(u) =

2∑
n=0

ln(u)(σkσ
†
k+1)n.

The weights in the transfer matrix, l̄1, l1, l̄2, l2 parametrize
E v, E v∗, Eh, Eh∗ of the statistical mechanics model and l0 =
l̄0 = 1.

For a certain range of parameter values, the Z3 chiral clock
model becomes Bethe ansatz integrable. This implies choice
of functions l, l̄ such that the transfer matrices satisfy Lax pair
conditions [T (u),T (u′)] = 0 and [T (u), H] = 0 where H is
a quantum Hamiltonian.

Reference [66] considered functions of the form l1,2 =
α1,2u + O(u2) and l̄1,2 = ᾱ1,2u + O(u2) in which case H
matches the quantum chiral clock Hamiltonian Eq. (1). The
Lax pair conditions can be shown to imply (see Refs. [66,85]
for details)

αm

2∑
k=0

S̄m+k

S̄k
ω−nk = ᾱn

2∑
k=0

Sn+k

Sk
ω−mk (A3)

for m, n ∈ {1, 2} where

S̄m =
2∑

k=0

ωmk l̄k, Sm =
2∑

k=0

ωmklk, (A4)

which can be obtained from the star-triangle relation. These
have solutions provided

α3
1 + α3

2

α1α2
= ᾱ3

1 + ᾱ3
2

ᾱ1ᾱ2
(A5)

These are equivalent to the integrability condition Eq. (4)
using the definitions in Eq. (3) for the chiral clock model.
In the rest of the calculations we restrict to the case where
ᾱ1 = ᾱ2 = ᾱ which corresponds to the case where φ = 0 as
was assumed throughout this work.

Logarithm of the transfer matrix is the generator of an
infinite set of local conserved charges, i.e.,

Q(k) = lim
u→0

dk

duk
lnT (u) (A6)

where Q(k) is the kth conserved charge. In the rest of this
section, we calculate Q(1), Q(2), Q(3).

At lowest order we get Q(1) to be the quantum Hamiltonian
H in Eq. (1). To obtain the higher order terms, we extend the
expansion for the functions l, l̄ as follows:

ln(u) = αnu + βnu2 + γnu3 + O(u4)

l̄n(u) = ᾱnu + β̄nu2 + γ̄nu3 + O(u4) (A7)

for n = 1, 2. Note that β,γ are not complex conjugates of β̄,γ̄ .
We solve for these additional parameters by inserting Eq. (A7)
in Eq. (A3) and equating coefficients of powers of u on both
sides.

Equating coefficients of the lowest order in u in Eq. (A3),
we get the following solution parametrized by one free param-
eter:

β̄1 = ω

(
ᾱ

α2
α2

1 − ᾱ2

)
+

(
ᾱ

α2

)
β2,

β̄2 = ω2

(
ᾱ

α2
α2

1 − ᾱ2

)
+

(
ᾱ

α2

)
β2,

2(α1β2 − α2β1) = α3
1 − α3

2 . (A8)

We can plug in solutions of Eq. (A8) in the Eqs. (A7),
subsequently expand Eq. (A2) and use Eq. (A6) to get the
the conserved charge Q(2) explicitly (this does not depend
on the undetermined parameters γ s). Demanding Hermiticity
and orthogonality of the conserved charge with Hamiltonian
at infinite temperature fixes the free parameter in Eq. (A8),
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and we obtain

Q(2) =
∑

k

[
Ik + ı

(
1

2
+ ω

)(
α2

1 ᾱ

α2
− ᾱ2

)
τk

+ ı

(
1

2
+ ω2

)(
α2

1 ᾱ

α2
− ᾱ2

)
τ

†
k

]
. (A9)

Similarly we can constrain γ by comparing the subsequent
order in u in Eq. (A3) resulting in the following conditions
involving γ and ¯γ :

(ω − 1)(ᾱγ2 − α2γ̄2) = 2(2 + ω)α2ᾱβ̄1 + (ω − 4)α2ᾱ
3

− α1ᾱ
(
α2

2 (ω − 4) + 2β1(2 + ω)
)
,

(ω + 2)(ᾱγ2 − α2γ̄1) = 2(ω − 1)α2ᾱβ̄2 + (ω + 5)α2ᾱ
3

− α1ᾱ
(
α2

2 (ω + 5) + 2β1(ω − 1)
)
,

3(α2γ1 − α1γ2) = 2α2
2β2(−3ω) − 3(1+2ω)α1α2

× (ᾱ2 − 2β̄1) − α2
1 (2β1(−3ω2)

− 3α2
2 (1 + 2ω)). (A10)

These have a one parameter set of solutions (for γ s; the other
parameters were determined in the previous step) which we
fix by demanding Hermiticity of Q(3) [its explicit form does
not depend on higher order terms omitted in Eq. (A7)] which
has the form:

Q(3) =
∑

k

[Aσk (τ †
k + τ

†
k+1)σ †

k+1 + Bσk (τk + τk+1)σ †
k+1

− C(τkσkτk+1 + τ
†
k σkτ

†
k+1)σ †

k+1

+ Cσk (τ †
k τk+1 + τkτ

†
k+1)σ †

k+1

FIG. 10. Convergence of Re〈I (t )IL/2(0)〉 with decreasing trun-
cation cutoff. J = 1, f = 2

5 , θ = cos−1( 2
5 ), T = 1. Maximum bond

dimension is 900 in all cases. (Inset) Magnified version of the
Re〈I (t )IL/2(0)〉 data. Notice the blue and red curves overlap.

FIG. 11. Similar to Fig. 10 but shows the effect of ancilla dis-
entangler. Solid line is with tDMRG with disentangler unitary and
dotted line is without application of ancilla disentangler. Maximum
bond dimension is 900 in all cases. J = 1, f = 2

5 , θ = cos−1( 2
5 ),

T = 2.

+ Dσk (τk+1 + τ
†
k+1)σ †

k+2

+ Eσk (σk+1τk+1 + τ
†
k+1σk+1)σk+2

+ Fτk + Gσkσ
†
k+1 + h.c. ], (A11)

FIG. 12. Convergence of Re〈I (t )IL/2(0)〉 with increasing
tDMRG time-step. J = 1, f = 2

5 , θ = cos−1( 2
5 ), T = 1. Maximum

bond dimension is 900 and cutoff for truncation is 10−9 in all cases.
Ancilla disentangler is applied during real-time evolution.
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FIG. 13. Convergence of Re〈I (t )IL/2(0)〉 with increasing system
size (considering only physical sites). J = 1, f = 2

5 , θ = cos−1( 2
5 ),

T = 1. Maximum bond dimension is 900 and cutoff for truncation
is 10−9 in all cases. Ancilla disentangler is applied during real-time
evolution.

where

A = ω2

2
ᾱα2

2 − ω2ᾱ2α1,

B = ω

2
ᾱα2

2 − ωᾱ2α1,

C = ᾱ2α1,

D = −ᾱα2
1,

E = ωᾱα1α2,

F = 3ᾱα1α2,

G = 3

2
ᾱα2

2 + ᾱ2α1 + 1
2α2

1α2.

Under the operator norm 〈, 〉ρ defined in the main text, we
find that Q(1) and Q(3) lie in the space perpendicular to Q(2)

for all temperatures that we studied in this work. Saturation
of the Mazur bound for the current indicates that the current
has no component in the space perpendicular to Q(2) which is
consistent with explicit numerical calculation of the overlaps
of current with Q(1) and Q(3) at finite temperatures.

APPENDIX B: CONVERGENCE OF REAL-TIME
DATA FROM tDMRG

Truncation cutoff (ε) affects the computational cost and ac-
curacy of tDMRG calculation. We verified the convergence of
our current-current correlator by comparing results at different
ε. For T = 1, we observe in Fig. 10 that the truncation cutoff
10−9 is sufficient. At larger cutoff (e.g., 10−7), the Re〈I(t)I L

2
〉

decays fast from around time 5 indicating reliability of the
result only up to small time scales. On the other hand, for
ε � 10−9 the asymptotic behavior shows very small differ-
ence at long time scale indicating convergence of result.

In Fig. 11, we observe that for the same truncation cutoff
and bond dimensions, ancilla disentangler produces reliable
results for significantly longer time scales.

Data obtained from tDMRG is generally sensitive to time
step for evolution (dt) and system size (L). In Fig. 12, it can be
observed that time step � 0.05 gives reliable result up to the
time scale we observed. The reason for deviation at very short
time step (e.g., 0.01, 0.02) can be attributed to accumulation
of error incurred from repeated SVD based truncation during

FIG. 14. Optimal value for θanc decided from the bipartite Von-Neumann entropy on bonds near the quench site. The violet vertical line
corresponds to θanc = θ . The solid lines correspond to entanglement growth in thermal state and the dotted lines correspond to entanglement
growth in thermal state evolved after quench. The entanglement is measured after time 2.5. Calculations are done at integrable point
corresponding to f = 2/5 on a system of 30 physical sites.
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gate applications (Number of gate applications increase with
decreasing time-step for same final time). Also, the correlator
estimate deviates for time-step which are too large (e.g dt �
0.8) due to trotter error.

In Fig. 13, we present the tDMRG data for correlator across
different system sizes. System of 60 sites considered in this
work is sufficient for reliable estimation of asymptotic value
of the correlator. The current-current correlation is non-zero
only inside a light cone. Until the light cone hits the bound-
ary, current-current correlator behaves similarly for different
system sizes. In smaller systems, the light cone reaches the
boundary earlier resulting in a deviation at a shorter time.

APPENDIX C: CHOICE OF FINITE TEMPERATURE
DISENTANGLER UNITARY

As noted in the main text, invariance of the reduced
density matrix under unitary transformations of the 3L dimen-
sional ancilla Hilbert space allow us to choose an optimal
disentangler unitary transformation of the ancilla that min-
imize entanglement growth. A search within the 32L di-
mensional parameter space of the unitary group U (3L ) is
computationally impossible, so we consider a one parameter
set of anicilla unitaries of the form eıHanc(θanc ) where Hanc(θanc)
has the same form as the clock model Hamiltonian but with a
parameter θanc replacing θ of the physical Hamiltonian.

We observe that for θanc = θ (Fig. 14), the entanglement
growth (as measured by the bipartite Von Neumann entropy)
on the bonds near the quench site is minimum at any temper-
ature. The disentangler is most effective at high temperature.
Similar conclusion holds for non-integrable points too.

APPENDIX D: CONSISTENCY CHECK
OF CONDUCTIVITY DATA

As discussed in Sec. III C, we can evaluate the thermal
conductivity using two equivalent expressions [i.e., Eq. (9)
and Eq. (15)]. They should result in the same value of σreg(�)

FIG. 15. Re κreg obtained from Eq. (9) is shown in solid line and
the same from Eq. (15) is shown in dotted line. Notice both curves
overlap for large � while deviation can be observed for small �.

if we had the data for correlator till infinite time. However,
tDMRG calculation can provide reliable data only up to a
finite time scale. Consequently, we incur a “finite-time error”
in the discrete Fourier transform required for thermal conduc-
tivity calculation Eq. (15). We can estimate this error from the
difference in the values obtained from Eq. (9) and Eq. (15).
In Figure 15, we provide the data for 3 different tempera-
ture at a single point ( f = 2/5) on integrable line. It can be
readily observed that the estimates from Eq. (9) (solid line)
and Eq. (15) (dotted line) match quite well for most finite fre-
quency region with significant difference between them only
at low frequency. This is expected as low-frequency regime
gets most affected by long time data. The estimated error in
κreg(� → 0) is typically an order of magnitude smaller than
Drude weight.
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