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Quantum oscillations (QOs) describe the periodic variation of physical observables as a function of inverse
magnetic field in metals. The Onsager relation connects the basic QO frequencies with the extremal areas of
closed Fermi surface pockets, and the theory of magnetic breakdown explains the observation of sums of QO
frequencies at high magnetic fields. Here we develop a quantitative theory of difference-frequency QOs in two-
and three-dimensional metals with multiple Fermi pockets with parabolic or linearly dispersing excitations.
We show that a nonlinear interband coupling, e.g., in the form of interband impurity scattering, can give
rise to otherwise forbidden QO frequencies which can persist to much higher temperatures compared to the
basis frequencies. We discuss the experimental implications of our findings for various material candidates, for
example multifold fermion systems, like CoSi, and the relation to magneto-intersubband oscillations known for
coupled two-dimensional electron gases.
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I. INTRODUCTION

Quantum oscillation (QO) measurements have been a stan-
dard tool to determine electronic properties of metals since
their discovery in bismuth by de Haas and van Alphen in
1930 [1]. QOs were first reported in the magnetization, but
soon afterward magnetotransport measurements, known as the
Shubnikov–de Haas effect, proved to be quantitatively similar
[2] as both originate from the discreteness of Landau levels of
electrons in a magnetic field [3]. Onsager later realized that the
oscillation frequency of the magnetization or the conductivity
as a function of the inverse magnetic field is directly related
to the metal’s Fermi surface [4], before Lifshitz and Kosevich
(LK) completed the canonical theory of QOs by connecting
the temperature dependence of the amplitude of QOs to the
effective mass of the electrons [5]. Hence, QO measurements
can detect the size of even tiny Fermi pockets, the effective
mass of electrons, and the scattering rate via the Dingle tem-
perature [6].

Deviations to the standard theory of QOs are rare and ex-
otic. For example, the observation of anomalous QOs in bulk
insulators [7–11] and heterostructures [12–15] is believed to
be a result of strong electron correlations and has recently led
to a flurry of new theoretical proposals beyond the standard
LK theory [16–22]. In contrast, it is well established and long
understood that QO frequencies beyond the simple Onsager
rule can appear in strong magnetic fields [23,24] where the
basic semiclassical description of electrons, simply traveling
along the edge of the cross-sectional area of the Fermi surface,
breaks down and tunneling between distinct Fermi pockets
becomes important [25]. In this magnetic breakdown theory a
whole zoo of combinations of frequencies can arise, depend-
ing strongly on the gaps between different semiclassical orbits
and Berry phase effects [26].

A new QO frequency appears, for example, in type-II Weyl
semimetals associated with the difference of two electron-

and hole-type Fermi surface areas [27–29], which can be
understood via magnetic breakdown in the form of Klein tun-
neling between the counterpropagating semiclassical orbits.
However, not all possible combinations of frequencies appear
within the semiclassical breakdown theory; e.g., a difference
frequency originating from two parallel electron-like (or two
hole-like) pockets, see Fig. 1(c), seems impossible.

In this work we study the effect of nonlinear interband cou-
pling on the oscillating part of the conductivity in multiband
metals. We show in detail how interband impurity scattering
can lead to sum and difference frequencies in the Shubnikov–
de Haas effect. Unlike magnetic breakdown, the appearance
of these frequencies is not induced by the magnetic field but
triggered by self-energy effects originating from the nonlinear
coupling of distinct Landau quantized pockets. Remarkably,
the emerging difference frequency is often only weakly tem-
perature damped such that it can persist to much higher
temperatures then its semiclassical basis frequencies.

In the context of two-dimensional (2D) electron
gases (2DEGs) a related phenomenon, dubbed magneto-
intersubband oscillations, has been studied previously
[30–32]. The unusual temperature stability is in accordance
with experimental observations on 2DEGs [33–35] and has
also been predicted to appear in quasi-2D, layered metals
[36–39]. Here, we generalize the theory of QO difference
frequencies to generic parabolic and linearly dispersing band
structures and establish that they even appear for isotropic 3D
systems, which is of experimental relevance to a number of
materials classes, e.g., multifold fermion systems [40–43], as
very recently observed in CoSi [44].

II. SUMMARY OF RESULTS

A. Summary and review

We consider generic two-band Hamiltonians in 2D and 3D;
the exemplary band structures are shown in Figs. 1(a) and
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FIG. 1. We consider generic two-band models in 2D and 3D
with either parabolic bands with effective masses m1 and m2, panel
(a), or relativistic bands with Fermi velocities v1 and v2, panel (b).
Panel (c) shows the extremal cross section of the two resulting Fermi
surface pockets (in 3D for fixed kz). The two Fermi surfaces give rise
to two distinct basic QO frequencies F1 and F2. A new difference
frequency with F1 − F2 appears via interband impurity scattering of
strength β (the intraband scattering αλ leads to a standard Dingle
suppression). Panel (d) shows schematically the expected Fourier
spectrum of the oscillating part of the conductivity for our effective
two-band systems. Remarkably, the difference frequency F1 − F2 is
stable for increasing temperature.

1(b). The common feature of our models is the existence of
two Fermi surfaces; see Fig. 1(c). Note that we do not expect
any magnetic breakdown between the two pockets because the
velocity of the semiclassical orbits has only parallel compo-
nents. The key ingredient for the appearance of a difference
frequency is a nonlinear coupling of the bands which we study
in terms of generic impurities. In addition to the standard in-
traband scattering channels α, the interband β channel allows
electrons to scatter between the two distinct Fermi surfaces;
see Fig. 1(c). We concentrate on short-ranged impurities,
which permit an analytical calculation of the conductivity and
capture the main contribution for dominant s-wave scattering.

The emergence of sum and difference frequencies can be
seen by considering the generic formula of the conductivity

σ =
∫ ∞

−∞
dε[−n′

F (ε)]σ̂ (μ + ε), (1)

which can be expressed as a convolution of the derivative of
the Fermi distribution function −n′

F (ε) = 1
4T cosh2(ε/2T )

(with
chemical potential μ and temperature T ) and the conduc-
tivity kernel σ̂ (E ). The kernel includes a sum of various
contributions from the two bands and different harmonics.
Concentrating on the oscillating components only, one can
write each as a product of a nonoscillating term g and an

oscillating function [6] as

σ̂ (E ) = cos[ f (E )]g(E ). (2)

In this expression f (μ) = 2πF/B + φ includes the depen-
dence on the cross-sectional area of a Fermi pocket F (μ) and
a phase φ.

First, let us recall how to obtain the canonical LK result
for QOs via Eqs. (1) and (2). Using the fact that the chemical
potential μ is large compared to the temperature, one expands
the kernel in a region kBT around E = μ. The resulting inte-
gral can be evaluated analytically, see Appendix A, and one
finds the standard behavior

σ = cos[ f (μ)]g(μ)RLK(π f ′(μ, T )) (3)

with the famous LK temperature dependence

RLK(χ ) = χ

sinh χ
. (4)

We note that higher orders in the expansion kBT/μ can lead
to non-LK behavior as we discuss in Appendix A.

Next, let us discuss the appearance of a difference fre-
quency via impurity scattering. Intraband contributions can
lead to oscillations in the normally assumed to be nonoscil-
lating prefactor g, as well as to oscillations of the chemical
potential [37,45]. However, the quantities always oscillate
with the same frequency F as the basic QO; i.e., their oscilla-
tions depend on the cross-sectional area of the Fermi surface
associated with the same band. Therefore, these perturbative
effects can only change the nonuniversal part of the amplitude
of the QOs.

The key observation is that due to the interband scattering
channel β the quantities g and μ can also oscillate with the
frequency associated with the other Fermi pocket. Thus, the
basic oscillations of the conductivity in Eq. (2) are modulated
by the oscillations of g. In the second harmonic this leads to
two new frequencies: the sum and the difference of the two
basis frequencies

σ± ∝ cos

(
2π

F1 ± F2

B

)
RD1RD2RLK

(
2π2 m1 ± m2

eB
T

)
, (5)

which is the main result of our work. Note, the sum and dif-
ference frequencies resemble the standard LK form with the
generic damping factor RLK(2π2( ∂F1

∂μ
− ∂F2

∂μ
) T

B ), and both are
a second-order effect in the Dingle factor RD, which describes
damping from impurity scattering as discussed below. Hence,
their Dingle temperature is in either case a sum of the two ba-
sis Dingle temperatures, weighted with their effective masses.
Strikingly, the difference frequency can persist to much higher
temperatures than the basis frequencies. Following Eq. (5) the
sum and difference frequencies decay for parabolic bands with
the sum and the difference of the effective masses of the two
bands. If the effective masses around the Fermi energy are
equal, e.g., the difference of the cross-sectional areas of the
Fermi surfaces does not change as a function of the chemical
potential, the difference frequency acquires no temperature
smearing at all. Note that the temperature dependence of sum
and difference frequencies inverts for coupled electron/hole
pockets.

For relativistic dispersions with Dirac/Weyl-like excita-
tions, similar expressions to Eq. (5) are obtained. For these
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linearly dispersive bands with Fermi velocity vλ the difference
frequency remains however slightly temperature dependent
even for equal Fermi velocities. The reason for this is the
quadratic dependence of the extremal cross section of the
Fermi surface on the chemical potential.

We note that beyond second order in the Dingle factor
higher combination frequencies can appear. Any integer com-
bination k1F1 + k2F2 with k1, k2 ∈ Z is allowed and comes
with the Dingle factors of R|k1|

D1 R|k2|
D2 . Strikingly, all combina-

tions with negative k1, k2, including the difference frequency,
are absent to leading order in the density of states and there-
fore also in the de Haas–van Alphen effect.

B. Relation to earlier work

The insight that interband scattering can lead to a sizable
temperature-stable difference frequency in the conductivity is
well known for 2DEGs [30–32]. Furthermore, similar effects
are known to appear in quasi-2D layered parabolic metals
[36–39], where impurities couple the different layers. Systems
where nearly equal effective masses have lead to the obser-
vation of a temperature-stable difference frequency include
GaAs heterostructures [33–35,46–48], metals with bilayer
crystal structure [49,50], and organic metals [51]. Here, we
first extend the 2D theory to Dirac systems with linear dis-
persions. The second and main new finding of our work is
to establish that difference-frequency oscillations may also
appear for isotropic 3D systems with generic dispersions.
Our work provides a framework for the theory of difference-
frequency QOs being applicable to generic band structures in
any dimension. We also provide qualitative arguments for the
behavior of higher harmonic frequencies and their unusual
temperature dependencies.

C. Outline

The remainder of our work is organized as follows: In
Sec. III we first rederive the oscillating part of the conductivity
for parabolic dispersions in 2D and obtain similar results as
Ref. [31]. We discuss in detail the interband scattering con-
tribution to the self-energy, before we generalize the results
to 3D. In Sec. IV we proceed with analogous calculations for
relativistic fermions, e.g., effective descriptions of Dirac and
Weyl/multifold fermion materials. In Sec. V we show that
the difference frequency is to leading order absent in the de
Haas–van Alphen effect. Finally, in Sec. VI we conclude with
a discussion of our results and present exemplary 3D and/or
Dirac materials in which we expect a temperature-stable dif-
ference frequency to be observable.

III. PARABOLIC DISPERSIONS

A. Two dimensions

QOs in the conductivity can be seen in nearly every known
metal disregarding its specific features like interactions or
spin-orbit coupling. Hence, our models should be seen as
effective descriptions of the excitations around the Fermi en-
ergy which emerge after incorporating all microscopic details.
For simplicity we start by considering a generic two-band

Hamiltonian

H =
∑
k,λ

ελ(k)c†
k,λ

ck,λ +
∑

r

U (r)c†
r �cr (6)

in 2D. The quadratically dispersive bands λ with dispersion
ελ(k) = k2

2mλ
− Wλ have different effective masses mλ and are

shifted with respect to each other by W1 − W2; see Fig. 1(a).
They can in principle also be shifted in momentum space
with respect to each other, modeling different electron or hole
pockets. The electrons cr = (cr,1, cr,2)T can scatter on impu-
rities located at positions ri. The impurities are distributed
randomly and uniformly such that the systems remains on
average translationally invariant which we model by the short-
ranged potential U (r) = U0

∑
ri

δ(r − ri ). The key ingredient
is the scattering vertex � which has intraband channels αλ and
an interband channel β,

� =
(√

α1
√

β√
β

√
α2

)
, (7)

and allows electrons to scatter between the distinct Fermi sur-
faces. The dimensionless numbers

√
αλ and

√
β quantify the

effective scattering rates and we have absorbed the complex
phase of

√
β in the definitions of c and c†. The following

calculation follows similar steps as in Ref. [31].
In order to study QOs, we introduce a quantizing magnetic

field B = Bêz, perpendicular to the 2D system. The vector
potential is chosen in the Landau gauge A = (−By, 0, 0)T.
Peierls substitution leads to Landau levels (LLs) for each band
of the form ελ(l ) = ωcλ(l + 1

2 ) − Wλ where the cyclotron
frequency is ωcλ = eB

mλ
. The field operators now carry the

following quantum numbers: band index λ, LL index l , and
the trivial momentum kx. The wave functions are the usual
ones of a shifted harmonic oscillator at y0 = kx

eB .

1. Conductivity

Our objective is to compute QOs in the conductivity and to
proceed analytically we concentrate on the transversal com-
ponent σxx. Following the Kubo formula [52] the conductivity
kernel appearing in Eq. (1) is given by

σ̂xx(E ) = e2

πLxLy
Trl,kx,λ[vxIm G(E )vxIm G(E )], (8)

where G(E ) is the retarded, impurity-averaged Green’s func-
tion Gλ,l (E ) = [E − ελ(l ) − �λ(E )]−1 and vx is the velocity
operator. For short-range impurity scattering, the self-energy
�λ does not depend on any of the electron quantum numbers
except the band index λ; see Sec. III A 2. Furthermore, we
assume in the notation for G that the self-energy remains diag-
onal in the band index λ which is an approximation discussed
below in Sec. III A 2.

In order to reduce the complexity of the notation in
this paper, we will use the dimensionless energy ξλ = E+Wλ

ωcλ

which will always appear together with the real part of the
self-energy and define ξ�

λ = ξλ − Re �λ/ωcλ. Note, because
the Fermi distribution function n′

F (ξ ) is strongly peaked in
a region kBT around μ, and as μ/ωcλ � 1, we may take
ξ�
λ → ∞ for all integration boundaries. Furthermore, we de-

note the imaginary part of the dimensionless self-energy by
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�λ = − Im �λ

ωcλ
and introduce λ̄ which takes the value 2 (1) if λ

is 1 (2).
Inside a magnetic field the velocity operator is quantized as

vx =
√

eB√
2mλ

(a† + a), where a† and a are the ladder operators of
the shifted harmonic oscillator. After evaluation of the trace
the conductivity kernel is

σ̂xx(E ) = σ0
N�

2LxLy

∑
λ,l=1

lIm Gλ,l (E )Im Gλ,l−1(E ), (9)

with σ0 = 2e2
/π. The sum over Landau levels can be trans-

formed into a sum over harmonics using the standard Poisson
summation formula

∞∑
l=0

f (l ) =
∞∑

k=−∞

∫ ∞

0
dx e2π ikx f (x). (10)

The resulting integral can be solved exactly by extending the
lower boundary to −ξ�

λ → −∞ and then performing complex
contour integration. The final conductivity kernel takes the
form

σ̂xx(E ) = σ0

∑
λ

ξ �
λ |�λ(ξ )|

1 + 4�λ(ξ )2

×
(

1 + 2
∞∑

k=1

(−1)k cos(2πkξ�
λ )Rλ(ξ )k

)
. (11)

The conductivity can then be expanded as a power series in
the damping factor

Rλ(ξ ) = exp [−2π |�λ(ξ )|]. (12)

The standard canonical QOs can now be recovered by
setting Im �λ to a constant, the empirical Dingle temperature
TD,λ, such that Rλ(ξ ) becomes the well known Dingle damp-
ing factor [6]

RD,λ = exp

(
−2π2 TD,λ

ωcλ

)
. (13)

One would then follow our discussion in Sec. II [Eq. (2) to
Eq. (3)] to evaluate the convolution with the Fermi distribution
function Eq. (1) to obtain QOs of the well known LK form,
which are also in accordance with the semiclassical Onsager
relation. In the next section we will go beyond the simple
assumption that the self-energy is a mere constant, but show
that it can acquire oscillations with two basis frequencies due
to interband impurity scattering.

2. Self-energy

In general, impurities lead to spectral broadening of the
LLs captured by the band-dependent Dingle temperatures TD,λ

which are normally of the order of a few kelvins. We will
show in the following that the band-dependent self-energy can
acquire oscillations with the frequencies associated with both
Fermi surfaces.

To calculate the self-energy we use the self-consistent
Born approximation (SCBA). A graphical representation of
contributing irreducible diagrams is shown in Fig. 2. The first-
order contributions are scattering events on a single impurity.
Already at this level it is obvious that the interband channels

(a) Σλ = √
αλ

+
λ√

αλ
√

αλ

+
λ̄√

β
√

β

(b) Σλλ̄ = √
β

+
λ√

αλ
√

β
+

λ̄√
β

√
αλ̄

FIG. 2. The irreducible diagrams contributing to the self-energy
up to second order. Circular (quadratic) vertices denote intraband
(interband) scattering events, stars the impurities. Panel (a) shows the
diagonal contributions to the self-energy �λλ ≡ �λ whereas panel
(b) shows the off-diagonal contributions which are suppressed and
hence neglected in the following.

of the scattering vertex lead to a nondiagonal self-energy; see
Fig. 2(b). This is due to the fact that the impurities do not
conserve the quantum number λ.

The central approximation we do in order to make ana-
lytic progress is to neglect the off-diagonal elements of the
self-energy, �λλ̄ = 0, which is at least in the limit TD,λ

|W1−W2| 

1 rigorously justified [31]. The main idea is that only the
Landau levels in a range TD around the Fermi energy are
relevant for transitions. The off-diagonal elements couple
Landau levels well split in energy, rendering their effect on
the Green’s function irrelevant. Hence, the effect of the first-
order diagrams can be incorporated by simply renormalizing
Wλ − nimpU0

√
αλ → Wλ. The second-order contributions are

double-scattering events on a single impurity. Due to the ran-
dom and uniform distribution of the impurities the self-energy
can be expressed as an integral

�λ = nimp
U 2

0

LxLy

∫
d2r[αλGλ(r, r, ξ ) + βGλ̄(r, r, ξ )], (14)

with the full Green’s function in real space defined by

Gλ(r, r′, E ) =
∑
l,kx

�∗
λ,l,kx

(r′)�λ,l,kx (r)

E − ελ(l ) − �λ(E )
(15)

and the electron wave function given by

�λ,l,kx (r) = eikxx

√
Lx

ψl (y − y0). (16)

Here, ψl (y − y0) are the eigenfunctions of a harmonic oscilla-
tor located at y0 = kx

eB . An explicit calculation of the Green’s
function for r = r′ can now be carried out, see Appendix B 1,
and it turns out to be spatially invariant,

Gλ(r, r, ξ ) = −i
mλ

2

(
1 + 2

∞∑
k=1

(−1)ke2π ik[ξ�
λ+i�λ(ξ )]

)
. (17)

The evaluation of the spatial integral in Eq. (14) is therefore
trivial. Equation (17) can be obtained from Eq. (15) by using
the summation over kx to integrate out the dependence on
the wave function and transforming the sum over LLs l by
Poisson summation to a sum over harmonics.

Motivated by the fact that the Dingle temperature TD,λ

is a measure of the total interactions in the system, we set
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FIG. 3. Damping factor of the difference frequency for parabolic bands with various values of �m = m1 − m2, panel (a), and relativistic
bands with various values of �v2 = v2

2 − v2
1 , panel (b). For parabolic bands the damping factor becomes independent of temperature for

equal effective masses �m = 0. In the relativistic case we set for this plot W2 = 0 and W
μ

= 1
20 , such that the damping factor remains slightly

temperature dependent for equal Fermi velocities �v2 = 0. It becomes however independent of temperature for �v2 = W1
μ

.

πTD,λ = |〈Im �λ〉|. Additionally, we introduce α̃λ and β̃λ as
weights of the different contributions (consider them as renor-
malized values of α and β; see Appendix B 1 for details) and

for convenience an operator A with the property Axλ = xλ̄A
and A = 1 if it is all the way to the right.

In this compact notation, we obtain the self-consistent
equations for the self-energy

|Im �λ(ξ )| = πTD,λ

[
1 + (α̃λ + β̃λA)

∞∑
k=1

(−1)k cos(2πkξ�
λ )Rλ(ξ )k

]
, (18)

Re �λ(ξ ) = πTD,λ(α̃λ + β̃λA)
∞∑

k=1

(−1)k sin (2πkξ�
λ )Rλ(ξ )k. (19)

Although Eq. (18) and Eq. (19) still need to be solved for �λ,
they already show an intriguing property of the self-energy:
the self-energy of an electron of type λ oscillates not only with
the basis frequency which is dictated by its own Fermi energy
(the α̃λ contribution) but also with a frequency associated with
the respectively other Fermi surface (the β̃λ contribution).
This contribution is solely a result of interband scattering,
which provides the nonlinear coupling.

The self-consistent equations (18) and (19) can be solved
by iterative insertion in the strong-damping limit RD,λ 
 1
which translates to TD,λ � ωcλ. However we argue that all re-
sults hold also qualitatively in the limit where RD,λ approaches
1. This seems reasonable since higher-order effects are simply
additive and therefore may change amplitude and phase fac-
tors of the oscillations but will not change the frequencies or
their dependence on temperature.

3. Quantum oscillations and temperature smearing

We now solve the self-consistent equations for the self-
energy up to second order in RD,λ. Then we insert our findings
in the conductivity kernel Eq. (11) keeping only terms up to
the second harmonic, i.e., second order in RD,λ.

At second order the interference of the various oscillating
quantities leads not only to a change of the nonuniversal
amplitudes but also to new frequencies. More precisely, the

oscillations of the conductivity kernel interfere with the oscil-
lating Dingle factor, an oscillating prefactor, and an oscillating
contribution to the chemical potential. Since these oscillations
all originate from oscillations of the self-energy, there is an
interference of F1 with F2, which appears as oscillations of
the form cos(2π [ξ1 ± ξ2]).

Various frequencies contribute to the conductivity but they
all follow the generic description of Eq. (2) such that the eval-
uation of the integrals can be carried out. The evaluation of the
convolution with n′

F , see Eq. (1), leads to a LK temperature
damping following Eq. (3) (see also Fig. 3); details are given
in Appendix A.

Neglecting all nonoscillatory terms, the final result in 2D
then reads

σxx

σ0
=

∑
λ

A1Fλ cos

(
2π

μ + Wλ

ωλ

)
RD,λRLK

(
2π2 T

ωλ

)

+
∑

λ

A2Fλ cos

(
4π

μ + Wλ

ωλ

)
R2

D,λRLK

(
4π2 T

ωλ

)

+ A+ cos

(
2π

μ + W+
ω+

)
RD,1RD,2RLK

(
2π2 T

ω+

)

+ A− cos

(
2π

μ + W−
ω−

)
RD,1RD,2RLK

(
2π2 T

ω−

)
,

(20)
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where ω−1
± = ω−1

1 ± ω−1
2 , μ+W±

ω±
= μ+W1

ω1
± μ+W2

ω2
, and the

nonuniversal amplitudes A = A(μ) are evaluated at the Fermi
energy/chemical potential and are presented in Eq. (B14) to
Eq. (B18) of Appendix B. As expected the sum and difference
frequencies are only present for nonzero interband scattering
A± ∝ β.

We note that our results are in agreement with previous
calculation on magneto-inter-subband oscillations for 2DEGs
[30,31,33]. So far, our calculations are mainly a generalization
from previous derivations as we considered different effective
masses. In the remainder of this paper we establish that similar
results hold also true in isotropic 3D metals and for relativistic
dispersions.

B. Three dimensions

The 2D calculations can be easily generalized to a generic
three-dimensional metal. The cross section of a Fermi surface
of a 3D metal may be complicated such that for simplicity
we assume that there exist only two electron or hole pockets
between which electrons can be scattered by a channel β.
Note that within the second-order SCBA this treatment can be
easily generalized to multiple electron/hole pockets. We ex-
pand around the Fermi pockets assuming a local, rotationally
symmetric, quadratic dispersion such that momenta should be
understood as crystal momenta with respect to the center of
the Fermi pockets. The Hamiltonian is again given by Eq. (6)
but with three-dimensional momenta.

The dispersion of the LLs is now continuous in the z di-

rection ελ(l, kz ) = ωcλ(l + 1
2 ) + k2

z

2mλ
− Wλ. We can now show

that the effect of the kz dependence of the dispersion only
results in an additional phase of the QOs, similar to the canon-
ical LK theory; see, e.g., Ref. [6].

In 3D the wave function includes now the additional factor
eikzz/

√
Lz but G(r, r, ξ ) remains spatially invariant. We can

simply change our equations from the 2D case to describe the

3D model by transforming Wλ → Wλ − k2
z

2mλ
and integrate over

kz momenta. The resulting integrals are of the form∫ √
ξ

−√
ξ

dx(ξ − x2)ne2π i(ξ−x2 ) = Jn(ξ ). (21)

Using the usual approximation of a large Fermi energy ξ � 1
it can be shown that Jn(ξ ) = ξ n√

2
e2π iξ−i π

4 , see Appendix C 1,
where in general the phase consists of a variety of contribu-
tions making it nonuniversal. Details of the full calculation
are presented in Appendix C.

The final result for the conductivity in 3D resembles the
2D one, Eq. (20), with different nonuniversal amplitudes A
and an additional phase φ inside the cos terms; see Eq. (C6)
for the full expression of the QO or Table I for a summary.
We can conclude that sum and difference frequencies of two
Fermi pockets are observable as long as the Fermi pockets are
sufficiently strongly coupled.

IV. RELATIVISTIC DISPERSIONS

A. Double Weyl model in 2D

A material class, which has all ingredients for temperature-
stable difference frequencies, are multifold fermion systems
[40–42]. In these, bands which are parallel within a large

region of the Brillouin zone arise out of symmetry arguments,
e.g., in representatives of space group 198 [40]. However,
the quasiparticles near the Fermi energy are often relativistic,
hence possess a linear energy-momentum dispersion. In this
section we show that sum and difference frequencies also
emerge in this situation and follow the general form of Eq. (3).

We first consider a model which consists of two Weyl cones
labeled by λ = 1, 2 in 2D. The Hamiltonian can be written in
the pseudospin basis, {�}, and in the band basis, {�}, as

H0 =
∑
k,λ

�†
k,λ

(vλτ · k − Wλ1)�k,λ

=
∑

k,σ=±,λ

ελ,σ (k)�†
k,σ,λ

�k,σ,λ, (22)

with εσ,λ(k) = σvλ|k| − Wλ, τi are the Pauli matrices i = x, y,
and the subband index σ = ±1 labels the two subbands of
each Weyl cone. The two cones are shifted in energy by W1 −
W2; see Fig. 1(b). The extremal cross-sectional Fermi surface
looks the same as for quadratic bands in 2D or 3D (for fixed
kz); see Fig. 1(c). Note that we refer to the band structure as
double Weyl cones, but it equivalently applies for all other
linearly dispersive band structures, e.g., Dirac cones or band
structures which can be effectively described by the double
Weyl model around the Fermi energy.

The LLs of relativistic electrons are not equidistant but
follow εσ,λ(l ) = σωcλ

√
l − Wλ where the cyclotron frequency

ωcλ = vλ

√
2eB now depends on the Fermi velocity vλ [53].

Their wave functions are symmetric and antisymmetric su-
perpositions of neighboring harmonic oscillator levels with
different pseudospin; see Eq. (26).

As above, we add impurities to the system by adding a
scattering potential

U =
∑

r

U (r)�†
r,σ,λ

(�λ,λ′ ⊗ δσ,σ ′ )�r,σ ′,λ′ (23)

to the Hamiltonian H = H0 + U . The scattering vertex � ⊗ 1

[with � from Eq. (7)] features intracone intraband scattering
(α channels) and intercone scattering (β channel) but does
not have any intracone intersubband channels. The choice of
a trivial intracone intersubband vertex is motivated by the
graphene literature [45] and simplifies the calculation of the
self-energy. As before, our central assumption in the analyt-
ical derivation will be that the self-energy remains diagonal
in the cone index λ neglecting off-diagonal elements of the
self-energy.

1. Conductivity

The calculation of the conductivity for Weyl cones differs
from that of parabolic bands. The velocity operator in the
pseudospin basis reads simply vx = τx. However we perform
our calculations in the band basis with a magnetic field. In
this case vx couples different LLs as well as different bands.
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An evaluation of the trace in the conductivity kernel yields

σ̂xx(E ) =e2N�

πV

∑
l,λ

v2
λIm(Gl,+,λ + Gl,−,λ)Im (Gl−1,+,λ + Gl−1,−,λ) (24)

in agreement with, e.g., Ref. [45].
The sum over LLs can be transformed into a sum over harmonics by Poisson summation as before and we obtain

σ̂xx(ξ ) =4e2

π

∑
λ

ξ ∗
λ |�λ| ξ ∗2

λ + �2
λ

1 + 16ξ ∗2
λ �2

λ

[
1 + 2

∑
k>0

cos
[
2πk

(
ξ ∗2
λ − �2

λ

)]
Rk

λ

]
, (25)

where now Rλ(ξ ) = exp(−4πξ ∗
λ |�λ|) in contrast to parabolic bands; compare to Eq. (12). We note that the same conductivity

kernel for a single Weyl cone has already been derived in Refs. [54,55] but we argue that our derivation of a more general form
is considerably simpler.

2. Self-energy

The real-space Green’s function Gλ,σ (r, r′, ξ ) depends now additionally on the subband index σ . We can reuse Eq. (15)
keeping in mind the different dispersion of relativistic LLs. The wave function

�σλ,l,kx (r) = eikxx

√
2Lx

[ψl (y − y0) + σψl−1(y − y0)] (26)

mixes different levels of the harmonic oscillator. However, the calculation of Gλ,σ (r, r, ξ ) works analogously. The crucial step is
to perform first the summation over subbands σ before transforming the sum over LLs to a sum over harmonics in order to be
able to use complex contour integration for the integral. We then find, analogously to the above, the self-consistent equations for
the self-energy

|Im �λ(ξ )| = πTD,λ

[
1 + (α̃λ + β̃λA)

∞∑
k=1

cos
[
2πk

(
ξ�2
λ − �2

λ

)]
Rk

λ(ξ )

]
, (27)

Re �λ(ξ ) = πTD,λ(α̃λ + β̃λA)
∞∑

k=1

sin
[
2πk

(
ξ�2
λ − �2

λ

)]
Rk

λ(ξ ), (28)

where we used ξ�
λ � �λ outside the arguments of sin and cos and introduced the artificial Dingle temperature as a prefactor.

These equations should be seen as analogs to Eq. (18) and (19). The main differences are all expected for Weyl systems; i.e., this
is the quadratic dependence on ξ in the arguments of cos/sin and the explicit dependence of the Dingle factor on ξ .

3. QOs and temperature smearing

The expansion of the conductivity kernel and the evaluation of the temperature integral is analogous to the scenario with
parabolic bands. In principle the �λ term inside the cos would lead to additional contributions to the amplitude, but these turn
out to be suppressed with TDλ

μ

 1. We neglect these minor changes in the frequency and note that they should become important

at low fillings of the Weyl cone.
Omitting all nonoscillatory terms we finally obtain the main result for the conductivity as

σxx

σ0
=

∑
λ

A1Fλ cos

(
2π

[
μ + Wλ

ωcλ

]2
)

RD,λRLK

(
4π2 T (μ + Wλ)

ω2
cλ

)
+

∑
λ

A2Fλ cos

(
4π

[
μ + Wλ

ωcλ

]2
)

R2
D,λRLK

(
8π2 T (μ + Wλ)

ω2
cλ

)

+ A+ cos

(
2π

[
(μ + W1)2

ω2
c1

+ (μ + W2)2

ω2
c2

])
RD,1RD,2RLK

(
2π2T

[
μ + W1

ω2
c1

+ μ + W2

ω2
c2

])

+ A− cos

(
2π

[
μ + W1

ωc1

]2

− 2π

[
μ + W2

ωc2

]2
)

RD,1RD,2RLK

(
2π2T

[
μ + W1

ω2
c1

− μ + W2

ω2
c2

])
, (29)

where the nonuniversal amplitudes A are given in Eqs. (D8) to
(D11) of Appendix D. Although Eq. (29) seems complicated
it can be understood equivalently to Eq. (20). The first and
second lines are the first and second harmonics of the basis
frequencies Fλ which are dictated by the geometry of the
Fermi surface. The sum and difference frequencies of the
basis frequencies, lines three and four, are also of second

order in the Dingle factor. The temperature dependence of the
amplitudes follows our main result Eq. (3).

Note that for relativistic dispersions the Fermi surface area
depends quadratically on the chemical potential. Hence, the
scale for the exponential temperature decay is set by μ+Wλ

v2
λ

instead of mλ [53,56].
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B. Three dimensions

The Hamiltonian of the double Weyl model Eq. (22) can
be easily generalized to three dimensions by including the
Pauli-z matrix τ z. The LLs are then continuous εσ,λ(l, kz ) =
σ

√
v2

λk2
z + w2

cλl − Wλ. In 3D the wave function is more in-
volved than before, since the prefactors of ψl and ψl−1 in
Eq. (26) depend now additionally on l , z, and kz. The nested
form of the dispersion and the nontrivial prefactors of the
wave function make analytic calculations cumbersome. Nev-
ertheless we can use a similar argument as in Sec. III B: Using

the relation εσ,λ(l, kz ) = εσ,λ(l + ν2
λ

ω2
cλ

k2
z ) the kz dependence

reduces to a real shift of the pole in Eq. (D4). Hence, the
terms ξ�2

λ − �2
λ transform to ξ�2

λ − �2
λ − ν2

λk2
z , whereas terms

ξ�
λ�λ which are the imaginary shifts of the poles remain the

same. The appearing integrals are then of the form Jn(ξ 2).
Therefore, we conclude that an extension from 2D to 3D has
for relativistic bands the same effect on the conductivity as for
parabolic bands; only additional nonuniversal phases shift the
QOs but the overall phenomenology remains unchanged.

V. DE HAAS–VAN ALPHEN EFFECT

The main objective of our work is to establish difference-
frequency QOs as a generic phenomenon of multiband metals.
We focused on the Shubnikov–de Haas effect, i.e., QOs of
the conductivity. In this section we comment on the behavior
of the de Haas–van Alphen effect, i.e., the QOs of quantities
derived from the thermodynamic potential.

The main result of this section is that to second order in
RD the difference frequency is absent in the density of states
and therefore in the de Haas–van Alphen effect, whereas the
sum frequency remains observable. This applies equivalently
for all higher-order combination frequencies.

We evaluate the density of states per unit area,

ρ(E ) = − 1

πLxLy
Trl,kx,λ[Im G(E )], (30)

from the imaginary part of the retarded, impurity-averaged
Green’s function. The result for the density of states for
parabolic bands in 2D,

ρ(E ) =
∑

λ

mλ

2π

(
1 + 2

∞∑
k=1

(−1)k cos(2πkξ�
λ )Rλ(ξ )k

)
,

(31)
is derived in Appendix E 1 and should be seen as the de
Haas–van Alphen analog of Eq. (11). Hence, we continue with
the same expansion up to second order in the Dingle factor as
for the conductivity. The major difference in the result is that
the difference-frequency term cancels exactly in the expansion
because the self-energy enters in the density of states only
over the damping factor Rλ and ξ�

λ and not via any prefactors
like the scattering time for the conductivity.

The grand-canonical potential is evaluated by a convolu-
tion with the Fermi distribution function

� =
∫ ∞

−∞
dE nF (E − μ)ρ(E ). (32)

To keep the analogy to the derivation of the conductivity, we
split the integration up into a convolution returning the zero-

temperature grand-canonical potential

�̂(μ) =
∫ ∞

−∞
dE �(μ − E )ρ(E ) (33)

and include temperature in the same way as for the conductiv-
ity Eq. (1),

� =
∫ ∞

−∞
dε[−n′

F (ε)]�̂(μ + ε). (34)

Note that the integration in Eq. (33) has no effect on the os-
cillations up to a π

2 phase change. The result for the oscillating
part of the thermodynamic potential in 2D is

� =
∑

λ

A1Fλ cos

(
2π

μ + Wλ

ωλ

)
RD,λRLK

(
2π2 T

ωλ

)

+
∑

λ

A2Fλ cos

(
4π

μ + Wλ

ωλ

)
R2

D,λRLK

(
4π2 T

ωλ

)

+ A+ cos

(
2π

μ + W+
ω+

)
RD,1RD,2RLK

(
2π2 T

ω+

)
,

and the amplitudes are given in Eqs. (E3)–(E5). Strikingly,
only the difference frequency is absent but the other frequen-
cies show the same behavior as in the conductivity.

The exact cancellation of the difference frequency is not an
artifact of the model. It remains also valid in 3D and in linear
band structures; see Appendix E 2. For relativistic dispersions
a difference frequency appears; however its amplitude is neg-
ligible compared to the sum frequency.

We would like to point out that a difference frequency can
be generated in the de Haas–van Alphen effect by higher-order
scattering processes. Going to the third order of the SCBA,
i.e., three scattering events on the same impurity, difference
and sum frequencies are already generated at the level of the
self-energy, but again the amplitude is expected to be strongly
reduced.

VI. DISCUSSION AND MATERIALS

We have shown in detail how to compute QOs of the
conductivity for two-band models with parabolic and rela-
tivistic dispersions in 2D and 3D. Remarkably, we find that
a nonlinear coupling of bands—studied in terms of interband
impurity scattering—leads to the emergence of new sum and
difference frequencies. Their amplitudes are damped with the
sum and difference of the temperature scales of their basis fre-
quencies. Hence, a striking feature is that the difference does
not acquire any temperature dependence at all if the effective
masses of two parabolic bands are the same. For relativistic
bands the point of absolute temperature stability is a fine-
tuned one, depending on the relation between vλ, Wλ, and μ.
For parallel linear bands, i.e., equal Fermi velocities v1 = v2,
the difference frequency remains slightly temperature damped
by W1−W2

v2
1

, providing an opportunity to experimentally distin-
guish relativistic and parabolic dispersion (see also Fig. 3). In
Table I we present a concise summary of our calculation.

We conclude this section by discussing experimental
requirements for observing temperature-stable difference fre-
quencies, and furthermore, point out possible candidate
materials. The main ingredient for an appreciable amplitude
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TABLE I. Overview of results. We summarize the behavior for the argument of the oscillations, f as defined in Eq. (3), the argument of
the LK temperature damping factor, χ as defined in Eq. (4), and the argument of the impurity damping factor, e.g., the Dingle factor as defined
in Eq. (13). For the canonical basis frequency we have included the behavior of higher harmonics with integers k.

Quadratic Dispersion Linear Dispersion

Canonical Sum/Difference Canonical Sum/Difference

2D f (μ) 2πk μ+W
ωc

2π ( μ+W1
ωc1

± μ+W2
ωc2

) 2πk[ μ+W
ωc

]2 2π ([ μ+W1
ωc1

]2 ± [ μ+W2
ωc2

]2 )

χ 2π 2k T
ωc

2π 2 T
ωc± 4π 2kT μ+W

ω2
c

4π 2T ( μ+W1
ω2

c1
± μ+W2

ω2
c2

)

Dingle 2π 2k TD
ωc

2π 2( TD1
ωc1

+ TD2
ωc2

) 4π 2kTD
μ+W
ω2

c
4π 2(TD1

μ+W1
ω2

c1
+ TD2

μ+W2
ω2

c2
)

3D f (μ) 2πk μ+W
ωc

+ φ 2π ( μ+W1
ωc1

± μ+W2
ωc2

) + φ± 2πk[ μ+W
ωc

]2 + φ 2π ([ μ+W1
ωc1

]2 ± [ μ+W2
ωc2

]2 ) + φ±

χ 2π 2k T
ωc

2π 2 T
ωc± 4π 2kT μ+W

ω2
c

4π 2T ( μ+W1
ω2

c1
± μ+W2

ω2
c2

)

Dingle 2π 2k TD
ωc

2π 2( TD1
ωc1

+ TD2
ωc2

) 4π 2kTD
μ+W
ω2

c
4π 2(TD1

μ+W1
ω2

c1
+ TD2

μ+W2
ω2

c2
)

of the difference frequency is, of course, an electronic band
structure with multiple pockets whose quasiparticles have
similar mass (or Fermi velocity). The main nontrivial require-
ment is a strong effective coupling β between the bands.
The exact strength of the interband scattering depends on the
type of the impurity and on the microscopic details of the
wave function. Therefore, we expect that ab initio calculations
will be very helpful for estimating the inter- versus intraband
impurity scattering strengths in suitable materials. In addi-
tion, the strength/density of intraband impurities influences
strongly the Dingle temperatures. Our expansion in RD,λ does
in principle require TD,λ � ωcλ; however we argue that our
expansion also holds qualitatively for RD,λ → 1. Hence, in
addition to an effective interband coupling, the observation of
the difference frequency is mainly limited by the strength of
the signals of the second harmonics of the basis frequencies
which are similarly of second order in the Dingle factors.
We argue that strong signals from the higher harmonics are a
good indication that the difference frequency can be observed.
These can be maximized by choosing a relatively clean system
with wcλ ≈ TD,λ. Finally, we note that the amplitudes A± in
3D are slightly suppressed for large frequencies.

Next, we discuss concrete material candidates. Intrigu-
ingly, difference and sum frequencies have potentially been
already measured in various systems, but their existence has
not been attributed to the present mechanism from interband
coupling. For example, the 3D heavy-fermion superconductor
CeCoIn5 displays QO frequencies which are approximately
the difference of two larger frequencies [57], and which per-
sist when the material is doped with Nd [58]. Similarly, the
tritelluride NdTe3 shows a frequency which is the difference
of two basis frequencies to high accuracy [59].

In general, we expect materials with multifold fermion
excitations to be prime candidates because they have paral-
lel bands over large momentum-space regions. For example,
the topological semimetal PtGa shows a difference frequency
and several other frequencies in the Fourier spectrum whose
origins are unexplained [60]. Most strikingly, in accordance
with our predictions a temperature-stable difference frequency
has been very recently reported for the topological semimetal
CoSi [44].

Similarly, Shoenberg’s classic book on QOs [6] lists a large
number of materials displaying putative magnetic breakdown

frequencies some of which could be difference frequencies. It
would also be worthwhile to search within the recent class of
square-net materials [61] for unusual QOs which fall outside
the scope of the standard LK theory.

Beyond the 2D systems studied previously in the con-
text of magneto-intersubband oscillations of 2DEGs [33–35],
systems like bilayer graphene [62,63] show all the required
properties of the band structure but to our knowledge no
difference frequency has been reported. This might be related
to ineffective interband scattering but we expect that the con-
trolled introduction of selected impurities could do the trick,
which is again an outstanding task for ab initio modeling. We
note that recently a difference frequency has been reported
in twisted bilayer graphene where interband scattering is in-
duced by imperfections of the moiré pattern [64].

Another general expectation is that band splitting is not
only induced by interlayer tunneling but also via spin-orbit
coupling, e.g., for Rashba surface states [65], which could
result in temperature-stable difference frequencies. An obser-
vation thereof would turn difference frequency QOs into a
very precise tool for determining the energy scales of spin-
orbit-induced band splitting.

VII. OUTLOOK

We have shown how nonlinear interband coupling influ-
ences the Fourier spectrum of QOs up to second order in
the Dingle factors with the emergence of a new difference
frequency stable in temperature; see Fig. 1(d). A natural next
question is which other higher-order effects can emerge in
the QO spectrum. Based on our calculations, we expect that
any integer, linear combination of the basis frequencies can
appear as well as the interference of higher harmonics. These
higher-order QOs will be damped with the Dingle factors of
the involved frequencies and acquire a temperature smearing
according to Eq. (3).

For the calculation of the self-energy we have used the
SCBA. Going beyond this, the full SCBA would take into
account multiple scattering events on a single impurity by
including products of real-space Green’s functions. Hence,
sum and difference frequencies should already appear at the
level of the self-energy but we expect that the resulting QOs
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are qualitatively similar and behave in the same way as the
higher harmonics discussed above.

For the nonlinear interband coupling we have concentrated
on the effect of impurities. However, the coupling of bands can
also be the result of interactions. Clearly, the Coulomb interac-
tion between electrons is not limited to electrons of the same
band. In an expansion of the self-energy the Fock diagrams
resemble those of the impurity scattering shown in Fig. 2(a)
and are expected to lead to similar effects. In that con-
text, the effect of Coulomb interactions on the de Haas–van
Alphen effect of quasi-2D systems has been recently studied
in Ref. [66], which also finds a difference frequency albeit
with a strong temperature dependence. Similarly, interaction-
mediated fluctuations have recently been shown to enhance
de Haas–van Alphen QOs in insulators [67,68]. In general,
a detailed study on the interplay of interband coupling from
impurities and interactions for thermodynamic and transport
QOs remains a formidable task for the future.

The unambiguous observation of a new difference fre-
quency in QOs is exciting by itself [44]. In addition, because
of its temperature stability it can be turned into a versatile
tool, for example, for studying the temperature dependence
of the Dingle temperature, for quantifying interband scat-
tering strengths or band-splitting mechanisms like spin-orbit
coupling. In this way difference-frequency QO measurements
may detect temperature-dependent changes of material prop-
erties which are otherwise impossible to observe with the
strongly damped canonical QOs.

In conclusion, difference-frequency QOs are a qualitatively
new phenomenon beyond the known magnetic breakdown
scenarios. Despite the long history of QO research we expect
further surprises in the future.

Note added. Recently Ref. [69] appeared, which also
considered the effect of linear dispersions on magneto-
intersubband oscillations in layered quasi-2D systems. The
conclusions of that work agree with ours for the 2D results
(bulk 3D dispersions are not addressed in the work).

The symbolic calculations related to our paper are avail-
able on Zenodo [70] from the authors upon reasonable
request.
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APPENDIX A: EVALUATION OF THE TEMPERATURE
CONVOLUTION

In this section we derive the temperature dependence of the
conductivity out of the zero-temperature conductivity kernel.
For generic conductivity kernels we obtain in leading order

a temperature dependence of LK type. The calculation below
applies for any oscillating conductivity kernel, being applica-
ble for quadratic and linear dispersion in any dimension.

Starting from the generic form the conductivity kernel
Eq. (2), we expand the functions f (E ) and g(E ) around the
Fermi energy μ motivated by the form of the integral in
Eq. (1). We truncate the expansion of f (E ) around E = μ + ε

at linear order; higher orders can be taken into account sys-
tematically. The convolution of the conductivity may then be
written as

σ = Re ei f (μ)
∫ ∞

−∞
dε[−n′

F (ε)]ei f ′(μ)ε

×
∞∑

n=0

g(n)
(

μ

ωc

)
n!

dng

dξ n

∣∣∣∣
μ

ωc

(
ε

ωc

)n

(A1)

= Re ei f (μ)
∞∑

n=0

dng

dξ n

∣∣∣∣
μ

ωc

(
T

ωc

)n

In( f ′(μ)T ), (A2)

where we have introduced the integral

In(a) = 1

n!

∫ ∞

−∞
dx

e ıax

(ex/2 + e−x/2)2 xn, (A3)

which can be evaluated exactly.

1. Evaluation of In

Obviously Re I2n+1(a) = Im I2n(a) = 0 due to antisymme-
try of the integrands. In the following we will show that the
integrals are given by derivatives of the Lifshitz-Kosevich
damping factor

Re I2n(a) = (−1)n

(2n)!

d2n

dλ2n

(
λ

a

)2n 1

λ
RLK

(
π

a

λ

)∣∣∣∣
λ=1

, (A4)

Im I2n+1(a) = (−1)n

(2n + 1)!

d2n

dλ2n

(
λ

a

)2n+1 1

λ2
RLK

(
π

a

λ

)
[
2n − 1 + RLK

(
π

a

λ

)
cosh

(
π

a

λ

)]∣∣∣∣
λ=1

. (A5)

The calculation below shows how the expression for Re I2n

can be obtained; the calculation for Im I2n+1 is analogous.
Using the geometric series we rewrite the exponential factors
in the denominator of the integral. However, the geometric
series holds strictly speaking only true for x > 0; hence we
take the integration boundaries from ε → 0 to ∞ and perform
the limit in the end to ensure proper convergence. For the
following calculation we set n to be even:

n!Re In(a) = 2
∫ ∞

ε

dx
cos(ax)

(ex/2 + e−x/2)2 xn

= −2
∞∑

k=1

(−1)kk
∫ ∞

ε

dx e−kx cos(ax)xn

= −2
∞∑

k=1

(−1)kk1−n(−1)n dn

dλn

∫ ∞

ε

dx e−λkx cos(ax)

∣∣∣∣
λ=1

= − dn

dλn

∞∑
k=−∞

(−1)k λk2−n

a2 + λ2k2
e−ελ|k|

∣∣∣∣
λ=1
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= dn

dλn

∑
z∗=±i a

λ

Res

(
λz2−n

a2 + λ2z2

π

sin(πz)
e−ελz, z = z∗

)∣∣∣∣
λ=1

= (−1)
n
2

dn

dλn

(
λ

a

)n π a
λ2

sinh
(
π a

λ

) ∣∣∣∣
λ=1

. (A6)

Note that we have used the Feynman trick in line 3, that the
summand for k = 0 vanishes for all values of n (line 4), and
the residue formula for summation in line 5.

2. Interpretation of the temperature dependence

From Eq. (A2) and Eq. (A4) it is obvious that the lowest
order of the expansion in g (i.e., n = 0) leads to a temperature
dependence of LK type. Higher-order corrections (n > 0) to
the temperature dependence are typically suppressed by the
functional form of g; for g being, e.g., a polynomial, the nth
derivative of g is suppressed with ξ−n.

APPENDIX B: SUPPLEMENT FOR 2D PARABOLIC
DISPERSIONS

This section provides several details to the calculations
performed in Sec. III A. First, details on the calculation of
the self-energy are explained; second, the used scheme to
expand the conductivity kernel to second or even higher order
is demonstrated.

1. Calculation of the self-energy

In order to evaluate the self-energy �λ Eq. (14) we need
to determine the real-space Green’s function for r = r′ from
Eq. (15). We use the summation over kx momenta to integrate
out the y dependencies and use Poisson summation Eq. (10),

Gλ(r, r, E ) = 1

Lx

∑
l,kx

ψ∗
λ,l (y − y0)ψλ,l (y − y0)

E − ελ(l ) − �λ(E )
(B1)

= 1

2π

∞∑
l=0

∫ ∞

−∞
dkx

|ψλ,l (y − y0)|2
E − ελ(l ) − �λ(E )

(B2)

= eB

2πωλ

∞∑
k=−∞

(−1)k
∫ ∞

1
2

du
e2π iku

ξ�
λ − u + i�λ

. (B3)

The integral over u can be evaluated for k �= 0 by using ξ�
λ �

1 and complex contour integration:∫ ∞

1
2

du
e2π ikv

−ξ�
λ + u − i�λ(ξ )

(B4)

≈ e2π ikξ∗
λ

∫ ∞

−∞
du

e2π iku

u − i�λ(ξ )
(B5)

= 2π ie2π ik[ξ�
λ+i�λ(ξ )]�(k�λ(ξ ))sgn[�λ(ξ )]. (B6)

For k = 0 the integral is divergent, due to the divergent sum
over l in Eq. (15) since we did not assume that our energy
spectrum is bounded from above. It is however easy to see
that the imaginary part of the integral is convergent,

Im
∫ ∞

1
2 −ξ�

λ

du

u − i�λ

≈ πsgn(�λ). (B7)

For the real part of the integral we introduce an upper cutoff
�c and use that the integrand is odd,

Re
∫ �c

1
2 −ξ�

λ

du

u − i�λ

= 1

2
ln

(
�2

c + �2
λ(

ξ�
λ − 1

2

)2 + �2
λ

)
. (B8)

Anticipating that �λ ∼ TD,λ which is of order of a few kelvins,
any physical oscillations of this formally divergent part are
suppressed with at least TD,λ

μ

 1 and can be neglected. We

absorb the non/weakly oscillating real part in the chemical
potential [37,38], to obtain the oscillating Green’s function
Eq. (17).

The correct prefactors for the interband and intraband
contributions are motivated from the fact that the Dingle tem-
perature is a measure of the total interactions in the system
πTD,λ = |〈Im �λ〉|. We introduce the band-dependent total
mass Mλ = αλmλ + βmλ̄ and the Dingle temperature πTD,λ =
1
2 nimpU 2

0 Mλ leading to Eq. (15). To simplify the notation, we
also set α̃λ = 2αλ

mλ

Mλ
and β̃λ = 2β

mλ̄

Mλ
.

We note at this point that several similar integrals need
to be evaluated throughout this paper, e.g., in the derivation
of Eq. (11). All of them can be evaluated in a similar fash-
ion as above; the rest are however convergent unless stated
differently.

2. Expansion of the conductivity kernel

In Eq. (11) there are three terms that are oscillating with
respect to the magnetic field: ξ ∗

λ taking into account the os-
cillating real part of the self-energy, the oscillations of Im �λ

leading effectively to an oscillating Dingle factor Rλ(ξ ) and
to oscillations of the prefactor, and the intrinsic oscillations
of the conductivity. Interestingly the oscillations of the Dingle
factor and the real part of the self-energy cancel exactly for
the difference frequency. We expand the conductivity up to
second order in RD,λ = Rλ( πTD,λ

ωcλ
). There is no need to expand

ξ ∗
λ if it appears outside the arguments of cos or sin, since these

second-order contributions will be suppressed by |TD,λ/(μ −
Wλ)| 
 1. Therefore, Re �λ only needs to be expanded up to
first order, as it will only appear together with first-order terms

Re �
(1)
λ (ξ ) = −πTD,λ(α̃λ + β̃λA) sin (2πξλ)RD,λ. (B9)

The other expanded quantities read

R(2)
λ (ξ ) = RD,λ[1 + 2πτλ(α̃λ + β̃λA) cos(2πξλ)RD,λ], (B10)∣∣�(2)

λ (ξ )
∣∣ = τλ

[
1 − (α̃λ + β̃λA) cos(2πξ�

λ )R(2)
λ (ξ ) + (α̃λ + β̃λA) cos(4πξλ)R2

D,λ

]
, (B11)

σ (2)
xx (ξ ) = σ0

∑
λ

ξλ�
(2)
λ (ξ )

1 + 4
(
�

(2)
λ (ξ )

)2

(
1 − 2 cos (2πξ ∗

λ )R(2)
λ (ξ ) + 2 cos (4πξλ)R2

D,λ

)
, (B12)

where τλ = πTD,λ

ωλ
is the dimensionless Dingle temperature.
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After an expansion done with Mathematica [69], where we collect terms with the same frequency, we find for the conductivity
kernel

σxx(ξ )

σ0
= A0(ξ ) +

∑
λ

cos (2πξλ)RD,λA1Fλ(ξ ) +
∑

λ

cos (4πξλ)R2
D,λA2Fλ(ξ )

+ cos (2π [ξ1 + ξ2])RD,1RD,2A+(ξ ) + cos (2π [ξ1 − ξ2])RD,1RD,2A−(ξ ). (B13)

The amplitudes read

A0(ξ ) =
∑

λ

τλξλ

1 + 4τ 2
λ

+ R2
D,λξλ(

1 + 4τ 2
λ

)3

(
α̃λ

[
τλ − 16τ 5

λ

] + α̃2
λ

[−6τ 3
λ + 8τ 5

λ

]) + R2
D,λξλ̄β̃

2
λ̄(

1 + 4τ 2
λ̄

)3

(−6τ 3
λ̄

+ 8τ 5
λ̄

)
, (B14)

A1Fλ(ξ ) = − 2τλξλ

4τ 2
λ + 1

− α̃λ

(
τλξλ

4τ 2
λ + 1

− 8τ 3
λ ξλ(

4τ 2
λ + 1

)2

)
− β̃λ̄

⎛
⎝ τλ̄ξλ̄

4τ 2
λ̄

+ 1
− 8τ 3

λ̄
ξλ̄(

4τ 2
λ̄

+ 1
)2

⎞
⎠, (B15)

A2Fλ(ξ ) = ξλ(
4τ 2

λ + 1
)3

(
2τλ+16τ 3

λ +32τ 5
λ +α̃λ

[
2τλ − 4πτ 2

λ − 32πτ 4
λ − 32τ 5

λ − 64πτ 6
λ

] + α̃2
λ

[−2πτ 2
λ − 6τ 3

λ + 8τ 5
λ + 32πτ 6

λ

])

+ β̃λ̄ξλ̄(
1 + 4τ 2

λ̄

)3

(
τλ̄ − 16τ 5

λ̄
+ α̃λ

[−2πτλτλ̄ + 32πτλτ
5
λ̄

] + β̃λ̄

[−6τ 3
λ̄

+ 8τ 5
λ̄

])
, (B16)

A+(ξ ) =
∑

λ

ξλβ̃λ(
1 + 4τ 2

λ

)3

(
τλ − 4πτ 2

λ − 32πτ 4
λ − 16τ 5

λ − 64πτ 6
λ

+α̃λ

[−2πτ 2
λ − 12τ 3

λ + 16τ 5
λ + 32πτ 6

λ

] + β̃λ̄

[−2πτλτλ̄ + 32πτ 5
λ τλ̄

])
, (B17)

A−(ξ ) =
∑

λ

ξλβ̃λ(
1 + 4τ 2

λ

)3

(
τλ − 16τ 5

λ + α̃λ

[−12τ 3
λ + 16τ 5

λ

])
, (B18)

where A0 constitutes the nonoscillating contributions which we state here for the sake of completeness, but we will drop it in all
other calculations.

APPENDIX C: CALCULATION FOR 3D PARABOLIC
DISPERSIONS

1. Evaluation of the integral Jn

In order to evaluate the integral appearing in 3D calcula-
tions, see Eq. (21), we would like to extend the integration
boundaries to ±∞. However doing this directly would lead
to a divergent integral for n > 0 among other problems. We
solve this problem by first using Feynman’s integral trick and
then extending the integration boundaries to ±∞,

Jn(ξ ) = (2π i)−n dn

dλn

∣∣∣∣
λ=1

∫ √
ξ

−√
ξ

dx e2π iλ(ξ−x2 ) (C1)

= (2π i)−n dn

dλn

∣∣∣∣
λ=1

1√
2λ

e2π iλξ−i π
4 (C2)

= ξ n

√
2

e2π iξ−i π
4 , (C3)

where we used that ξ � 1 to obtain the last line. To check
the correctness of this calculation we compared the result to a
numerical evaluation of Eq. (21).

In practice the kz integral will lead to an additional phase of
π
4 , a suppression of oscillations with 1√

ξλ
as already predicted

in Ref. [30], and a suppression of higher harmonics with 1√
k
.

These effects are clearly visible in Eq. (C4) and Eq. (C5).

2. Conductivity

Starting from Eq. (11) and carrying out the integral over kz

momenta leads to

σ̂xx = σ0

π�B

∑
λ

ξ �
λ |�λ(ξ )|

1 + 4�λ(ξ )2

[
2
√

2

3

√
ξ�
λ

+
∞∑

k=1

(−1)k

√
k

cos
(

2πkξ�
λ − π

4

)
Rλ(ξ )k

]
, (C4)

where �B = 1√
eB

is the magnetic length scale. The integral
for the first summand is evaluated exactly. Note that the self-
energy does not depend on kz because we integrate that out.

3. Self-energy

We start from Eq. (17) to evaluate the integral and intro-
duce the weights α̃λ = αλmλ

√
2mλEλ

αλmλ

√
2mλEλ+βmλ̄

√
2mλ̄Eλ̄

and β̃λ = 1 −
α̃λ. Since oscillations in ξ�

λ are suppressed by 1
ξ�
λ

if they appear
outside of cos or sin terms, we set ξ�

λ = ξλ in these. Then we
obtain the self-consistent equation for the self-energy

�λ = − iπTD,λ

(
1 + [α̃λ + β̃λA]

1√
2ξλ

×
∞∑

k=1

(−1)k

√
k

e2π ikξ�
λ−i π

4 Rλ(ξ )k

)
. (C5)
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Equation (C5) is the analog of Eq. (18) and Eq. (19). However,
the QOs in the self-energy come in 3D with an additional
small prefactor 1√

ξλ
.

4. QOs in 3D

The expansion is done in the same manner as in 2D.
However in 3D two types of second harmonics appear: The

intrinsic second harmonic of Im �λ and σ̂xx with phase π
4 and

one resulting from interference with a phase π
2 . The latter one

is suppressed with 1√
ξλ

with respect to the other and hence
neglected in the following.

The oscillating part of the conductivity reads

σxx

σ0
=

∑
λ

A1Fλ cos

(
2π

μ + Wλ

ωλ

− π

4

)
RD,λRLK

(
2π2 T

ωλ

)
+

∑
λ

A2Fλ cos

(
4π

μ + Wλ

ωλ

− π

4

)
R2

D,λRLK

(
4π2 T

ωλ

)

+ A+ cos

(
2π

μ + W+
ω+

− π

2

)
RD,1RD,2RLK

(
2π2 T

ω+

)
+ A− cos

(
2π

μ + W−
ω−

)
RD,1RD,2RLK

(
2π2 T

ω−

)
(C6)

with the amplitudes [69]

A1Fλ(ξ ) = 1

π�B

⎛
⎝− ξλτλ

1 + 4τ 2
λ

+ 16ξλτ
3
λ α̃λ

3
(
1 + 4τ 2

λ

)2 − 2ξλτλα̃λ

3
(
1 + 4τ 2

λ

) + 16ξ
3
2

λ̄
τ 3
λ̄
β̃λ̄

3
√

ξλ

(
1 + 4τ 2

λ̄

)2 − 2ξ
3
2

λ̄
τλ̄β̃λ̄

3
√

ξλ

(
1 + 4τ 2

λ̄

)
⎞
⎠, (C7)

A2Fλ(ξ ) = 1

π�B

⎛
⎝ ξλτλ√

2
(
1 + 4τ 2

λ

) − 8
√

2ξλτ
3
λ α̃λ

3
(
1 + 4τ 2

λ

)2 +
√

2ξλτλα̃λ

3
(
1 + 4τ 2

λ

) − 8
√

2ξ
3
2

λ̄
τ 3
λ̄
β̃λ̄

3
√

ξλ

(
1 + 4τ 2

λ̄

)2 +
√

2ξ
3
2

λ̄
τλ̄β̃λ̄

3
√

ξλ

(
1 + 4τ 2

λ̄

)
⎞
⎠, (C8)

A+(ξ ) = 1

π�B

∑
λ

ξλβ̃λ√
ξλ̄

(
1 + 4τ 2

λ

)
(

τλ

2
√

2
−

√
2πτ 2

λ − 2
√

2

3
πτ 2

λ α̃λ − 2
√

2

3
πτλτλ̄β̃λ̄

)

+ ξλβ̃λ√
ξλ̄

(
1 + 4τ 2

λ

)2

(
−2

√
2τ 3

λ − 4
√

2τ 3
λ α̃λ + 16

3

√
2πτ 4

λ α̃λ + 16

3

√
2πτ 3

λ τλ̄β̃λ̄

)
+ 64

√
2ξλτ

5
λ α̃λβ̃λ

3
√

ξλ̄

(
1 + 4τ 2

λ

)3 , (C9)

A−(ξ ) = 1

π�B

∑
λ

ξλβ̃λ√
ξλ̄

(
1 + 4τ 2

λ

) τλ

2
√

2
+ ξλβ̃λ√

ξλ̄

(
1 + 4τ 2

λ

)2

(−2
√

2τ 3
λ − 4

√
2τ 3

λ α̃λ

) + 64
√

2ξλτ
5
λ α̃λβ̃λ

3
√

ξλ̄

(
1 + 4τ 2

λ

)3 , (C10)

which are evaluated at the chemical potential A = A(μ). Note
that for 3D O(A±) = √

ξ whereas O(A2Fλ) = ξ . This makes
sum and difference frequencies more difficult to observe in
3D systems.

APPENDIX D: SUPPLEMENT FOR 2D DOUBLE
WEYL MODEL

1. Self-energy

The Green’s function in real space reads

Gσλ(r, r′, ξ ) = 1

ωλ

∑
l,kx

�σλ,l,kx (r)�σλ,l,kx (r′)∗

ξ�
λ − σ

√
l + i�λ(ξ )

(D1)

with the wave function given in Eq. (26). For r = r′ we can
sum out the wave function such that the real-space Green’s
function is spatially invariant,

Gσλ(r, r, ξ ) = eB

4π

∑
l

1

E + Wλ − σωλ

√
l − �λ

×
∫

dy0[|ψl (y − y0)|2 + |ψl−1(y − y0)|2]

= − σeB

2πωλ

∑
k

∫ ∞

0
dl

e2π ikl

√
l − σξ ∗

λ − σ i�λ

.

(D2)

The self-energy can be easily calculated, since the Green’s
function does not depend on r anymore and not on σ ,

�λ(ξ ) = nimpU
2
0 LyLx

∑
σ

[αλGσλ(ξ ) + βGσ λ̄(ξ )]. (D3)

The crucial part is the calculation of the term

∑
σ

Gσλ(ξ ) = − eB

2πωλ

∑
k

∫ ∞

0
dl

∑
σ

σe2π ikl

√
l − σξ ∗

λ − σ i�λ

= − eB

2πωλ

∑
k

∫ ∞

0
dl

2e2π ikl (ξ ∗
λ + i�λ)

l − (ξ ∗
λ + i�λ)2

, (D4)

where we have used the Poisson summation formula to trans-
form the sum over LLs to a sum over harmonics times an
integral which we can compute with complex contour inte-
gration. We use again ξ�

λ � 1 such that the lower integration
boundary can be shifted to −∞. For k = 0 the real part of
this integral is divergent but the integrand is antisymmetric
and will be set to zero. The imaginary part can be calculated
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explicitly,∫ ∞

0

dl

l − (ξ ∗
λ + i�λ)2

=
∫ ∞

−∞
dl

l + i2ξ ∗
λ�λ

l2 + 4(ξ ∗
λ�λ)2

= iπsgn(�λ).

(D5)

For the higher harmonics k �= 0 we use complex contour inte-
gration

∑
k �=0

∫ ∞

0
dl

e2π ikl

l − (ξ ∗
λ + i�λ)2

= 2π isgn(�λ)
∑
k>0

e2π iksgn(�λ )(ξ∗
λ +i�λ)2

(D6)

in order to find in total∑
σ

Gσλ(ξ ) = − i
eB

ωλ

sgn(�λ)(ξ ∗
λ + i�λ)

×
[

1 + 2
∑
k>0

e2π iksgn(�λ )(ξ∗
λ +i�λ)2

]
. (D7)

At this point it is useful to make several approximations
to simplify the remaining calculations. First, we replace
|〈Im �λ〉| = ωcλ|〈�λ〉| by the empirical Dingle temperature
πTD,λ. Note that TD,λ does not depend on the magnetic field
as expected. Since the self-energy is of the order of the Dingle
temperature which is only a few kelvins we may use the
approximations ξ�

λ ≈ ξλ and ξ�
λ � �λ. This can however only

be used outside the argument of the exponential terms. We
then obtain the self-consistent Eq. (27) and Eq. (28).

2. Amplitudes

The conductivity kernel is expanded analogously to the
parabolic case [69]. The amplitudes read

A1Fλ(ξ ) = 2ξ 3
λ τλ

1 + 16ξ 2
λ τ 2

λ

+ α̃λ

(
ξ 3
λ τλ

1 + 16ξ 2
λ τ 2

λ

− 32ξ 5
λ τ 3

λ(
1 + 16ξ 2

λ τ 2
λ

)2

)
+ β̃λ̄

⎛
⎝ ξ 3

λ̄
τλ̄

1 + 16ξ 2
λ̄
τ 2
λ̄

− 32ξ 5
λ̄
τ 3
λ̄(

1 + 16ξ 2
λ̄
τ 2
λ̄

)2

⎞
⎠, (D8)

A2Fλ(ξ ) = 2ξ 3
λ τλ

1 + 16ξ 2
λ τ 2

λ

+ α̃λ

⎛
⎝ 2ξ 3

λ τλ

1 + 16ξ 2
λ τ 2

λ

− 64ξ 5
λ τ 3

λ(
1 + 16ξ 2

λ τ 2
λ

)2 − 8πξ 4
λ τ 2

λ

1 + 16ξ 2
λ τ 2

λ

− 4πβ̃λ̄ξλτλξ
3
λ̄
τλ̄

(
1 − 16ξ 2

λ̄
τ 2
λ̄

)
(
1 + 16ξ 2

λ̄
τ 2
λ̄

)2

⎞
⎠

− 4α̃2
λξ

4
λ τ 2

λ

π + 6ξλτλ − 32ξ 3
λ τ 3

λ − 256πξ 4
λ τ 4

λ(
1 + 16ξ 2

λ τ 2
λ

)3 + β̃λ̄ξ
3
λ̄
τλ̄

1 − 16ξ 2
λ̄
τ 2
λ̄(

1 + 16ξ 2
λ̄
τ 2
λ̄

)2 − 8β̃2
λ̄
ξ 5
λ̄
τ 3
λ̄

3 − 16ξ 2
λ̄
τ 2
λ̄(

1 + 16ξ 2
λ̄
τ 2
λ̄

)3 , (D9)

A+(ξ ) =
∑

λ

β̃λ

[
ξ 3
λ τλ

1 + 16ξ 2
λ τ 2

λ

− 32ξ 5
λ τ 3

λ(
1 + 16ξ 2

λ τ 2
λ

)2 − 8πξ 4
λ τ 2

λ

1 + 16ξ 2
λ τ 2

λ

+α̃λ

(
1024ξ 7

λ τ 5
λ(

1 + 16ξ 2
λ τ 2

λ

)3 − 48ξ 5
λ τ 3

λ(
1 + 16ξ 2

λ τ 2
λ

)2 + 128πξ 6
λ τ 4

λ(
1 + 16ξ 2

λ τ 2
λ

)2 − 4πξ 4
λ τ 2

λ

1 + 16ξ 2
λ τ 2

λ

)
+β̃λ̄

(
128πξ 5

λ ξλ̄τ
3
λ τλ̄(

1 + 16ξ 2
λ τ 2

λ

)2 − 4πξ 3
λ ξλ̄τλτλ̄

1 + 16ξ 2
λ τ 2

λ

)]
,(D10)

A−(ξ ) =
∑

λ

β̃λ

[
ξ 3
λ τλ

1 + 16ξ 2
λ τ 2

λ

− 32ξ 5
λ τ 3

λ(
1 + 16ξ 2

λ τ 2
λ

)2 + α̃λ

(
1024ξ 7

λ τ 5
λ(

1 + 16ξ 2
λ τ 2

λ

)
3

− 48ξ 5
λ τ 3

λ(
1 + 16ξ 2

λ τ 2
λ

)2

)]
. (D11)

APPENDIX E: SUPPLEMENT FOR THE DE HAAS–VAN
ALPHEN EFFECT

1. Calculation for 2D parabolic bands

We evaluate the density of states Eq. (30) and show how to
obtain Eq. (31):

ρ(E ) = 1

πLxLy

∑
kx,l,λ

�λ/ωλ(
ξ�
λ − l − 1

2

)2 + �2
λ

=
∑

λ

N��λ

πLxLyωλ

∑
l

1(
ξ�
λ − l − 1

2

)2 + �2
λ

=
∑
λ,k

mλ�λ

2π2
(−1)ke2π ikξ�

λ

∫ ∞

−∞
dl

e2π ikl

l2 + �2
λ

=
∑
λ,k

mλ

2π
sgn(�λ)(−1)ke2π ikξ�

λ R|k|
λ (ξ ). (E1)

The integrals to obtain the zero-temperature thermody-
namic potential Eq. (33) are of the form

�̂(μ) =
∫ ∞

−∞
θ (μ − E ) cos

(
2π

E + W

ωc

)

= ωc

2π
sin

(
2π

μ + W

ωc

)
. (E2)

Hence, the amplitudes for Eq. (A1) read [69]

A1Fλ = − 1

2π2�2
B

, (E3)

A2Fλ = 1

2π2�2
B

(1 − 2πα̃λτλ), (E4)

A+ = − 1

π�2
B(m1 + m2)

(m1β̃1τ1 + m2β̃2τ2). (E5)

054202-14



THEORY OF DIFFERENCE-FREQUENCY QUANTUM … PHYSICAL REVIEW B 108, 054202 (2023)

2. Calculation for relativistic dispersions in 2D

The density of states reads

ρ(E ) =
∑

λ

ξ �
λ√

2πvλ�B

[
1 + 2

∑
k>0

cos
[
2πk

(
ξ�2
λ − �2

λ

)]
Rk

λ

]
.

(E6)
The additional prefactor of ξ�

λ gives rise to the difference
frequency. However the oscillating terms of the prefactor are
small compared to the other oscillations. We take only the
first nonvanishing order into account. After an expansion up
to second order in the Dingle factor, we obtain

ρ(E ) =
∑

λ

A1Fλ cos
(
2πξ 2

λ

)
RDλ(ξ )

+
∑

λ

A2Fλ cos
(
4πξ 2

λ

)
RDλ(ξ )2

+ A+ cos
(
2π

[
ξ 2

1 + ξ 2
2

])
RD1(ξ )RD2(ξ )

+ A− sin
(
2π

[
ξ 2

1 − ξ 2
2

])
RD1(ξ )RD2(ξ ) (E7)

for the oscillating part of the density of states. The amplitudes
read

A1Fλ =
√

2ξλ

πvλ�B
, (E8)

A2Fλ =
√

2ξλ

πvλ�B
− 4

√
2

νλ�B
ξ 2
λ α̃λτλ, (E9)

A+ = −4
√

2

�B

(
ξ 2

1 β̃1τ1

v1
+ ξ 2

2 β̃2τ2

v2

)
, (E10)

A− = 1√
2π�B

(
β̃1τ1

v1
− β̃2τ2

v2

)
. (E11)

Note that the amplitude of the difference frequency is of order
O( A−

A+
) ≈ 1

ξ 2 and cancels exactly for equal band parameters.
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