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Phasons are collective low-energy modes that appear in disparate condensed matter systems such as qua-
sicrystals, incommensurate structures, fluctuating charge density waves, and moiré superlattices. They share
several similarities with acoustic phonon modes, but they are not protected by any exact translational symmetry.
As a consequence, they are subject to a wave-vector-independent damping, and they develop a finite pinning
frequency, which destroy their acoustic linearly propagating dispersion. Under a few simple, well-motivated
assumptions, we compute the phason density of states, and we derive the phason heat capacity as a function
of the temperature. Finally, imagining a hypothetical s-wave pairing channel with electrons, we compute the
critical temperature Tc of the corresponding superconducting state as a function of phason damping using
the Eliashberg formalism. We find that for large phason damping, the heat capacity is linear in temperature,
showing a distinctive glasslike behavior. Additionally, we observe that the phason damping can strongly enhance
the effective Eliashberg coupling, and we reveal a sharp nonmonotonic dependence of the superconducting
temperature Tc on the phason damping, with a maximum located at the underdamped-to-overdamped-crossover
scale. Our simple computations confirm the potential role of overdamped modes not only in explaining the glassy
properties of incommensurate structures but also in possibly inducing strongly coupled superconductivity therein
and enhancing the corresponding Tc.
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I. INTRODUCTION

Acoustic phonons are collective vibrational modes which
appear in crystalline solids because of the spontaneous break-
ing of translations (long-range order) [1]. As Goldstone modes
[2], their dispersion relation is protected by symmetries; hence
phonons [3] are always gapless modes. Their dispersion rela-
tion can be obtained by solving the following equation:

ω2 = c2k2 − iωDk2 + · · · , (1)

where ω and k are the frequency and wave vector, respectively,
and “· · · ” indicates higher-order terms. Here, for simplic-
ity, we have assumed isotropy and neglected any distinction
between the different branches (longitudinal or transverse).
In the above equation, c and D are the phonon speed and
the phonon attenuation constant. Equation (1) can be derived
using several methods; see, for example, Refs. [1,4].

Many of the low-energy vibrational and thermodynamic
properties of solids (e.g., density of states, heat capacity, etc.)
can be efficiently rationalized starting from the simple con-
cept of phonons, within the celebrated Debye’s theory [5].
In metallic systems, further properties, such as the electric
resistivity or the onset of superconductivity, are determined,
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or at least strongly affected, by phonons and their cou-
pling to electrons. Typical cases are given by the dominant
phonon-electron scattering at high temperature [6], which
gives a linear-in-T resistivity above the Debye’s temperature,
or the phonon-electron coupling which is behind the Bardeen-
Cooper-Schrieffer (BCS) theory of superconductivity [7].

Aperiodic crystals are complex structures which do not
display full translational order as in periodic crystalline struc-
tures but still enjoy long-range order; hence they are solid.
Typical examples of that sort are quasicrystals, incommensu-
rate structures, fluctuating charge density waves, and moiré
superlattices. In all these different scenarios, in addition to
the standard acoustic phonons, extra low-energy modes ap-
pear (e.g., Refs. [8–13]). Depending on the context, these
modes are usually referred to as sliding modes or phasons.
For simplicity, we will refer to them with the collective la-
bel “phason.” Despite some similarities, phasons are very
different from standard acoustic phonons, and many of their
peculiar properties follow from these differences. In compos-
ite crystals, or incommensurate charge density wave systems,
these modes correspond to the relative rigid translations of the
two superstructures along the incommensurate direction, see
Fig. 1. In modulate structures, the phason, as the name in-
dicates, it is just the fluctuation of the phase of the static
modulation wave. In quasicrystals, the phason corresponds to
translations in the direction perpendicular to the irrational cut
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FIG. 1. A visualization of the phason displacement in an incom-
mensurate structure with two incommensurate lattices. A concrete
example is that of the mercury chain compound Hg3−δAsF6 [19,20].
The phason corresponds to a relative rigid translation between the
two lattices.

in the extradimensional superspace picture [14,15], and it is
harder to visualize (and indeed its meaning is still controver-
sial [16]). See Ref. [17] for a nice review about excitations in
incommensurate phases of various types. Notice that in many
situations (for example, in quasicrystals), phasons do not cor-
respond to the translations of atoms but rather to particle
rearrangements, more akin to the diffusive motion in liquids
(see, for example, Ref. [18]).

Importantly, no matter the specific microscopic structure
from which they arise, phasons do not correspond to an ex-
act translational symmetry, and therefore, differently from
acoustic phonons, they are not protected by symmetry. In
mathematical terms, this implies that their dispersion relation
follows from an equation of the form

ω2 − �(k)2 + iω�(k) = 0, (2)

where �(k) and �(k) are not constrained to vanish in the limit
of k → 0. In other words, the phason dispersion relation can
be characterized by a pinning frequency ω0 and a friction or
damping term γ , given by

�(0) ≡ γ , �(0) ≡ ω0. (3)

Both terms are not allowed for acoustic phonons. For a discus-
sion about the pinning frequency in charge density waves, see,
for example, Ref. [21]. Interestingly, for pseudo-Goldstone
modes, the two parameters above, ω0 and γ , are indeed related
[4] in a way similar to the famous Gell-Mann–Oakes–Renner
relation for pions.

In the limit of weak quenched disorder, or equivalently
large anharmonic interactions and dissipation, the pinning fre-
quency term can be neglected, since ω0 � γ (see Ref. [22] for
an estimate in twisted bilayer graphene). Hence the dispersion
relation for the phason can be well approximated by solving
the following equation:

ω2 + iωγ = v2k2, (4)

where v and γ are the phason speed and friction, respectively
(see the next section for more details). This structure can
be derived in several ways, from hydrodynamics [23] and
vibrational models [24] to arguments based purely on

symmetries and effective field theory [25]. Interestingly, the
dispersion which arises from solving the above equation is
identical to that expected for shear waves in liquids [26]
and, in general, for systems described by quasihydrodynam-
ics [27]. In particular, there appears a crossover between an
overdamped regime and an underdamped propagating one
by decreasing the wavelength [24,28–31]. Both the over-
damped behavior and the underdamped behavior have been
experimentally observed using inelastic neutron-scattering ex-
periments in biphenyl [32] and light-scattering experiments in
BaMnF4 [33].

Aside from their peculiar dispersion, phason modes have
been identified as the fundamental origin for the glassylike
properties of incommensurate structures and aperiodic crys-
tals, which have been revealed in several instances in the
literature [34–36]. More precisely, the phason gap, ω0, has
been shown to give an excess in the heat capacity akin to that
observed in glasses, also known as the boson peak [37]. The
role of the pinned phason is similar in spirit to the possible
contributions from soft optical modes [38,39], which are evi-
dent in thermoelectrics [40] and organic compounds [41,42].
There is clear evidence of the role of the phason gap in this
regard [35,36,43].

On top of that, the overdamped nature of phasons for
low wave vectors has been shown to produce a linear-in-T
contribution to the heat capacity, similar to that of two-
level states (TLSs) in glasses [35,36,43–45]. A quasilinear
scaling of the heat capacity has indeed been observed in
several incommensurate compounds [43,46,47]. Let us also
emphasize the similarity between phasons in incommensu-
rate structures and vortons in superconducting vortex lattices
[48]. Both excitations are acousticlike bosonic modes which
appear overdamped for large wavelengths. Not coinciden-
tally, a linear-in-T heat capacity in superconducting vortex
lattices has been already found and attributed to the vorton
contribution [49–51]. We expect the features described in this
paper, and related literature, to be generic in the presence
of overdamped acousticlike modes. Interestingly, further re-
lations between the physics of incommensurate orders (and
specially pinned fluctuating charge density waves) and that
of glasses have been discovered in the past [52,53]. We will
return to this connection and to the possible universal relation
to overdamped dynamics in Sec. VI.

Less investigated features of phasons are their coupling to
electrons and their role in electronic transport, and, finally,
their role in possible superconducting instabilities. This topic
has been recently revived by the growing interest around
twisted bilayer graphene (TBG), in which a phason mode
is expected as a result of the rotational degree of freedom
between the two layers [22,54–56]. The role and strength of
electron-phason coupling have been recently investigated in
Refs. [22,57], and the effects of phason-electron scattering
have been investigated in Ref. [58].

Given its overdamped nature, the phason is expected to
originate additional spectral weight at very low energy which
can potentially enhance the effective coupling to electrons
and therefore superconductivity. This effect might appear as
general in incommensurate structures, and it has been al-
ready reported experimentally in a quasiperiodic host-guest
structure of elemental bismuth at high pressure, Bi-III [59].
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The superconductivity enhancement induced by incommen-
surability has also been recently advocated in the weak and
intermediate coupling regimes in Ref. [60]. The role of gapped
phasons has been also investigated in incommensurate host-
guest phases in compressed elemental sulfur in Ref. [61].
More generally, the application of high pressure can transform
a single-element metal into an incommensurate guest-host
structure, as for the case of scandium [62]. Pressure can
therefore be used as an external dialing parameter to adjust
and control commensurability, and therefore the properties
of the corresponding phason, providing a big potential to
gauge superconductivity. Additionally, phasons could play a
fundamental role not only in the recently discovered super-
conductivity of quasicrystals [63] but also in cuprate oxide
high-critical-temperature (high-Tc) superconductors, where
fluctuating charge density wave order exists in the vicinity of
the superconducting phase (e.g., Refs. [64–66]), and it might
be responsible for several of the mysterious properties therein
[67–71].

Finally, the mechanical properties of incommensurate
structures and their relation to phason dynamics are also the
subject of intense investigation (e.g., Refs. [72–75]).

All in all, the motivations to study the effects of phasons
on the mechanical, thermodynamic, transport, and supercon-
ducting properties of incommensurate systems are many and
timely. Following the Occam’s razor principle, we present
a concrete analysis in this direction based on a few simple
assumptions. First, we take the limit in which the phason
pinning frequency is subleading with respect to the phason
damping γ . Then, we assume an s-wave isotropic pairing
channel between phasons and electrons, as for the case of
phonons.

In this paper, we confirm the role of overdamped propa-
gating modes for the glasslike properties of incommensurate
structures at low temperature. Most importantly, we show
using the Eliashberg formalism that overdamped phasons
could lead to strongly coupled superconductivity and that
their damping enhances the critical temperature Tc in the
underdamped case. Our findings are in agreement with the
experimental results of Ref. [59] and the recent theoretical
analysis in Ref. [60]. Also, the overdamped nature of the
phason modes is ultimately due to anharmonicity, and it
constitutes another interesting case for the sometimes funda-
mental role of the latter for superconductivity (see Ref. [76]
for a review).

II. PHASON MODES

We start by considering the phason Green’s function
given by

G(ω, k) = 1

−ω2 + v2k2 − iωγ
, (5)

where ω and k are the phason frequency and wave vector,
respectively. Additionally, v and γ are the phason velocity
and the friction or damping parameter, respectively. The latter
can be identified with the inverse relaxation time γ ≡ τ−1.
Here, we have assumed that the pinning frequency ω0 of
the phason, induced by disorder or impurities, is negligible.
In other words, we assume γ � ω0. Notice that the phason

FIG. 2. Phason dispersion relation upon increasing the friction
parameter γ and keeping the phason speed fixed. In this plot, v = 1;
γ = 10−3, 1, and 2 for black, blue, and red, respectively. Solid and
dashed lines are the real and imaginary parts, respectively, of the
dispersion relation ω(k) in Eq. (6).

dispersion relation obtained from Eq. (5) is fundamentally
different from the dispersion of acoustic and optical phonons.
Acoustic phonons cannot display a wave-vector-independent
damping term since their dispersion is protected by transla-
tional symmetry. Also, optical phonons have a non-negligible
ω0 which, at least in the most common case of underdamped
optical modes, is much larger than the friction term γ . This
can be partially understood by the fact that ω0 for pha-
sons arises from explicitly breaking the emergent “sliding”
symmetry (see, for example, Ref. [25]), while for optical
phonons that is not the case as ω0 is simply a manifestation of
nonuniversal microscopic physics. As a direct consequence,
ω0 cannot be tuned to zero in the case of optical phonons,
while it can in the case of phasons just assuming the absence
of disorder and/or impurities. Following this assumption, the
dispersion relation of the phason mode is given by

ω = − i γ

2
±

√
v2k2 − γ 2

4
. (6)

The real and imaginary parts of the dispersion are shown
in Fig. 2. In the long-wavelength limit, or equivalently for
small wave vectors, the phason is an overdamped mode with
diffusive dispersion,

ω = −iDγ k2 + · · · , Dγ = v2/γ , (7)

and a second nonhydrodynamic damped mode, ω = −iγ , ap-
pears as well. We can then identify a crossover between the
overdamped regime at low k and an underdamped one at large
k, in which the phason mode is propagating with a dispersion:

ω = ±vk − iγ

2
+ · · · . (8)

In such a regime, Re(ω) � Im(ω). More precisely, by equat-
ing the real and imaginary parts of the dispersion, Eq. (6), we
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can find the crossover wave vector, which turns out to be

k� = γ√
2v

, (9)

or equivalently,

ω� = γ

2
. (10)

Notice how this criterion, up to the
√

2 factor, reduces to the
more familiar collisionless limit ωτ � 1.

Additionally, let us notice how the real part develops only
after a certain critical wave vector:

k̄ = γ

2v
, (11)

which is smaller than the crossover scale. In other words,
for k̄ < k < k�, the phason dispersion has a finite real part,
but the phason is still a nonpropagating overdamped mode.
As explained above, for small values of γ the dynamics is
underdamped, Re(ω) � Im(ω). This situation is reversed for
large values of the damping γ . In order to better qualify the
strength of the damping γ , we introduce the frequency scale
ωD = vkD, where ωD and kD are the maximum frequency and
wave vector, respectively, in the system—the Debye scale.
The latter will explicitly enter into the definition of the pha-
son density of states in the next section, Eq. (13). We can
then define a dimensionless damping γ̃ ≡ γ /ωD. With these
notations, the weak damping regime, equivalent to the under-
damped dynamics, is given by the condition γ̃ � 1, while
the overdamped regime is given by the opposite limit. For
simplicity, we will fix, in the rest of this paper, ωD = kD = 1
such that numerically γ̃ = γ apart from their dimensions.
From the Green’s function in Eq. (5), it is straightforward to
derive the corresponding spectral function, which reads

S (ω, k) ≡ lim
ε→0

[
− 1

π
ImG(ω + iε, k)

]

= 1

π

γω

(ω2 − v2k2)2 + γ 2ω2
, (12)

and it is shown in Fig. 3 for two different values of the phason
damping. For small γ̃ , in the underdamped regime, we see the
typical feature of a propagating sound wave. In contrast, for
γ̃ ∼ O(1), we observe an incoherent response characterized
by a flat and smoothed-out spectrum. Notice that at this point
the spectral function in Eq. (12) is not normalized. For the
discussion of the density of states and the heat capacity this is
irrelevant, since we will be only interested in the low-energy
scaling. Nevertheless, for the study of superconductivity, that
is important. Therefore we will later normalize it to compute
the Eliashberg function.

III. DENSITY OF STATES

From the spectral function, Eq. (12), we can derive the
phason density of states using

g(ω) ≡ 2 ω

k3
D

∫ kD

0
S (ω, k) k2 dk, (13)

where kD is taken to be the Debye cutoff, or in other words
the maximum wave vector allowed. Here, and in the rest of

FIG. 3. Phason spectral function, Eq. (12), for small and large
damping γ̃ . The phason speed is fixed to v = 1. The top panel
refers to γ̃ = 0.01, while the bottom one refers to γ̃ = 0.5. The
wave vectors from left to right are k = 0.1, 0.3, 0.5, 0.7, and 0.9,
respectively.

this paper, we only consider the case of a three-dimensional
system.

For small values of the damping, γ̃ � 1, and at small
frequency, we recover Debye’s law

g(ω) ≈ ω2

ω3
D

≡ gD(ω) for γ̃ � 1, (14)

where ωD = kDv is the Debye frequency that serves as an
ultraviolet cutoff for the phason frequency. This result is cer-
tainly not surprising since in the limit of small damping the
phason is a soundlike propagating acoustic wave ω = ±k, as
standard acoustic phonons. Therefore, in such a limit, it just
plays the role of an extra acoustic wave obeying Debye’s law.

When the damping becomes a non-negligible number, γ̃ ∼
O(1), the low-frequency scaling is modified to

g(ω) ≈
√

γ ω3/2

√
2 ω3

D

for γ̃ ∼ O(1), (15)

which can be rewritten as

g(ω) =
√

ω�ω3/2

ω3
D

. (16)

In other words, the Debye scaling is modified as ω2 →√
ω�ω3/2. This also illustrates that the onset of this second
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regime is equivalent to the condition ω� > ω, which becomes
more and more evident when γ̃ becomes large. In the limit
of very large γ̃ , the ω3/2 regime is relegated to very low
frequencies, and a plateau emerges with value

g(ω) ≈ 2

3π γ
for γ̃ � 1. (17)

A constant density of states in three dimensions is exactly
what one expects from a diffusive dynamics (compare clas-
sical liquids, in which g(0) is proportional to the diffusion
constant [77]). In the limit of large γ̃ , the second damped
mode ω = −iγ which appears from Eq. (5) is highly damped
and therefore negligible. The only low-energy mode left is the
diffusive phason, with diffusion constant Dγ , Eq. (7). Using
the expression for the phason diffusion constant, the value of
the plateau in the density of states can be rewritten as

g(ω) ∼ Dγ

v2
for γ̃ � 1, (18)

which is exactly of the same form as the diffusive component
in liquids, where the diffusion constant there is related to self-
diffusion [77].

In summary, the phason density of states interpolates be-
tween the Debye expression for solids and the diffusive result
for liquids by increasing the damping γ . All of these three
different regimes are shown in Fig. 4, where the dashed lines
emphasize the different scalings discussed above.

IV. HEAT CAPACITY

In order to proceed with the computation of the phason heat
capacity, we assume a Bose-Einstein distribution for the pha-
son modes and compute their contribution to the heat capacity
by integrating the density of states (DOS)

C(T ) = c1 kB

∫ ∞

0

(
ω

2kBT

)2

sinh

(
ω

2kBT

)−2

g(ω)dω.

(19)

Here, c1 is a normalization factor which will not play any
important role in our analysis and will be fixed to 1 in the
rest of this paper.

In the limit of small damping, we recover Debye’s law

C(T ) ∝ T 3 for γ̃ � 1, (20)

which is just a consequence of the Debye-like density of states
of the underdamped phasons. For non-negligible values of the
damping, we obtain a slower-than-Debye scaling law

C(T ) ∝ √
γ T 5/2 for γ̃ ∼ O(1). (21)

In the limit of extremely large damping, the previous scaling
is pushed to very small temperature, and the heat capacity
becomes approximately linear

C(T ) ∝ T

γ
∝ Dγ T for γ̃ � 1. (22)

Notice how the damping dependence here is different from the
results of Ref. [35]. There, a finite pinning frequency has been
assumed, and the limit of ω0 → 0 cannot be directly taken.
It would be interesting to understand this difference in more
detail.

FIG. 4. Phason density of states in the three different regimes:
γ̃ � 1, γ̃ ∼ O(1), and γ̃ � 1. For simplicity, we set kD = v = 1 and
we set γ̃ = 10−2, 0.4, and 30 for the top, middle, and bottom panels,
respectively.

Continuing with our analysis, the general trend of the heat
capacity is shown in Fig. 5. The low-temperature scalings for
different values of the phason damping are shown in Fig. 6,
and they confirm the theoretical predictions.

Our results are compatible with the experimental data in
Refs. [43,46], where a quasilinear scaling of the heat capacity
is observed in incommensurate compounds. In the incom-
mensurate dielectric (ClC6H4)2SO2 [43], a scaling C(T ) ∝
T 1.7 is reported. One could probably claim such a number
to appear as a combination of our 5/2 and linear scalings.
In the charge density compound charge-density-wave com-
pound K0.3MoO3, a linear-in-T scaling is observed, as in
our theoretical model in the overdamped limit. Finally, let us
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FIG. 5. Phason heat capacity as a function of the reduced tem-
perature increasing the phason damping. Here, v = 1, kD = 1, and
kB = 1; γ̃ = 0.001, 1, 4, and 10 from top to bottom.

repeat that similar observations regarding a linear-in-T con-
tribution from overdamped modes have already appeared in
Refs. [35,36,43,45] using a slightly different formalism which
includes a phason gap. Our results are in agreement with those
presented there, where they overlap. Importantly, this indi-
cates that overdamped bosonic modes would generally give
a linear-in-T contribution to the heat capacity, independently
of the details of their dispersion.

V. SUPERCONDUCTIVITY

In this section, we imagine the existence of a possible
pairing channel between electrons and phasons, and we try
to estimate how the hypothetical critical temperature would
depend on the phason parameters. For simplicity, we will
only consider an s-wave pairing. Additionally, we will neglect
phonon-phason interactions and the more standard electron-
phonon pairing channel.

We start by defining the Eliashberg function

α2F (k, k′, ω) ≡ N (μ)|gk,k′ |2S(ω, k − k′), (23)

where we assume N (μ) to be constant and g2
q = C(vq)2.

This second assumption, which is valid for acoustic phonons

FIG. 6. Low-temperature scaling of the phason heat capacity in-
creasing phason damping. Here, we set kD = kB = v = 1 and we set
γ̃ = 0.001, 1, 4, 10, and 1000 from top to bottom. Curves are shifted
vertically for clarity.

FIG. 7. The Eliashberg function α2F (ω) as a function of the
frequency upon increasing phason damping. Here, v = kD = 1, c2 =
0.3, and kF = 1/2. γ̃ = 50, 10, 5, 1, 0.5, and 0.1 from brown
(γ̃ � 1) to light blue (γ̃ � 1).

[78,79], is the simplest possibility and hence the one chosen.
After a few algebraic manipulations and averaging over the
Fermi surface, we can rewrite the above expression as

α2F (ω) = c2

∫ 4

0
k2

F ζ S(ω, kF

√
ζ )dζ , (24)

where c2 is a parameter to keep the normalized area∫
α2F (ω)dω = 1 constant. This is equivalent to normalizing

the phason spectral function as discussed in the previous
sections. The integral can be calculated analytically, but the
expression is rather cumbersome and therefore not shown. At
low frequency, the Eliashberg function is linear in frequency:

α2F (ω) ∼ γ ω + · · · . (25)

Interestingly, this linear scaling is observed in amorphous
superconductors [80] (see also Ref. [79]). We can prove that
such a scaling is ubiquitous for overdamped bosonic modes
with a damping term independent of frequency and wave-
vector, such as γ . The behavior of the normalized Eliashberg
function is shown in Fig. 7 for different values of γ̃ . The
effective electron-phason coupling can be estimated as

λ = 2
∫ ∞

−∞

α2F (ω)

ω
dω. (26)

Its dependence on the phason damping is shown in Fig. 8. It
grows monotonically with the damping. This is just a conse-
quence of the transfer of spectral weight to lower frequencies
induced by the phason damping. This shows the possibility
of achieving strongly coupled superconductivity as an effect
of incommensurability and the consequent phason modes, in
agreement with the experimental findings of Ref. [59]. Finally,
using the simplified Allen-Dynes formula [81], we can esti-
mate the corresponding critical temperature

Tc = ωlog

1.2
exp

(
− 1.04 (1 + λ)

λ − u� − 0.62 λ u�

)
, (27)

where ωlog is the logarithmic average defined as

ωlog = exp

[∫ ∞

0

2

λω
α2F (ω) ln ω dω

]
. (28)
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FIG. 8. The effective electron-phason coupling λ as a function
of the phason damping normalized by its value at zero damping.
Here, v = kD = 1, c2 = 0.3, and kF = 1/2. The inset zooms in on
the smaller damping region.

Tc is shown as a function of the phason damping in Fig. 9. In-
terestingly, for small damping, the critical temperature grows
up to a maximum critical value, after which the trend is
inverted. The reason for this nonmonotonic behavior comes
from the competition between the electron-phonon coupling
λ and the average logarithmic frequency ωlog. The first grows
monotonically with the damping (see Fig. 8), while the second
decreases with it, at least for large damping (see Fig. 10).
Therefore Tc, as defined in Eq. (27), displays a nonmonotonic
behavior. For small values of the damping, the effects of λ

dominate and lead to an increase in Tc. For larger values of the
damping, it is ωlog which dominates and leads to a decrease
oin Tc. Interestingly, we find that this change of behavior hap-
pens for γ̃ ≈ 1. This seems to suggest that in the underdamped
regime, the phason damping enhances the critical temperature,
while in the overdamped regime its effect is opposite. This
behavior is similar to that observed for spin glass phase in
cuprates [82] and optical modes in Refs. [83,84], and it is
expected to persist also in the limit of finite pinning frequency,
ω0 �= 0.

FIG. 9. The superconducting critical temperature Tc as a function
of the phason damping. Here, v = kD = 1, c2 = 0.3, kF = 1/2, and
μ∗ = 0.1.

FIG. 10. The average ωlog as a function of the phason damping.
Here, v = kD = 1, c2 = 0.3, and kF = 1/2.

Let us discuss our results in comparison to the existing
literature. First, the strong enhancement of the effective cou-
pling visible in Fig. 9 is compatible with the experimental
observations in Ref. [59], where the strongly coupled nature of
superconductivity has been ascribed to the phason mode and
its redshifted spectral weight, as a consequence of its over-
damped nature. Second, recent theoretical analysis [60] has
shown that incommensurability can provide an enhancement
of the superconducting critical temperature, but only in the
regime of weak or intermediate coupling. Our findings offer a
different but compatible interpretation of the same fact. Pha-
sons, and in particular phason damping, enhance the critical
temperature Tc only in the regime of small damping (i.e., the
underdamped regime), in which the Eliashberg coupling is not
too large (see Fig. 9), as advocated in Ref. [60].

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have studied in detail the effects of phason
modes on the vibrational, thermodynamic, and superconduct-
ing properties of incommensurate structures. For simplicity,
we have worked in the limit in which the phason pinning
frequency is negligible compared with its damping. Our anal-
ysis revealed several interesting features which appear, at least
qualitatively, compatible with the existing experimental data
and other theoretical studies in the literature.

We have confirmed that overdamped phasons, or, more
generally, overdamped excitations, induce glassylike features
in the heat capacity and, in particular, a pronounced linear-
in-T contribution, which is proportional to their diffusive
constant and more evident in the limit of very large damp-
ing. We have also found an intermediate scaling regime,
which combined with the linear scaling emerging at large
damping, could explain the quasilinear behaviors observed ex-
perimentally in certain incommensurate compounds [43,46].
Interestingly, our results not only confirm the previous the-
oretical studies in Refs. [34–36] but also suggest a different
scaling of the linear-in-T contribution with the phason damp-
ing. The discrepancy is due to the different limits taken. In
particular, we assume from the start that the pinning frequency
is negligible, while the works referred to above do not. It
would be interesting to investigate this point further.
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Moreover, inspired by the results in Refs. [57,58], we have
investigated a hypothetical phason-induced superconductiv-
ity using the Eliashberg formalism and treating naively the
phasons as if they were standard phonons. Despite the sim-
plicity of our assumptions, which certainly necessitate further
validation in the near future, we have been able to extract
several interesting features which appear to be in agreement
with recent observations. First, we have shown that, because
of the overdamped nature of phasons (which is usually not the
case for phonons, unless in situations with very strong anhar-
monicity), the effective coupling can be strongly enhanced,
leading to strongly coupled superconductivity. Similar re-
sults, and experimental verifications, have been presented in
Ref. [59] for the quasiperiodic host-guest structure of el-
emental bismuth at high pressure, Bi-III. Additionally, we
have predicted a nonmonotonic behavior of the supercon-
ducting critical temperature Tc as a function of the phason
damping. The maximum in Tc appears approximately at the
underdamped-to-overdamped-crossover scale, indicating that
only underdamped phasons contribute positively to supercon-
ductivity. Qualitatively, this finding is in agreement with the
recent results in Ref. [60], since the underdamped regime
corresponds to the range of weak or intermediate effective
coupling λ. This observation deserves further studies.

We foresee several improvements to our setup and ar-
guments against its simplicity. As a concrete example, we
have been completely agnostic about the microscopic details
of a possible phason-electron coupling, and even about the
possibility that the latter exists. Preliminary studies of the
phason-electron coupling in twisted bilayer graphene have ap-
peared in Refs. [22,57,58] and suggested that at least for such
a scenario the pairing mechanism might be more complicated
than what we have modeled (e.g., dependent on the twist angle
θ , etc.). Additionally, we have ignored the effects of phonon-
phason interactions and the fact that the dispersion relation of
moiré phonons and their coupling to electrons could also be
strongly modified.

On the other hand, it is important to identify some exper-
imentally detectable distinctions between phonon-mediated
and phason-mediated superconductivity. Searching for vio-
lations of the isotope effect is a viable option. As shown
in the previous section, the pairing ability of the phason is
maximal for values of the damping of O(1). In the presence
of such large friction, the long-wavelength phason is not a
propagating mode, like the vibrations of a harmonic lattice,
but is rather a diffusivelike overdamped excitation. Therefore
we do not expect its frequency to have a simple relation, or
even any relation, with the atomic mass. This would imme-
diately imply the violation or absence of the isotope effect in
phason-mediated superconductivity, which is testable in the
laboratory.

Despite the simplicity of our analysis, and the bold as-
sumptions, we believe that this might constitute a baby step
towards a deeper understanding of phason properties and
their effects on thermodynamics, transport, and supercon-
ductivity, which are potentially relevant for a large class of
quantum materials, joined under the umbrella of incommensu-
rate structures. We expect more and more signatures of these
overdamped modes to appear in the near future. It would be
important to think about possible measurable effects arising

from the presence of an overdamped phason mode. The anal-
ysis of the diffusive dynamics of charge order might be a good
place to start [85,86]. It is also important to think about a
possible universality regarding the emergence of glassy prop-
erties from overdamped and soft bosonic modes. This could
bring together apparently different scenarios such as amor-
phous systems, incommensurate structures, strange metals,
thermoelectrics or materials with rattling modes, and systems
exhibiting giant anharmonicity.

Finally, in the context of twisted bilayer graphene or other
two-dimensional (2D) heterostructures, it would be interesting
to understand whether phasons could mediate the formation of
polarons or excitons and drive the emergence of the strongly
insulating states in 2D bilayer systems.
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APPENDIX A: COMPARISON WITH THE HEAT
CAPACITY OF A DAMPED HARMONIC OSCILLATOR

In 1987, Pippard computed the entropy of a damped har-
monic oscillator using an analogy with the physics of RLC
circuits [87]. The final result of such an analysis, based on
classical physics, is that the entropy of a damped harmonic
oscillator is given by

S = kBQ

π

∫ ∞

0

(x2 + 1)[βx coth(βx) − ln (2 sinh(βx))]
x2 + Q2(x2 − 1)2

dx,

(A1)

where β = ω̄/2kBT (with ω̄ being the characteristic fre-
quency of the harmonic oscillator), and Q is the quality factor
Q = ω̄/γ , where γ is the damping parameter. In particu-
lar, by decreasing the value of Q, the harmonic oscillator
passes from being underdamped to overdamped. Using the
above expression for the entropy, one can compute the heat
capacity using

C(T ) = T
∂S

∂T
. (A2)
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FIG. 11. The heat capacity of a damped harmonic oscillator
obtained from Pippard’s analysis [87] for different values of the pa-
rameter Q. For simplicity, here kb = ω̄ = 1. The dashed line indicates
the linear-in-T scaling.

The results of this simple computation are shown in Fig. 11,
where the heat capacity as a function of temperature is plotted
for different values of the parameter Q. Interestingly, we ob-
serve a clear linear-in-T regime at low temperature. The range
in which this scaling appears becomes smaller by decreasing
Q. This is compatible, at least qualitatively, with our results,
in which an overdamped phason also gives rise to a linear-
in-T contribution to the heat capacity. It would be interesting
to explore further the relation between our results and Pip-
pard’s computations [87]. Notice that our computation relies
on the quantum bosonic nature of the phason excitations at
low temperature, while Pippard’s analysis is purely classical.
Interestingly, a linear-in-T heat capacity has been obtained
as well for a damped quantum oscillator in Ref. [88]. This
strongly hints towards the universality of this behavior in the
context of overdamped modes.

APPENDIX B: OVERDAMPED PHASON
WITH RESTRICTED MOBILITY

In high-pressure bismuth [59] and other host-guest struc-
tures, the phason dispersion appears to be 1D-like with a
strong dispersion along the chains but flat dispersion perpen-
dicular to the chains. Therefore, in this Appendix, we find
it interesting to repeat our computation by considering an
overdamped phason mode which propagates only in some of
the three spatial directions. This amounts to modifying the
equation for the density of states as

g(ω) ∝
∫ kD

0

γω(
ω2 − ω2

0 − v2k2
)2 + γ 2ω2

kn dk, (B1)

where n = 0, 1, and 2 correspond to 1D, 2D, and 3D propagat-
ing phasons, respectively, and we have added a bare energy ω0

to take into account the flat dispersion in the other directions.
By analytically expanding the above expression in the over-
damped regime, defined as γ being much larger than every
other frequency scale, we obtain that the vibrational density of
states at low frequency is constant, and indeed proportional to
1/γ , independently of n. That is to say that, independently of
the 1D, 2D, or 3D nature of the overdamped phason, in such
a regime, the overdamped phason will always contribute to
the heat capacity with a linear-in-T term, which is in principle
observable in experiments. Let us also emphasize that in the
overdamped limit, γ � ω0 and therefore an optical-like and a
propagating phason would give exactly the same result. This
is compatible with the results obtained in the main text and
the comparison with those of Ref. [35], where a bare energy
(or pinning frequency) ω0 for the phason is considered. The
main difference in the presence of a finite ω0 is the appearance
of a boson-peak-like feature at larger energies (see Ref. [35]
for details). If we insist on ignoring the energy gap ω0 and
we set it to zero from the start, then for intermediate values
of the damping coefficient we find that g(ω) ∝ ω(n+1)/2 and
C(T ) ∝ T (n+1)/2+1, where n + 1 is the number of spatial di-
rections along which the phason propagates.
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