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Phase transition of a non-Abelian quasiperiodic mosaic lattice model with p-wave superfluidity
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It is now widely believed that p-wave superfluidity is the key to generate a novel critical phase in the non-
Abelian Aubry-André-Harper model. However, we here establish that this belief is incorrect. In this work, we
systemically investigate the phase transition of a non-Abelian quasiperiodic mosaic lattice model with p-wave
superfluidity. The results show that the critical phase exists only in the quasiperiodic model, whereas in the
mosaic model, despite the presence of p-wave superfluidity, the critical phase is absent, and mobility edge (ME)
phases are generated instead. Furthermore, if the period of the mosaic modulation κ � 3, the results even show
that regardless of the strength of the p-wave superfluidity, there are only extended and ME phases, but neither
critical nor localized phases. This work clearly reveals the phase transition of a non-Abelian quasiperiodic mosaic
lattice model with p-wave superfluidity, and it may be testified in near-term state-of-the-art experimental settings.
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I. INTRODUCTION

Quantum phase transition is a fundamental physical phe-
nomenon that has been extensively studied, and it has attracted
the intense interest of both theorists and experimentalists in
physics for decades [1–5]. One of the most reliable models
to investigate such a phenomenon is the Aubry-André-Harper
(AAH) model, which is easily implemented experimentally in
photonic crystals [6,7] and ultracold atoms [8,9]. Up to now,
it has been extensively used to understand the localization
properties of many interesting systems, and has revealed a
variety of transition properties between extended, critical, and
localized phases [10–29].

Recent studies have shown that the introduction of p-wave
superfluidity often significantly changes the dynamics, local-
izations, and topological transition properties of Hermitian
and non-Hermitian AAH model systems [30–38]. For exam-
ple, it is unveiled that the novel critical phase can exist in the
AAH model once the p-wave superfluidity is added, while if
the p-wave superfluidity is absent there are only two phases:
extended and localized [38,39]. It seems to imply that the
p-wave superfluidity is the most critical factor in generating
the critical phase in the AAH model. Actually, these studies
only explore the cases where the lattices are quasiperiodic
models, so this belief is obviously controversial for under-
standing the nature of the critical phase. In order to address
this issue, it is an essential task to elucidate the phase transi-
tion of some special AAH models, which are different from
the quasiperiodic models but the p-wave superfluidity still
exists.

Obviously, the mosaic disordered model is one of the
best choice for such special AAH models. Many intriguing
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physical phenomena, such as mobility edges (MEs), topologi-
cal phase transitions, localization phase transitions, and other
quantum properties, have yielded pioneering achievements in
the mosaic disordered models which are different from the
quasiperiodic models [40–46]. Many of them have shown that
the properties of these physical phenomena in the mosaic
AAH models are usually different from that of quasiperiodic
cases. For instance, there are no MEs in the standard AAH
model, and it exhibits a phase transition from a completely ex-
tended phase to a completely localized phase with increasing
the strength of the quasiperiodic potential. But, in the mosaic
disordered AAH models one can obtain MEs in the energy
spectra of the system [46]. Consequently, what is the phase
transition property of the non-Abelian quasiperiodic mosaic
model with p-wave superfluidity, and whether the introduction
of mosaic modulation of a lattice can result in the absence of
the critical phase in such a model, still remains unanswered
and urgently needs to be explored.

Based on this motivation, in this work, we systemically
explore the phase transition properties of such non-Abelian
quasiperiodic mosaic lattice models with p-wave superfluid-
ity. The results not only suggest that the critical phase exists
only in the nonmosaic lattice model, but also show an in-
triguing phase diagram for a class of quasiperiodic mosaic
lattice models. In the mosaic lattice model, in spite of the
existence of p-wave superfluidity, the critical phase is absent,
while the ME phases are generated instead. Furthermore, if the
mosaic modulation κ = 3 and 4, there are even only extended
and ME phases, and both critical and localized phases are
absent. These results clearly reveal the phase transition of the
non-Abelian quasiperiodic mosaic lattice model with p-wave
superfluidity.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the one-dimensional (1D) non-Abelian
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FIG. 1. Schematic illustration of the 1D quasiperiodic mosaic
lattices with κ = 2, 3, 4. The red and black spheres represent the
lattice sites whose potentials are quasiperiodic and zero, respectively,
as shown by the corresponding red and navy blue dashed lines. The
big blue sphere indicates a particle, and the nearest-neighbor constant
hopping strength is t .

quasiperiodic mosaic lattice models with p-wave superfluid-
ity. In Sec. III, we elaborate the calculation method for this
issue in detail. In Sec. IV, we discuss the results of phase
transition for some typical mosaic lattice models. Finally, we
conclude in Sec. V.

II. MODEL

We consider a class of non-Abelian quasiperiodic mosaic
models with p-wave superconducting pairing, which can be
described as

H =
∑

i

[(ĉ†
i+1T̂1ĉi + H.c.) + Viĉ

†
i T̂2ĉi], (1)

with

Vi =
{

2V cos[2π (ωi + θ )], i = mκ,

0, otherwise,
(2)

where ĉi = [ĉ(1)
i , ĉ(2)

i ]T represents a two-component field op-
erator, and ĉ†

i (ĉi) is the fermionic creation (annihilation)
operator at the ith site; H.c. denotes the Hermitian conju-
gate; V, ω, θ denote the quasiperiodic potential amplitude,
the irrational number, and the phase offset, respectively. κ

is a fixed positive integer, and represents the period of the
mosaic modulation. m is an integer running from 1 to N , i.e.,
m = 1, 2, . . . , N . Then the system size will be L = κN . It is
obvious that this model reduces to the standard non-Abelian
AAH model with p-wave superfluidity when κ = 1. If κ �= 1
the system becomes a quasiperiodic mosaic model, and its
schematic illustration is shown in Fig. 1 for κ = 2, 3, and 4,
which has been similarly described in Ref. [46]. On the other
hand, we here consider the simplest non-Abelian case with a
two-component field operator and the SU(2) hopping matrices
[47]:

T̂1 = t σ̂z − i�σ̂y (3)

and

T̂2 = σ̂z, (4)

where σ̂y and σ̂z are the usual 2 × 2 Pauli matrices; t is
the nearest-neighbor hopping coefficient and we set t = 1 for

convenience; and � denotes the amplitude of p-wave super-
conducting pairing. If � = 0, T̂1 and T̂2 could commute with
each other, and the model will reduce to the standard AAH
model for each component.

Note that in the absence of the disorder term (i.e., Vi = 0),
the model of Eq. (1) describes a 1D topologically nontrivial
insulator or a spinless p-wave superfluidity [48,49], while if
Vi �= 0, the model can describe the Majorana fermions in su-
perconducting 1D systems or the 1D p-wave superconductor
in the incommensurate lattices [30,31]. For these cases, the
duality symmetry is held, and their phase transition properties
have been extensively studied. In sharp contrast to these, the
duality symmetry in the model of Eq. (1) is broken, and the
related phase transition properties have not been investigated.
Therefore, we aim to address the phase transition proper-
ties caused by symmetry breaking due to the introduction of
mosaic modulation in this work. In experiments, the p-wave
superfluidity amplitudes can be tuned by the mixture of spin-
polarized fermions with a Bose-Einstein condensate [50,51],
and the quasiperiodic mosaic lattices can be also easily imple-
mented based on the result of Ref. [52].

III. METHOD

Following the similar derivation of Ref. [39], we assume
that the two-component field operator ĉi = [ĉ(1)

i , ĉ(2)
i ]T and

two SU(N) matrices are T̂1 and T̂2, then the wave function of
the non-Abelian mosaic AAH model can be written as

|ψ〉 =
∑

i

[
uiĉ

(1)†
i + viĉ

(2)†
i

]|0〉. (5)

According to the Schrödinger equation H|ψ〉 = ε|ψ〉, one can
obtain

(ui+1 + ui−1) + Viui − �(vi+1 − vi−1) = εui,

�(ui+1 − ui−1) − (vi+1 + vi−1) − Vivi = εvi. (6)

Physically, for every particle-like solution (ui, vi) of the
Schrödinger Eq. (6) with energy E � 0, there is always a
hole-like solution (v∗

i , u∗
i ) with energy −E . Following the

typical choice in the literature, for the quasi-disorder potential
Vi, we use an irrational number ω = [(

√
5 − 1)/2], which is

the inverse of the golden mean. It can be gradually approached
by using the series of Fibonacci numbers Fn:

ω = lim
n→∞

Fn−1

Fn
, (7)

where Fn is defined recursively by Fn+1 = Fn−1 + Fn, starting
from F0 = F1 = 1. Thus, in numerical calculations we take the
rational approximation:

ω � ωn = Fn−1

Fn
. (8)

To minimize the possible effect of the boundary, we take the
periodic boundary condition.
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FIG. 2. Phase diagram of the non-Abelian quasi-disordered Fermi systems with p-wave order parameter � and disorder strength V for
different periods of the mosaic modulation κ . (a) κ = 1, the system degenerates to the standard non-Abelian AAH model with p-wave
superfluidity, and there are three different phases including extended, critical, and localized phases, as presented in Ref. [39]. (b) κ = 2,
the system is described by the non-Abelian mosaic AAH model with p-wave superfluidity. Its result is obviously different from the case of
κ = 1. The critical phase is absent, and there are extended, mobility edge, and localized phases. (c) κ = 3, the result is different from the
cases of both κ = 1 and κ = 2; there are only extended and mobility edge phases. (d) κ = 4, the result is similar to the case of κ = 3. The
crosses indicate the simulation results of the manuscript, and the black, red, blue, and magenta dashed lines indicate results from inter- and
extrapolations.

Then, the model Hamiltonian H can be described by the
following matrix:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 B 0 · · · 0 C
B† A2 B 0 · · · 0
0 B† A3 B 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 B† AL−2 B 0
0 · · · 0 B† AL−1 B

C† · · · 0 B† AL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9)

where

Ai = 2V cos(2π iωn)

(
1 0
0 −1

)
, (10)

B =
(

1 −�

� −1

)
, (11)

and

C =
(

1 �

−� −1

)
. (12)

Note that the C of Eq. (9) represents the periodic boundary
condition, and it is utilized in all numerical simulations in this
work. Now, the Schrödinger equation Eq. (6) can be solved by
diagonalizing the matrix of Eq. (9), then one can obtain all the

eigenvalues and the corresponding eigenvectors,

ψ = [u1,iE , v1,iE , . . . , ui,iE , vi,iE , . . . , uL,iE , vL,iE ]T , (13)

where i is the number of the lattice site; iE = 1, 2, ..., 2L is
the index of the iE th state of atoms; and ui,iE and vi,iE are the
corresponding iE th wave function at the ith site.

Finally, in order to characterize the localization properties
of this system, we introduce two useful quantities based on the
inverse participation ratio (IPR). They are the mean inverse
participation ratio (MIPR) and fractal dimension 
. If the
system has a pure energy spectrum, the extended, critical, and
localized wave functions do not coexist, i.e., there are no MEs.
The MIPR will be considered as a good choice to determine
these phases, especially for the critical phase. It is given by

MIPR = 1

2L

2L∑
iE =1

L∑
i=1

[
u4

i,iE + v4
i,iE

]
, (14)

where iE is the index of energy levels. In the presence of
disorder, for extended states, it is well known that the MIPR
scales like 1/L, while for localized states the MIPR tends to a
finite value O(1). For critical states, the MIPR behaviors have
other size dependence that is different from 1/L or O(1), but
1/Lα , where 0 < α < 1. By tuning the disorder strength, we
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FIG. 3. The first and third rows represent the MIPR as a function of the quasi-disorder strength V for different �, where different lines
denote L = 2584, 4181, and 6765, respectively. The second and fourth rows represent the fractal dimension 
 of eigenstates as a function of
the corresponding eigenvalues and quasiperiodic potential strength V with L = 6765. The dashed lines show the sharp increase of the MIPR
and 
 at phase boundaries. Here, we use κ = 1 in all cases.

anticipate a sharp change in MIPR, when the system transits
from one phase to another.

However, if the system has MEs, which means the ex-
tended and localized states will coexist, the MIPR will not be
able to distinguish this phase, because the localized states will
significantly inhibit MIPR scaling down even if all the rest of
the states are extended in the ME phase. Thus, to characterize
the MEs we investigate the fractal dimension 
 of the wave
function for each state, which is given by


iE = − ln
(∑L

i=1

[
u4

i,iE + v4
i,iE

])
ln L

. (15)

In the presence of disorder, it is known that 
 → 1 for ex-
tended states and 
 → 0 for localized states as L increases.
The fractal dimension 
 and its discussion are also adopted
to describe the ME in Ref. [46]. Note that the 
 is insensitive

to distinguishing the extended and critical phases because the
difference between the wave functions of the extended and
the critical states is generally small, which is demonstrated in
Fig. 3. It can be seen that MIPR and 
 have their own ad-
vantages and disadvantages, thus we here take full advantage
of them to systemically explore the phase transition of the
non-Abelian quasiperiodic mosaic AAH model with p-wave
superfluidity.

IV. RESULTS

A. Phase transitions

Based on the two quantities MIPR and 
, we find that the
phase transition properties of such a model are profoundly
affected by both the existence of a nonzero � and the mosaic
modulation κ . In contrast to the standard quasiperiodic AAH
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FIG. 4. The first and third rows represent the MIPR as a function of the quasi-disorder strength V for different �, where different lines
denote L = 2584, 4181, and 6765, respectively. The second and fourth rows represent the fractal dimension 
 of eigenstates as a function of
the corresponding eigenvalues and quasiperiodic potential strength V with L = 6765. The dashed lines show the sharp increase of the MIPR
and 
 at phase boundaries. Here, we use κ = 2 in all cases.

model, the introduction of mosaic modulation of the lattice
significantly changes the localization properties, and leads to
some intriguing phase transition properties. The main results
are summarized in the phase diagram shown in Fig. 2.

First, if κ = 1, the model reduces to the standard non-
Abelian quasiperiodic AAH model with p-wave superfluidity,
and its phase transition property has been systematically
studied in Ref. [39]. Obviously, the results of Fig. 2(a) are
consistent with those of the phase diagram in Ref. [39]. There
are three phases: extended, localized, and critical, with the
p-wave order parameter � and the disorder strength V . If
κ = 2, this model becomes the non-Abelian quasiperiodic
mosaic AAH model we focus on here. According to the results
shown in Fig. 2(b), we can find that the introduction of mosaic
modulation of lattice destroys the phase transition property of
standard nonmosaic AAH model, and leads the critical phase
to disappear despite the presence of p-wave superfluidity.

Instead, three new phases are generated: extended, ME, and
localized phases. If κ = 3 and κ = 4, the results are shown in
Figs. 2(c) and 2(d). It can be seen that there are only extended
and ME phases, and both critical and localized phases are
absent.

These results demonstrate that the introduction of mosaic
modulation of a lattice not only results in the absence of the
critical phase in the non-Abelian AAH model, but also leads to
some new phase diagrams as a function of both quasi-disorder
and p-wave superfluidity for different classes of mosaic lattice
models, which are greatly different from that of nonmosaic
lattice models.

B. MIPR and �

In order to more clearly understand the phase diagram
shown in Fig. 2, we plot Figs. 3–6, which report the evolution
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FIG. 5. The first and third rows represent the MIPR as a function of the quasi-disorder strength V for different �, where different lines
denote L = 2584, 4181, and 6765, respectively. The second and fourth rows represent the fractal dimension 
 of eigenstates as a function of
the corresponding eigenvalues and quasiperiodic potential strength V with L = 6765. The dashed lines show the sharp increase of the MIPR
and 
 at phase boundaries. Here, we use κ = 3 in all cases.

of the MIPR and 
 for different parameters � and κ with V
increasing.

1. The case of κ = 1

For κ = 1, the system is the standard non-Abelian
quasiperiodic AAH model with p-wave superfluidity, and
its result is reported in Fig. 3. If � = 0, which means the
system without p-wave superfluidity, we can find that there
is one sharp increase in the MIPR, and one decrease in 


correspondingly, which are marked by black dashed lines in
Figs. 3(a1) and 3(a2). This suggests that there are two different
phases. Further, the MIPR on the left of the dashed line scales
like 1/L, while the right of the dashed line is independent of
L, as shown in Fig. 3(a1). Accordingly, the 
 on the left of the
dashed line tends to 1, denoted by the yellow region, while the
right of the dashed line tends to 0, denoted by the blue region,

as shown in Fig. 3(a2). This meas the two phases are extended
and localized phases, respectively.

If � increases to � = 0.4 and � = 0.7, we can find that
the critical phases are generated, as shown in the middle
area of black and magenta dashed lines in Figs. 3(b1)–3(c2).
The behaviors of MIPR are significantly different from the
extended and localized phases. However, there is only a small
difference in 
 between the critical and extended phases, and
if the color is not carefully tuned, this difference will not even
be noticed. That is, the critical phase is sensitive to the MIPR
but insensitive to 
.

Similarly, if � increases to � = 1, the extended phase
disappears, and there are only critical and localized phases,
as shown in Figs. 3(d1) and 3(d2). If � increases more, and
� = 1.5 and � = 2, there are extended, critical, and localized
phases again, as shown in Figs. 3(e1)–3(f2). These results
discussed above correspond to Fig. 2(a).
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FIG. 6. The first and third rows represent the MIPR as a function of the quasi-disorder strength V for different �, where different lines
denote L = 2584, 4181, and 6765, respectively. The second and fourth rows represent the fractal dimension 
 of eigenstates as a function of
the corresponding eigenvalues and quasiperiodic potential strength V with L = 6765. The dashed lines show the sharp increase of the MIPR
and 
 at phase boundaries. Here, we use κ = 4 in all cases.

2. The case of κ = 2

In this case, the system becomes the quasiperiodic mo-
saic AAH model with p-wave superfluidity, and its result
is reported in Fig. 4. If � = 0, the system has no p-wave
superfluid, and there is one sharp increase in the MIPR, but
decrease with mobility edge in 
 correspondingly, which are
marked by black dashed lines in Figs. 4(a1) and 4(a2). The
behaviors of both MIPR and 
 on the left of the dashed line
are qualitatively similar to the case of κ = 1, which corre-
sponds to the extended phase. On the right of the dashed line
the results are clearly different from the case of κ = 1, and
not all of 
 approach to 1. Some of 
 approach to 0, while the
others approach to 1, despite that the MIPR is independent of
L. That means it is not the localized phase, but the ME phase.
Figure 4(a2) is very similar to Fig. 2(a) in Ref. [46], which

indicates that the model in Ref. [46] is a special case of our
model, i.e., � = 0 and κ = 2.

If � increases to � = 0.5 and � = 0.75, we can find that
there is still only one sharp increase in the MIPR and no
significant change, as shown in Figs. 4(b1) and 4(c1). But
there are two clear changes in 
, and they are marked by
black and magenta dashed lines, as shown in Figs. 4(b2) and
4(c2). Compared with the case of � = 0, one of the most
distinctive features is that this mobility edge does not exist all
the time, but disappears before the magenta dashed line with
V increasing. This means the ME phase stops at the magenta
dashed line. On the right side of the magenta dashed lines,
there are almost all localized states and no extended states.
Thus, three regions correspond to extended, ME, and localized
phases, respectively.
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FIG. 7. The wave functions of different phases in Fig. 2(b) with � = 1.5 for different V . ui and vi denote the wave functions of different
components. The first, second, and third rows correspond to the extended, ME, and localized phases with V = 0.1, 0.5, and 1.5, respectively.
The first two columns, middle two columns, and last two columns correspond to n = 500, 6600, and 13 000, respectively. Here, we use the
system size L = 6765 for all cases.

As � increases again, if � = 1 both the extended and
ME phases degenerate and disappear, in which the MIPR is
independent of L, and the 
 of all tends to 0. This means
there is only the localized phase in the system, as shown in
Figs. 4(d1) and 4(d2). If � increases more, i.e., � = 1.5 and
� = 2, there are extended, ME, and localized phases again, as
shown in Figs. 4(e1)–4(f2).

In addition, we can find that the critical strength of
quasiperiodic potential marked by the black dashed line in
Fig. 4(a) with � = 0 is smaller than that of Fig. 3(a) in
the standard quasiperiodic AAH model. This is because for
the mosaic lattice the embedded zero potential sites have
destroyed the quasiperiodic potential, and generate some uni-
form random disorder potentials.

The results discussed above correspond to Fig. 2(b). We
can find that it is significantly different from the case of the
nonmosaic lattice model (κ = 1), and there are extended, ME,
and localized phases, while the critical phase is absent in the
mosaic lattice model.

3. The cases of κ = 3 and κ = 4

In the case of κ = 3, if � = 0 the results of both MIPR
and 
 are qualitatively similar to the case of κ = 2, and there
are two phases, extended and ME, as shown in Figs. 5(a1)
and 5(a2). Note that Fig. 5(a2) is consistent with Fig. 2(b) in
Ref. [46], which shows that our model becomes the model
in Ref. [46] as the parameters have the values of � = 0 and
κ = 3. Different from the results of Figs. 4(b1)–4(c2), as �

increases to � = 0.6 and � = 0.8, although the number of
extended states decreases and that of localized states increases
for 
 in the ME phase, there are still only the extended
and ME phases, and the localized phase does not appear, as
shown in Figs. 5(b1)–5(c2). As � increases again, if � = 1
the extended and localized states always coexist in the system
regardless of the value of V , which means there is only the ME
phase, as shown in Figs. 5(d1) and 5(d2). If � increases more,
and � = 1.5 and � = 2, the extended and ME phases appear

again, as shown in Figs. 5(e1)–5(f2). These results correspond
to Fig. 2(c).

In the case of κ = 4, the results are exactly similar to the
case of κ = 3: if � = 1 there is only the ME phase in the
system, and there are extended and ME phases for other �, as
shown in Fig. 6. These results correspond to Fig. 2(d).

It is worth pointing out that although these results are ob-
tained based on ω being the inverse golden mean, we find that
if ω is the inverse silver mean, the phase transition properties
of such a model have not been changed in nature greatly.

C. The wave functions of different phases

In order to reconfirm the proposed phase diagram shown in
Fig. 2, we further investigate the wave functions of different
phases in Fig. 2(b) with � = 1.5, and plot Fig. 7. In Fig. 7,
we have chose the system size L = 6765, then the number of
both eigenvalues and eigenstates is 2L = 13 530 because the
system is two-component. ui and vi are the wave functions
of different components. The first two columns, middle two
columns, and last two columns correspond to n = 500, 6600,
and 13 000, respectively, where n denotes the energy level of
the eigenstate. The first, second, and third rows correspond
to the extended, ME, and localized phases with V = 0.1, 0.5,
and 1.5, respectively.

As we expected, if V = 0.1 the system corresponds to the
extended phase, i.e., the wave functions of all states are ex-
tended, as shown in the first row of Fig. 7, which corresponds
to Fig. 2(b) and the left of the black dash line in Figs. 4(e1)
and 4(e2). In contrast, if V = 0.5 the system corresponds
to the ME phase, where the extended and localized states
coexist, i.e., the wave functions of low (n = 500) and high
(n = 13 000) energy states in the system are extended and
others are localized, as shown in the second row of Fig. 7,
which is verified by Fig. 2(b) and the middle of two dash
lines in Figs. 4(e1) and 4(e2). Furthermore, if V = 1.5 the
system corresponds to the localized phase, where the wave
functions of all states are localized, as shown in the third row
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of Fig. 7, which is consistent with Fig. 2(b) and the right of
dash magenta line in Figs. 4(e1) and 4(e2).

V. CONCLUSION

In this work, we systemically explore the phase transi-
tion of non-Abelian quasiperiodic mosaic lattice models with
p-wave superfluidity, aiming to address what are the phase
transition properties of such mosaic models, and whether
the introduction of mosaic modulation of a lattice can result
in the absence of the critical phase in such a model. As a
result, we find that the introduction of mosaic modulation
in a lattice significantly changes the localization properties,
and leads to some intriguing phase transition properties. The
results show that in the mosaic lattice model, despite the pres-
ence of p-wave superfluidity, the critical phase is absent, and
the mobility edge phases are generated instead. Furthermore,

if the mosaic modulation κ = 3 and 4, there are even only
extended and ME phases, and both critical and localized
phases are absent. These results suggest that the introduction
of mosaic modulation destroys the phase transition property of
the standard nonmosaic AAH model. Finally, we give a clear
phase diagram as a function of both quasi-disorder and p-wave
superfluidity for different classes of mosaic lattice models.
These results may be testified in near-term state-of-the-art
experimental settings.
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