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We investigate the steady-state phase transitions in an all-to-all transverse-field Ising model subjected to an
environment. The considered model is composed of two ingredient Hamiltonians. The orientation of the external
field, which is perpendicular to the spin interaction, can be tuned to be along either x direction or z direction
in each ingredient Hamiltonian, while the dissipations always tend to flip the spins down to the z direction. By
means of mean-field approximation, we find that the quasicontinuous steady-state phase transition is presented
as a consequence of the merging of two branches of steady-state solutions. The emergence of bistability is
confirmed by analyzing the steady-state behaviors of a set of finite-size systems, which is also revealed by the

Liouvillian spectrum.
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I. INTRODUCTION

Any realistic system should be considered as an open sys-
tem coupled to the external environment, which influences it
in a non-negligible way [1]. Due to the exchange of energy or
particles between the system and its environment, the state
of the system will be driven away from equilibrium in the
long-time limit accompanied by a breaking of detailed balance
among the microstates [2]. Through tuning the controllable
variable of the system the ordering may appear in the steady
states of the open systems. The nonequilibrium features in
the steady states of open systems are observed in diverse
situations ranging from the collective behaviors of creatures
such as the flocking, schooling of fish, to the evolution of
financial market and traffic models.

Recently, the steady-state properties of open systems in
quantum domain have attracted increasing attention. The
competition between the coherent evolution governed by the
Hamiltonian of the system and nonunitary dissipative process
induced by the system-environment interaction leads to rather
rich phenomena in the long-time steady state. For instance,
the exotic steady-state phases are presented in the open quan-
tum many-body system, which do not have counterparts in
the closed systems [3-9]. Moreover, the limit cycle, which
is time-dependent steady state with stable period, may also
appear in the long-time limit [10-15], providing a new route
to the intriguing time crystal in which the continuous time-
translational invariance is broken [16].

Thanks to the recent experimental progress, the open quan-
tum many-body system can be studied in the platforms of the
ensemble of Rydberg atoms [17-19], system of trapped ions
[20], and array of superconductive resonant cavities [21-23].
The steady-state properties of the open quantum many-body
system as well as the dynamical behavior during the time
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evolution have shown to be of promising applications in the
quantum state engineering [24-27], quantum sensing [28,29],
and simulations of the epidemic dynamics [30,31].

Generally the dynamics of an open quantum system can
be extracted from the unitary dynamics of the joint system
(system + environment) by averaging over the effects of
the environmental states on the system of interest. A com-
monly used theoretical description of the time evolution of the
system state is the memoryless quantum master equation in
the Lindblad form under the Born-Markovian approximation.
However, the complexity of solving the Lindblad quantum
master equation scales exponentially as the system size in-
creases, analytical solutions can be obtained only for a few
boundary-driven models [32,33]. Several powerful numeri-
cal methods for simulating the dynamics of open quantum
many-body system are developed and advances are made
in recent years, including the corner space renormalization
method [34,35], tensor network method [36—40], variational
method [41,42], neural-network approach [43—47], and (dis-
crete) truncated Wigner approximation [48—54]. On the other
hand, the Gutzwiller mean-field (MF) theory can decouple the
many-body quantum master equation into single-site one by
factorizing the total density matrix of the system into tensor
product of identical density matrices of each site. The MF
approximation can already unveil the exotic physics in the
open quantum many-body systems and is shown to become
accurate for high-dimensional systems [55,56]. A compre-
hensive review on the simulation methods can be found in
Ref. [57].

One of the subjects of particular interest is the critical
behavior of the open quantum many-body system at the
vicinity of the steady-state phase transition, such as the crit-
ical slowing down of the dynamics [49,58], the order of
phase transition, and the critical exponent [35,59-61]. It is
interesting that jump operators that characterize the specific
dissipations may play essential role in determining the or-
ders of the steady-state phase transition even if sharing the
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same Hamiltonian. For instance, the cluster mean-field results
predict that the dissipative transverse-field Ising model on
two-dimensional square lattice with nearest-neighboring in-
teraction exhibits a first-order (discontinuous) phase transition
when the dissipation acts along the interaction direction, while
a second-order (continuous) phase transition when the dissi-
pation acts along the transverse field [60]. Motivated by such
a specific model, a natural question arises that how the orders
of phase transition being influenced by the orientation of the
dissipation.

In this paper we will demonstrate the effects of the orien-
tation of the incoherent dissipation on the steady-state phase
transition of a full connected transverse-field Ising model. In
practice, for convenience, we consider the collective dissipa-
tion that tends to flip the spins down to the z orientation and
a mixed Hamiltonian that composed of two ingredients. The
proportion of the two ingredients in the total Hamiltonian can
be tuned by a controlling parameter to realize the continuous
changing the relative directions between the interaction (or the
transverse field) and the dissipation. We restrict the discussion
in the Dicke states, by using both the MF approximation and
the full quantum analysis, we provide insight into the mech-
anism of the crossover from the discontinuous to continuous
steady-state phase transitions.

The paper is organized as follows. In Sec. II, we introduce
the considered model and the quantum master equation that
describes the time evolution of the system state. We then de-
rive the Bloch equation within the mean-field approximation
and the associated Jacobian for stability analysis. In Sec. III,
we first discuss the steady-state phase transitions in two limit
cases in which both discontinuous and continuous phase tran-
sitions are present. We then interpolate these two limit cases
by tuning the controlling parameter to investigate the effects
of the orientations of the external fields (as well as the spin
interactions) and the dissipation on the continuity of steady-
state magnetization. We summarize in Sec. IV.

II. THE MODEL

We consider an ensemble of N spin-1/2 particles with
the mth spin characterized by the spin angular momentum
In = {j;c,mv jy,ms fz,m} = g{ﬁx,mv a\’,ms 6:m} where 6% with
o =x,y,z are the Pauli matrices. The spins interact with
each other along x direction and/or the z direction via the
Ising-type interactions and, at the mean time, are driven by
external fields along z direction and/or the x direction. The
Hamiltonian is given by (set /i = 1 hereinafter)

H = (1 — p)Hy + pH, (1)

where 0 < p < 1 is a real parameter that controls the pro-
portion of the Hamiltonians Hy = %Jf +gJ. and H, =
%ff + gJ... We have introduced the collective operators J, =
Zm fa,m (¢ = x,y, 7). The parameter V is the strengths of the
spin interactions, g is Rabi frequency of the external fields,
and N is the number of spins in the system. Both A, and
H, describe the all-to-all transverse-field Ising models and
are related to each other by the transformation {oy, oy, 0;} —

{02, 0y, 04}

If the collective loss of one excitation is considered, the
time evolution of the state of the system can be described by
the following quantum master equation:

d . . oA r .. . s
P = Lp = —ilH, p] + 2N(ZJ—pJ+ Ve, ph), 2)
where p is the density matrix of the system, £ is the Liou-
villian superoperator, I' is the decay rate, and J. = J, & ify
is the jump operator that tends to flip the spin down to the z
direction. The notation {-, -} stands for the anticommutator.
One can see that the orientation of dissipation can be set
to parallel to the external field (p = 0) or to the interaction
(p = 1). Actually, the Hamiltonian in Eq. (1) can be recast
into the following Lipkin-Meshkov-Glick (LMG) Hamilto-
nian [62,63]:

ﬁ (074 pj:\z + (1 - P)J? + Hdrivinga (3)

where I-?driving is an effective driving field.

Equation (3) is a two-axis twisting (TAT) Hamiltonian for
generating the squeezed spin states, which are of significant
applications in quantum information processing and quantum
metrology. The TAT-type Hamiltonian can be implemented
through imposing Rabi pulse sequences or continuous driving
fields on the one-axis twisting (OAT) Hamiltonian [64,65].
The OAT-type Hamiltonian has been realized in the BEC
atomic ensembles [66—68] and the transverse and longitu-
dinal fields can be tuned independently [69]. Although the
experimental realization of TAT-type Hamiltonian [namely,
the LMG Hamiltonian in Eq. (3)] is still challenging, it is
shown to be feasible to engineer the full connected LMG
model in Rydberg atoms [70,71] and atomic ensembles with
an additional cavity mode [72,73]. The latter also allows one
to investigate the collective dynamics of dissipative systems.

A. Dicke states

Define the total angular momentum operator J? = J? +
fv2 + fzz, one has the usual angular momentum commutation
relations

/2, 7,1 =0,
[, Ji] = £4., 4)

Ya =x,y,z,

Then we introduce the simultaneous eigenstates {|, m)} of J2
and J;, which satisfy

Plj.m)y = j(G + DIj,m),
Jlj,m) = m|j, m), o)

where j < % is an integer or half-integer denoting the quan-
tum number of the total angular momentum for even or odd
number of N and |m| < j. Further, the collective jump oper-
ator J_ and its Hermitian conjugation J act on |j, m) in the
following way:

Jeljom)y =VjG+ 1) —mm=ED)|j,m+1). (6

In particular, the eigenstate | j, m) for the maximum j = %

is referred to as the Dicke state. Since J?> commutes with all
all components of the angular momentum J,, the total angular
momentum j is preserved during the time evolution governed
by Eq. (2). Therefore, if the state of the system is initialized in
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one of the Dicke states |1¥, my), the collective process reduces
the 2V-dimension Hilbert space into a (N 4+ 1)-dimension
state space. We note that if the local dissipation (e.g., the
spontaneous emission of each spin) is considered, the neigh-
boring manifolds the eigenstates {|j, m)} for different j will
be connected and the dynamics can be simulated efficiently
by virtue of the permutation invariance [74].

B. Mean-field Bloch equation

In the following, we will restrict our discussion in the
Dicke manifold of j = N/2. Therefore, the state in the Dicke
manifold can be represented by a Bloch vector of modulus
|J] = N/2. For large N, within the mean-field approximation,
thAe cqrrelator (fafﬁ) (a, ,3A= X, y, z) is factorized as (fafﬂ) =
(Jo)(Jg) where (A) = tr[Ap] denotes the expectation value
of observable A. Using the cyclic property of the trace, one
can derive the equation of motion for the Bloch vector. For
convenience we define {X,Y, Z} = {{J,), (fy), (JAZ)}/%, thus

J

the mean-field Bloch equations yield
. Vv r
X =—pz7¥Z—(—=pp¥ + X7,

. 1% 1% r
V=p(5XZ-gZ)+ (- p)eX - SXZ )+ YZ

. 14 r ,
Z=P8Y+(1—P)EXY—§(1—Z), (7

where we have adopted the constraint X? + Y2 4+ Z> = 1 be-
cause the total angular momentum is conserved. The steady-
state magnetizations of the system {X;, Y5, Zss} correspond
to the fixed points of the system of equations (7), i.e., when
X =Y = Z = 0 (the subscript “ss” denotes the steady state).

The stabilities of the fixed points are determined by the
Jacobian matrix of the system of equations (7) with the el-
ements being My = 0f,/9B, a, B =X,Y,Z, and f, is the
corresponding time-derivative equation in Eq. (7). Thus the
Jacobian matrix reads

fz (p—Dg—2%vz —Zyy 4+ &£
M=|2vZ+(1-pyg % LEVX —pg+ | ®)
SRvy pg+SPVX 7
(
The appearance of an eigenvalue with positive real part when A.p=1

substituting the fixed points {X, Y55, Zss} into Eq. (8) implies
that this set of fixed points are unstable.

III. RESULTS

In this section we first present the steady-state solutions to
the mean-field Bloch equations in two limit cases for p = 0
and p = 1. In the former case the dissipation is aligned paral-
lel to the driving field while in the latter case the dissipation
is aligned parallel to the spin interaction. Analogous to the
quantum phase transition in the transverse-field Ising model,
in these two limit cases, we define the disordered steady-
state phase as the one that the magnetization is completely
parallel to the direction of the external field, also denoted as
the paramagnetic phase (PM) with zero-order parameter [75].
The nonzero-order parameter indicates the appearance of the
ordered steady-state phase or ferromagnetic (FM) phase. For
instance, for the case p = 0, the disordered steady-state PM
phase is characterized by Zi = —1 and the ordered steady-
state FM phase is distinguished by the nonzero steady-state
magnetization in the x-y plane (the order parameter), namely
Xss # 0 means the ordered FM phase; while for p = 1 the or-
dered FM phase is indicated by Zy; # 0. Due to the constraint
of X?> +Y? + Z? = 1 the continuity (or discontinuity) of the
magnetization as a function of the controlling parameter can
be characterized by any of the components along x, y, and z
directions.

‘We would notice that if the external field is absent (g/I" =
0) the total Hamiltonian is reduced to the two-axis squeezing
model, which has been discussed with collective or indepen-
dent decay in Ref. [76]. Thus in the following discussion we
consider only the cases of nonzero g.

For p = 1, only H, is involved in the Hamiltonian A and
the dissipation is aligned parallel to the direction of the inter-
action. We note that for V = 0 the exact steady-state density
matrix has been obtained by means of spin coherent states
representation [77] and recently is shown to support the dissi-
pative time crystal with time-translational symmetry breaking
[12,78].

For nonzero V, the asymptotic steady-state magnetiza-
tions are given by the fixed points to the mean-field Bloch
equations (7). However, some unstable fixed points can be
eliminated by checking the signs of the real parts of the Ja-
cobian eigenvalues, thus the stable steady-state solutions are
given as follows:

328V
Xss = ) R
16V2 4T
8ol
Yss = L»
16V2 4+ 12
Zo=—]1 04g” 9)
= 16V2 12

The steady-state magnetizations along the x and z directions
for V/I" = —5 are shown in Figs. 1(a) and 1(b). It is obvi-
ous to see that the steady-state value of X (so does Y, not
shown) depends linearly on the Rabi frequency g of the driv-
ing field. However, the Z component shows a second-order
phase transition from the PM (Z;; = 0 and X, = —1) to the
FM (Z,s # 0) phases. In the shaded regions of Figs. 1(a) and
1(b), which is bound by |g| > |V|/2, there are no stable fixed
points revealed by the positive real parts of the eigenvalues
of the Jacobian (8) as shown in Fig. 2(a). Moreover, in the
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FIG. 1. The top panels show the steady-state values of X (a) and
Z (b) for p = 1. The FM phase, indicated by the nonzero steady state
Z exists in the |g| < +/16V?2 + I'?/8, after the continuous transition
from the (shaded blue) regions where the stable fixed points to Eq. (7)
do not exist. The bottom panels show the steady-state values of X
(c) and Z (d) for p = 0. As g/T" decreases the vanishing steady-state
X (the order parameter) becomes nonzero at the critical point g
indicating a continuous phase transition from the PM to FM phases.
As g/T" continues to decrease a discontinuous phase transition from
the FM to PM phases occurs at g° revealed by a jump of X to zero.

unstable regions, the dynamics of the spin magnetization
shows periodical oscillations even if in the long-time limit;
however, the long-time oscillations depend on the initial states
as shown in Fig. 2(b).

The phase diagram in the V/I'-g/T" plane for p=1 is
shown in Fig. 4(c). The steady-state phase diagram is sym-
metric under the reflection g <> —g. The contours indicate the
steady-state value of Zy and the nonzero Zy witnesses the
ordered steady-state FM phase. The system enters into the FM
phase at the critical points g, = +/16V2 + I'2/8 [green solid
line in Fig. 4(¢)].

(a) 2
1.5
)

0.5}

FIG. 2. (a) The maximal real parts of the eigenvalues of the
Jacobian matrix in Eq. (8) for p = 1. The positive maximal real parts
identify the unstable regions in which there is no stable fixed points
for the mean-field Bloch equations (7). (b) The time evolution of
Z for various initial Bloch vectors [X, Y, Z] = [0, 0, 1] (solid line),
[0,1,0] (dashed line), and [1,0,0] (dotted-dashed line). The parame-
ters are chosen as V/I" = —5 and g/I" = 3.
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FIG. 3. Comparison of the steady-state values of Z in finite-size
systems and with mean-field approximation. The parameters are cho-
sen as V/I' = —5 and p = 1. The mean-field result becomes more

and more close to the finite-size computation as the number of spins
N; increase.

Validity of the MF approximation

So far, our discussion is mainly based on the MF approxi-
mation. The MF approximation has been proven to be accurate
in capturing the steady-state properties in thermodynamic
limit of high-dimensional dissipative systems. In this sense the
application of MF approximation in the system with all-to-all
connections should be able to unveil the true behavior in the
case of infinite N. To corroborate, we compare the steady-state
magnetization of the finite-size systems and within the MF
approximation. The result is shown in Fig. 3; one can see that
for small g/T" the MF result recovers the steady-state magne-
tization perfectly even for system with smaller size (N = 10).
However, for large g/T" the MF result gives the reliable predic-
tion for the steady-state magnetization only for systems with
larger size. The range of g/I" in which MF is accurate extends
as the system size increases. This tendency shows that the MF
approximation is valid in the thermodynamic limit (N — 00)
of the considered all-to-all model.

B.p=0
For p = 0 the Hamiltonian H; is switched off while Hj is
switched on, the dissipation is aligned parallel to the direction
of the external field. In this case, there are several steady-state
solutions to Egs. (11) given as follows:

{X%s; YSSa Zss} = {ni,iv Fr/i,igi» Sg‘i::t}v (10)

where £ = 2V £/4V2 —T2)/T? and
+./1 — (64g2 + T2)EL /4V.

However, the constraint X2 + Y2 + Z2 = 1 and the linear
stability analysis via the Jacobian matrix reduce the number of
solutions. The stable steady state X and Z as functions of g are
shown in Figs. 1(c) and 1(d). One can see that as g decreasing
the steady-state magnetization undergoes a continuous tran-
sition, the vanishing X becomes nonzero at g ~ 2.49. As g
continues to decrease the X ; shows a discontinuous transition
at g ~ 0.0063. The continuous and discontinuous features of
phase transition are in sharp contrast to the case of p =1 in
which the FM-PM phase transitions are always continuous.

In order to have a full view we show the phase diagram in
the V/T"-g/T plane for p = 0 in Fig. 4(a). The order parameter
is chosen as the steady-state value Z: Zs, = —1 (equivalently

Nt + =
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FIG. 4. The phase diagram for p = 0 (a) and p = 1 (c) in the g/I"-V/T" plane. The contour shows the steady-state values of Z. The green
solid and dashed lines mark the phase boundaries for continuous and discontinuous phase transitions, respectively. (b) The number of the stable
steady-state solutions to Eq. (7) in the g/I"-p plane for V/I" = —5. In the white region there is a unique stable steady-state solution. The red

and blue regions indicated the bistable and tristable regions, respectively.

Xss = 0) means the magnetization is polarized down to the
z direction indicating a PM phase, otherwise there will be
nonzero magnetization on the x-y plane indicating a FM
phase. One can see that there is a critical point V¢ = —I"/2,
for V < V¢ the ordered FM phase emerges. For fixed V < V¢,
the FM phase is present in a closed region g € [g7, g5 ] with
g = m. In particular, the steady states of the

system undergo a continuous phase transition at g5 [green
solid line in Fig. 4(a)] while a discontinuous phase transition
at g° [green dashed line in Fig. 4(a)].

C.0<p<1

We have observed the continuous/discontinuous FM-PM
phase transition in different cases that the dissipations are
aligned parallel/vertical to the directions of the external fields.
Now we are in position to investigate how the phase transition
changes over from the continuous to discontinuous as the
parameter p is varied.

For 0 < p < 1 there will be multiple stable steady-state
solutions to Eq. (7). In Fig. 4(b) we show the number of the
stable steady-state solutions in the g/T"-p plane for V/I" = —5.
Comparing with the result for V/I" = —5 (the rightmost col-
umn) in Fig. 4(a), the ordered FM phase in the case of p = 0
becomes a bistable region as soon as p becomes different
from zero. Similarly, in the case of p = 1, the ordered FM
phase located in g/I" < O [the leftmost column, below zero
in Fig. 4(c)] becomes bistable as soon as p becomes different
from 1. In the intermediate region 0.5 < g/T" < 0.9 a tristable
region appears. Recall that the total angular momentum is
conserved (X2 + Y2 4+ Z2% = 1), the continuity of the behavior
of magnetizations can be witnessed by any component. Here
we choose the z component to characterize the possible phase
transition.

In Fig. 5(a) we show all the stable steady state Z as func-
tions of g/I" for various p. One can see that starting from
p = 0, for large amplitude g/T", the value of Zi monotonically
increases from —1 to 0 meaning that all the spins gradually
change their orientation from z direction to x direction. During
the whole process there is always a unique steady state for
each p and the crossover of the spin alignment is smooth with-
out any transition. However, another stable branch is observed
for 0 < g/I" 5 2.5 and p < 0.5. Such branch appears as soon
as p becomes different from zero and becomes more visible

as p increases, which is responsible for the bistable region in
Fig. 4(b) for positive g/T".

The crossover from discontinuous to continuous phase
transition can also be understood via the Liouvillian spectral
theory. The matrix form of the Liouvillian superoperator in
Eq. (2) is constructed as follows:

L=—-il®A" —H®I)

r . . A
+ ﬁ(zJ, ®J —1I®J —-JJ I, (1)

2-0.4F
-0.6-
-0.8f
-1

L 8o° |
0 0.05 0.1 0.15 0.2 0.55 0.3 0.35 0.4 0.45 0.5

FIG. 5. (a) The steady-state values of Z as functions of g/I"
for various p. Each set of data (in the same color) displays the
stable steady state Z corresponding to a horizontal cut along a
fixed g/I" in Fig. 4(b). (b) The Liouvillian gap of finite-size sys-
tem as a function of g/I" for various p for N = 50. (c) The stable
steady state Z as a function of p for different values of g/I'.
From the right to left the data are produced with g/I" = {—0.55 —
0.45, —0.35, —0.25, —0.15, —0.05}. The parameter is chosen as
V/T = —5.
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where the superscript 7 denotes the transpose of matrix [79].
The real parts of the eigenvalues of I are always nonpositive
while the eigenvector associated to the zero eigenvalue corre-
sponds to the steady state. The Liouvillian gap A is defined
by the nonzero eigenvalue A; with the largest negative real
part, i.e., A = |Re(A;)|, which is also called the asymptotic
decay rate since it describes the slowest relaxation timescale
toward the steady state [80]. The closure of the Liouvillian
gap implies the appearance of ordered phase or bistable region
[59]. In Fig. 5(b), we show the Liouvillian gap of a finite-size
system with N = 50. For p =0 the ordered FM phase is
marked by the closing of the Liouvillian gap. As p increases,
the closure of the Liouvillian gap that indicates the bistability
of the steady state shifts in accordance with the steady-state
values Z;; shown in Fig. 5(a). Moreover as p increases the
critical point given by the smaller g/I" shifts to g ~ —2.49,
which is the critical point for p = 1. We emphasize that since
a finite-size system is considered in Fig. 5(b), the deviation of
the steady-state phases revealed by the Liouvillian spectra and
by the solution to the mean-field Bloch equation is visible; for
example, the bumps are observed around g = 0 for p > 0.7.
Such singularities are expected to be suppressed in the system
with larger N.

It is interesting that for g/I" < O although the system al-
ways undergoes a transition from a phase with unique steady
state to bistability as p increases, such transition becomes
more likely to a second-order PM-FM phase transition as g/I"
approaches zero. We highlight the steady state Z as a function
of p for various g/I" in Fig. 5(c). For smaller g/I" (< —0.25)
it is obvious to see that there are two branches of steady-state
Z. Moreover these two branches become more and more close
to each other as g/I" approaches to zero and eventually merge.

The bistable region for the relative large p in Fig. 4(b)
is a consequence of the extension of the bistable region in
the finite-size system. In Fig. 6(a) we show the steady-state
Z as a function of p in a series of finite-size systems. One
can see that for small system, e.g., N = 10 the steady-state
magnetization is unique and it shows a crossover as p varying.
As the system size keeps increasing, the steady-state magneti-
zation is not unique and a bistable behavior emerges. The two
branches correspond to the solutions obtained when sweeping
the from larger to smaller value of g, or conversely. Moreover
the bistable region extends as the system size increases and is
expected to converge in the infinite size as predicted by the
mean-field approximation.

In Fig. 6(b) we show the Liouvillian gap as a function of p
for the systems of different sizes. For each N, the Liouvillian
gap is closed over an intermediate region of p indicating the
existence of the degenerated steady states. The gapless region
extends as the system size increases. This can be observed
on the one hand as N increases the critical point of p shifts
right towards to p ~ 0.77, which is predicted by the mean-
field Bloch equations in thermodynamic limit; on the other
hand p > 0.9 the Liouvillian gap A tends to be closed as N
increases. The tendency from hysteresis to bistable behavior
of the steady state as N goes to infinite in the considered model
is in sharp contrast to the dissipative transverse-field Ising
model with nearest-neighbor interactions [60]. In the latter,
the bistable region can be observed by means of cluster mean-
field treatment but it shrinks as the short-range correlations are
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FIG. 6. (a) The steady-state magnetization as a function of the
ratio p. The black pentagram denotes the mean-field solutions for
infinite N. The filled and empty symbols indicate the two branches
of steady-state solutions for various system size N when sweep from
larger to smaller p (solid) and conversely (dashed lines). (b) The
Liouvillian gap A as a function of p for various system size N as
indicated in the legend. Other parameters are chosen as V/I" = —5
and g/T" = —1.

gradually included and eventually replaced by a discontinuous
phase transition. It is the long-range correlations in the all-to-
all model guarantee the validity of mean-field approximation.

IV. SUMMARY

In summary, we have investigated the steady-state phase
transitions in a mixture of two all-to-all transverse-field Ising
models with collective decay. The dissipation tends to inco-
herently flip the spins down to the z direction. The considered
Hamiltonian is composed of two ingredients, I-?l and I—L, as
explained in Eq. (1). The ratio of the two Hamiltonian is
controlled by the parameter p. By means of mean-field ap-
proximation and linear stability analysis, we have shown that
the only continuous steady-state phase transition is present in
the case of p = 1, namely, when the orientation of the external
field is perpendicular to the dissipation. While discontinuous
steady-state phase transition can occur in the case of p =0,
that is the orientation of the external field is parallel to the
dissipation.

We have investigated how the orders of steady-state phase
transitions crossover as the ratio of A, and H, varies. Due
to the competition of the two components in the total Hamil-
tonian, we found that there are multiple stable steady-state
solutions to the mean-field Bloch equation for 0 < p < 1.
In particular, we fixed the Rabi frequency of the external
field and tracked the orientation of the steady-state magne-
tization when the ratio p is tuned from 0 and 1. Although
the master equation does not possess any symmetry due to
the mixture of two ingredients in the Hamiltonian H, the
conservation of the total angular momentum enables us to
characterize the continuity (or discontinuity) of the behav-
ior of steady-state magnetization through one of the spin
component.
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We found that a quasicontinuous PM-FM transition and the
nonanalyticity of the steady state Z is due to the merging of
two branches of stable solutions. Similar behaviors have been
observed in the steady-state magnetization of a multiple-spin
system interacting with a common cavity mode [81]. The
emergence of the bistability as A; becomes more dominant
is a consequence of the gradual extension of the hysteresis
in finite-size systems. This is in contrast to the dissipative
transverse-field Ising model with nearest-neighbor interaction
in which the bistability in the small size cluster mean-field ap-
proximation is replaced by the discontinuous phase transition
in thermodynamic limit [60]. The existence of the bistability
is also revealed by the gapless Liouvillian spectrum in the
bistable region.

It should be pointed that our calculation is restricted on
the Dicke manifold of j = N/2. Since the total angular mo-
mentum is conserved during the time evolution generated by
the collective dissipation, the present results remain the same
(with the normalized Bloch vector) if one works in other
subspaces spanned by {|j, m)} where j < N/2 and |m| < j.
Moreover, because the collective decay does not connect the
neighboring Dicke ladders, our analysis also applies to the
case of incoherent mixture of the Dicke manifold with differ-
ent angular momentum quantum numbers. When more than
two Dicke manifolds are involved, for example, the system
is initialized in a superposition of states belong to different
Dicke manifolds, the coherence between the involved sub-

spaces may produce nonzero off-block-diagonal elements of
the joint density matrix. For such a case the permutation
invariance of the considered model can be used to solve the
full quantum master equation [74].

Finally, we note that the explicit symmetry is absent when
both Ay and H, are involved in the considered model. There-
fore the phase transitions appearing in the case of 0 < p < 1
are not accompanied by any spontaneous symmetry breaking.
Recently, such anomalous phase transition without symme-
try breaking in a nonequilibrium open quantum system has
been investigated within the Liouvillian spectrum theory. It is
proven that the spontaneous symmetry breaking is not a neces-
sary condition for the occurrence of the continuous dissipative
phase transition [82]. For the future work, we expect to gain
insightful understanding for the crossover from discontinuous
to continuous dissipative phase transition in the framework of
spectral theory of Liouvillian. Experimentally, the manipulat-
ing and tuning the interactions among many-body system in
the scalable quantum simulators through the use of Rydberg
atoms is fast developing, it provides exciting opportunity to
test these predictions in the laboratory [17-19,83-86].
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