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Enhancement of superconducting fluctuations in a correlated
electron system coupled to the lattice
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Using the exact Bethe ansatz solution, a one-dimensional correlated electron system coupled to the lattice is
considered. Electrons belonging to two orbital bands interact via the exchange coupling. It is shown that the
coupling to the lattice strains can produce a phase transition to the state in which the degeneracy in the orbital
filling is removed. In such a state the formation of superconducting correlations is enhanced. The influence of
the external magnetic field on the transition is studied.
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I. INTRODUCTION

In recent years, physicists have investigated correlated
electron systems with nonstandard ordering. One example
of a system with nonconventional ordering is the so-called
nematic electron system with rotational symmetry breaking.
Systems with broken rotational symmetry are similar to or-
dered states of molecules in liquid crystals [1] where the
distinguished orientation is present. However, unlike, e.g., the
magnetization (the order parameter in magnetically ordered
systems), a vector, which violates the time-reversal symmetry,
the order parameter in nematic systems is a director [2], which
violates the rotational O(3) symmetry. Nematic properties
were observed in many correlated electron materials, such as
rare-earth insulators [3], heavy-fermion systems [4], and iron-
based superconductors [5–8]. Among other unconventional
superconductors, iron-based strongly correlated electron sys-
tems manifest many interesting phenomena caused by the
competition between different electronic interactions and their
multiband structure [9]. Large intra-atomic exchange caused
by the Hund interaction in those materials [10,11] yields a
high level of orbital dependency of their properties [12]. For
example, the excitation bands related to the dxz and dyz orbitals
have metallic character, while the dxy orbital is believed to
be more insulating. Due to such a symmetry breaking, elec-
tronic properties can be influenced; see, e.g., studies of the
orbital-dependent pairing [13] and angle-resolved photoemis-
sion spectra [14]. For instance, the iron-based material FeSe,
due to a relatively high transition temperature, manifests prop-
erties that can be caused by the presence of nematic, maybe
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magnetic, and superconducting orderings, such as orbitally
dependent band shifts which can affect pair formation, a high
level of electron-electron correlations, and electronic nematic
behavior. It is important to stress that FeSe becomes super-
conducting at 9 K, at temperatures below the temperature of
the phase transition to the orthorhombic lattice state (at 90 K)
[15], at which, e.g., the dxz and dyz orbitals have to manifest
different properties from the dxy orbital. The origin of super-
conductivity, in particular of the pairing between electrons in
iron-based superconductors, remains an open question. There
exists a suggestion to use, for the explanation of pairing, spin
and orbital nematic fluctuations [16,17], based on various ex-
perimental findings for iron-based superconducting materials.
For example, some theories emphasize the role of the Hund
interaction, i.e., the exchange interaction there [18,19].

For one-dimensional quantum correlated electron models,
exact quantum mechanical solutions are known [20]. Integra-
bility permits one to obtain theoretically their characteristics
exactly. On the other hand, features of the one-dimensional
density of states enhance quantum and thermal fluctuations
there. Those fluctuations often destroy the long-range order-
ing for quantum systems with gapless excitations for nonzero
temperatures [21]. However, in the ground state, some one-
dimensional quantum systems with gapped excitations can
manifest a long-range ordering [22,23], with quantum phase
transitions between ordered and disordered phases. Also, for
correlated electron systems with emerging gapless excita-
tions, correlation functions decay with distance and time
algebraically (this decay is slower than the exponential de-
cay for systems with only gapped excitations), and therefore
correlations between particles are very strong there.

Our study is motivated by effects of nematicity observed
in iron-based superconducting materials, i.e., the breaking of
the rotational symmetry. Due to the change in the symmetry,
probably caused by orthorhombic lattice distortions, itiner-
ant electron bands related to different orbitals can play an
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important role in the onset of superconducting correlations.
In this paper we study the effect of the lattice distortions on
the electronic properties of the correlated electron system. For
this purpose we use a one-dimensional model that is exactly
solvable by the Bethe ansatz, in which both orbital and spin
degrees of freedom of itinerant electrons which interact via
the exchange (Hund-like) coupling are taken into account ex-
actly. Naturally, a one-dimensional model cannot describe the
behavior of iron-based superconducting materials. Nonethe-
less, we believe that some features of the pair formation and
their stability—in particular, caused by the external magnetic
field and the interaction with the lattice distortions, which
can be obtained exactly in the framework of the considered
model—can shed additional light on the nature of the su-
perconductivity there. Most other theoretical methods, used
for the description of such systems, are either perturbative,
like the diagrammatic technique, or based on mean-field-like
schemes or Ginzburg-Landau-like theories. In the latter the
interaction between the nematicity and superconductivity can
be considered only as the coupling between related order
parameters and often cannot rely on the microscopic origin of
those two effects. On the other hand, using our exact results,
it will be more clear how to construct a Ginzburg-Landau-like

theory for a more realistic three-dimensional model, in which
pair creation and pair stability follow from the mechanism
of interaction between electrons belonging to bands formed
by different orbitals. In our approach the nematicity is taken
into account via the splitting of the itinerant electron bands:
The anisotropy of the lattice induces different potentials (e.g.,
the action of the crystalline electric field) of ions affecting
itinerant electrons. We study how the interaction of the one-
dimensional correlated electrons with the lattice can strongly
influence superconducting fluctuations of correlated electrons.
We show that due to the electron-lattice coupling, orbital
degeneracy (equal filling of orbital bands) is lifted and, as a
result, the effective coupling between electrons in Cooper-like
spin singlet pairs is enhanced. We also study the influence
of the external magnetic field on the considered effect. The
effects predicted in this paper can also be related to some
valence skipping materials with antiferromagnetic exchange
(Hund-like) couplings, such as fullerides, etc.

II. EXACTLY SOLVABLE MODEL

Let us consider the one-dimensional correlated electron
system which can be described by the Hamiltonian

H0 =
∑
m,σ

∫
dxc†

m,σ (x)

[
∂2

∂x2

]
cm,σ + c

∑
m,m′,σ,σ ′

∫
dx1

∫
dx2δ(x1 − x2)c†

m,σ (x1)c†
m′,σ ′ (x2)cm′,σ (x2)cm,σ ′ (x1)

− H

2

∑
m

∫
dx[c†

m,↑(x)cm,↑(x) − c†
m,↓(x)cm,↓(x)] + D

∑
m,σ

(−1)m
∫

dxc†
m,σ (x)cm,σ (x), (1)

where c†
m,σ (x) [cm,σ (x)] creates (destroys) the electron with

the coordinate x; spin σ = ↑,↓, which belongs to the orbital
band, enumerated by the index m = 1, 2; c > 0 is the ex-
change coupling constant; H is the external magnetic field;
and D is the parameter which determines the splitting be-
tween orbital bands. Notice that nonzero D produces different
chemical potentials μ ± D (μ is the chemical potential) for
electrons belonging to each orbital band. It is supposed that
electrons in each orbital band have equal masses (equal to
1/2). The interaction is of the exchange (Hund-like) type.
Notice, however, that in atomic physics, Hund’s exchange
coupling yields the maximum spin value of the electrons
filling the orbital. Similar behavior, in which Hund’s exchange
produces the maximal value of the total spin, is characteristic
for the so-called Hund metals [24]. In our model, instead, the
choice of the sign of the exchange constant c is such that it
produces the minimum value of the spin of coupled electrons.
In particular, it produces the formation of spin singlet pairs,
characteristic for iron-based superconducting materials. On
the other hand, the sign of the exchange constant, characteris-
tic of the Hund’s coupling, will produce spin triplet pairing
[25], which has not been observed in iron-based supercon-
ducting materials, at least as of yet. For the derivation of the
Hamiltonian H0 from general grounds, see Appendix A.

Within the considered model, electrons with the same or-
bital index (and with opposite spins) experience an attraction,
while for electrons with equal spins but with different orbital
indices the interaction is repulsive. The model is known to
be integrable [26], as the particular case of the more gen-
eral one-dimensional model of particles with two indices and
the local exchange interaction. The model is reduced to the
one of the integrable one-dimensional Fermi gas with the
δ-function repulsion [27,28] in the spin-polarized magnetic
field, in which electrons with only one spin projection play
a role. On the other hand, the model is reduced to the one of
the integrable one-dimensional Fermi gas with the δ-function
attraction for the only one orbital band filled.

The details of the exact Bethe ansatz solution for the
system described by the Hamiltonian H0 are presented in
Appendix B.

III. THE GROUND STATE BEHAVIOR

We describe the ground state properties of the correlated
electron model by studying the solution of coupled integral
equations for so-called dressed energies [29]. The dressed
energies are the energies of states, related to the densities
(see Appendix B), “dressed” due to the electron-electron
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interactions. These integral equations are

ε(k) = k2 − μ − H

2
+ D −

∫ Q

−Q
dλa1(λ − k)ψ (λ) +

∫ A1

−A1

dξa1(ξ − k)κ1(ξ ) +
∫ A2

−A2

dξa2(ξ − k)κ2(ξ ),

ψ (λ) = 2

[
λ2 − c2

4
− μ + D

]
−

∫ Q

−Q
dλ′a2(λ′ − λ)ψ (λ′) −

∫ B

−B
dka1(k − λ)ε(k) +

∫ A1

−A1

dξa2(ξ − λ)κ1(ξ )

+
∫ A2

−A2

dξ [a1(ξ − λ) + a3(ξ − λ)]κ2(ξ ),

κ1(ξ ) = −2D +
∫ Q

−Q
dλa2(λ − ξ )ψ (λ) +

∫ B

−B
dka1(k − ξ )ε(k) −

∫ A1

−A1

dξ ′a2(ξ ′ − ξ )κ1(ξ ′) −
∫ A2

−A2

dξ ′[a1(ξ ′ − ξ )

+ a3(ξ ′ − ξ )]κ2(ξ ′),

κ2(ξ ) = −4D +
∫ B

−B
dka2(k − ξ )ε(k) +

∫ Q

−Q
dλ[a1(λ − ξ ) + a3(λ − ξ )]ψ (λ) +

∫ A1

A1

dξ ′[a1(ξ ′ − ξ ) + a3(ξ ′ − ξ )]κ1(ξ ′)

−
∫ A2

−A2

dξ ′[2a2(ξ ′ − ξ ) + a4(ξ ′ − ξ )]κ2(ξ ′). (2)

Here, ε(±B) = 0, ψ (±Q) = 0, κ1(±A1) = 0, and κ2(±A2) =
0, i.e., ±B, ±Q, and ±A1,2 play the role of Fermi points for
low-energy excitations.

Other eigenstates of the model are gapped. The ground
state energy can be written as

E

L
≡ e0 = 1

2π

[ ∫ B

−B
dkε(k) + 2

∫ Q

−Q
dλψ (λ)

]
. (3)

The ground state Bethe ansatz equations (2) and (B6) can
be solved numerically by replacing the integrals by corre-
sponding sums. The integral equations are transformed into
systems of linear algebraic equations which can be solved
numerically. In all calculations we set c = 1.

The obtained dependencies of magnetization per particle
mz = Mz/N and the difference in the population of the bands
per particle l = L/N as a function of applied magnetic field H
at different values of chemical potential μ and band-splitting
parameter D are presented in Figs. 1–4. Figures 2 and 3
demonstrate the dependencies Mz/N on H in the low-field
limit. There one can see two critical values of the magnetic
field in the mz(H ) dependence. The lowest feature corre-
sponds to the gap (� = 2H (1)

c ) for unbound electron states.
For H < H (1)

c the Fermi sea for unbound electron states is
empty (B = 0). On the other hand, the high-field feature is
related to the closing of the Fermi sea for Cooper-like spin sin-
glet (and orbital triplet) pairs (Q = 0), which become gapped
for H > H (2)

c , where the spin-polarized phase takes place. At
those critical values of the magnetic field, quantum phase tran-
sitions take place. The situation is reminiscent of the one for
the type-II superconductors: For H < H (1)

c only Cooper-like
spin singlet pairs play the main role in the low-energy prop-
erties, for H > H (2)

c only unbound electron states matter, and,
finally, for H (1)

c < H < H (2)
c the mixed state takes place. The

difference compared with the usual superconductors is natural
for one-dimensional systems: Only quantum phase transitions
take place in the considered correlated electron model. The
lowest critical value H (1)

c decreases with the increase in the
band-splitting parameter D, while the field of the spin-flip

transition (H (2)
c ) increases with D. The critical values of the

magnetic field H (1,2)
c exist even for the situation in which all

electrons belong to one orbital band. However, for a nonzero
difference in the population of the bands, additional quantum
phase transitions (critical values of the magnetic field) take
place. Also, the magnetic field dependence of the difference

FIG. 1. The dependence of the projection of the magnetic mo-
ment per electron mz and the difference in the population of the
orbital bands per electron l on magnetic field H at c = 1 and μ = 0.
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FIG. 2. μ = 0. The dependence of mz on H in the limit of small
values of the magnetic field H � 1. One can see that the lower
critical value of the magnetic field H (1)

c in the dependence decreases
with the increase in orbital band-splitting parameter D.

in the population of orbital bands also manifests features at
those quantum critical points, at which A1 and A2 become
zero: At those quantum phase transitions the Fermi seas for
orbital strings with m = 1, 2 become empty.

The increase in the chemical potential does not change
qualitatively the ground state behavior of the projection of
the magnetic moment and the difference in the population of
the orbital bands. The values of the magnetic field at which

FIG. 3. The same as in Fig. 1, but for μ = 1.

FIG. 4. The same as in Fig. 2, but for μ = 1.

quantum phase transitions take place are renormalized due to
the change in μ.

The dependencies of the lower (H (1)
c ) and upper (H (2)

c )
critical values of the magnetic field on the splitting parameter
D for μ = 0 and μ = 1 are presented in Figs. 5 and 6.

We have also calculated the dependencies of critical values
of splitting parameters D(1)

c and D(2)
c on the magnetic field H

(see Fig. 7). These critical values correspond to the vanishing
of interorbital band states, i.e., to the Fermi points for κ1 and
κ2 [see (2)]. Notice that the dependencies of D(1)

c and D(2)
c

on N at H = 0 were obtained in Ref. [29]. Our results are
in a good agreement with those data. At the critical lines
of quantum phase transitions the ground state magnetic and
orbital susceptibilities manifest square-root singularity, χ ∼
|H − Hc|−1/2 and χL ∼ |D − Dc|−1/2; at the tricritical points
of crossing of two critical lines the singularity exponents
become −3/4.

Of special interest are the magnetic field and splitting pa-
rameter dependencies of the difference in the population of
the orbital bands l = L/N (lower panels of Figs. 1 and 3). If

FIG. 5. The dependencies of the critical values of the magnetic
field H (1)

c and H (2)
c on the band spitting parameter D for μ = 0.
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FIG. 6. The same as in Fig. 5, but for μ = 1.

D < D(1)
c , then l = 0 for all values of the magnetic field H ,

which corresponds to the equal filling of the orbital bands.
If D(1)

c � D � D(2)
c , then l < 1 for all H � 0. For example,

according to Fig. 6 for μ = 1 we have D(1)
c ≈ 0.01 and D(2)

c ≈
0.65, and as seen from Fig. 3, for D = 0.5 (red curve) the
difference in the population of the orbital bands l < 1 for

FIG. 7. The dependencies of the critical values of the orbital
band-splitting parameter D(1)

c and D(2)
c on the magnetic field H at

different values of the chemical potential μ.

(a)

(c) (d)

(b)

FIG. 8. The dependencies of (a) and (b) mz, (c) l , and (d) B, Q,
A1, and A2 on the magnetic field H at μ = 1 and D = 0.5.

all the values of the magnetic field H . This means that both
orbital bands are filled partially (i.e., M < N/2). It should
be noted that just this partial orbital band filling provides a
gain in total energy (3). Otherwise, if D > D(2)

c , there exists
a range of values of the magnetic field H where all electrons
occupy only one band, M = 0 and, hence, l = 1. Then, with
an increase in the magnetic field H a part of the electrons
passes into another orbital band in the limit H → ∞, and we
have again half-filling occupation of the bands (i.e., l = 0).

The analysis of mz(H ) dependencies shows that all the
peculiarities in these curves are related to the appearance or
vanishing of occupied states in the corresponding Fermi seas.
In other words, the corresponding Fermi points B, Q, A1, and
A2 manifest themselves. This means that mz(H ) dependencies
can demonstrate up to four peculiarities related to quantum
phase transitions. For example, the dependence of mz on H
corresponding to μ = 1 and D = 0.5 is presented in Fig. 8(a)
(this curve is the same as the red curve in Fig. 3). As one can
see, there is a gap in the dependence in the range 0 � H �
H (1)

c ≈ 0.05 [see Fig. 8(b)]. This range is marked as range I in
the figure and is associated with the absence of the Fermi sea
for unbound electron states. Hence, in range I, the parameter
B = 0 [see Fig. 8(d), black curve]. Besides, as seen from
Fig. 8(d), the Fermi sea corresponding to κ1 has vanished, and
A1 = 0 (green curve). In range II the Fermi sea for unbound
electron states appears, and thus B > 0. At H ≈ 1.9, one can
see a peculiarity in mz = Mz/N and l = L/N dependencies
[see Figs. 8(b) and 8(c)], which correspond to the vanishing
Fermi sea corresponding to κ2 (i.e., A2 = 0). In range II the
number of unbound electron states increases (black curve),
and the number of Cooper-like spin singlet pairs decreases
(red curve). At H = H (2)

c ≈ 6.5 the Fermi sea for Cooper-like
spin singlet pairs vanishes, and therefore Q = 0 (red curve).

IV. COUPLING TO THE LATTICE: PHASE TRANSITION

As we discussed above, the ions in the lattice produce
different potentials (e.g., via the crystalline electric field)
for itinerant electrons filling bands with different orbital in-
dices. Let us consider a coupled electron-lattice system whose
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FIG. 9. The dependence of energy e0 and difference in the pop-
ulation per particle l on the band-splitting parameter D for μ = 0,
c = 1, and H = 0, 1, 3.

Hamiltonian can be written as

H = H0 + L
Cε2

2
, (4)

where C is the elastic modulus, related to the strain ε, and
D = aε, where a is the electron-lattice coupling constant. For
example, the strain εxx − εyy (and associated elastic modulus
C66) can be related to the phase transition from the tetragonal
to the orthorhombic phase, as in FeS, or other iron-based
superconductors. Such a strain induces the difference in the
filling of, e.g., dxz and dyz orbital bands with the metallic char-
acter of the behavior. Such a difference is the manifestation
of the orbital nematicity, i.e., the anisotropic behavior of the
characteristics of the system.

We can show that a nonzero value of D yields a decrease
in the energy of the correlated electron subsystem; see Figs. 9
and 10.

On the other hand, a nonzero value of ε produces an in-
crease in the energy of the elastic subsystem. This is why a
gain in the energy of the electron subsystem is compensated
by a loss in the energy of the elastic subsystem. In other words,
a phase transition between the states with zero and nonzero ε

(zero or nonzero D) can take place. This phase transition is
of the Jahn-Teller type: The degeneracy in filling of orbital
bands is lifted due to nonzero D, caused by the lattice strain.

FIG. 10. The same as in Fig. 9, but for μ = 1 and H = 0, 3, 6.

Obviously, at the phase transition we have

CD

a2
= ∂e0

∂D
. (5)

We can define the parameter α = C/a2, which measures the
strength of the influence of the lattice on itinerant electrons.
For weak electron-lattice coupling, α is large, while it is small
for strong electron-lattice interaction. Graphical illustrations
of Eq. (5) are presented in Figs. 11 and 12, in which solu-
tions are presented for the cases of (i) zero magnetic field,
(ii) intermediate magnetic field H (1)

c < H < H (2)
c , and (iii)

strong magnetic field H > H (2)
c for two values of the chemical

potential.
Notice that both H (1)

c and H (2)
c depend on D (see Figs. 5

and 6). According to Figs. 11 and 12, the condition of “in-
termediate values of the magnetic field” (H (1)

c < H < H (2)
c ) is

fulfilled in the total range of D if H is such that H (1)
c (D = 0) <

H < H (2)
c (D = 0). At the same time, the condition H > H (2)

c
cannot be fulfilled in the region of D where l changes from
0 to 1 (see Figs. 5, 11, and 12). So, by the term “strong
magnetic field” we mean the region in which the condition
H > H (2)

c (D = 0) is realized. The same situation takes place
for the “weak magnetic field” region. We mean by this term
the region in which H < H (1)

c (D = 0) takes place.
We can see the following. For zero magnetic field (and,

naturally for the region of weak magnetic fields) there are
only two possibilities. Namely, for α > α(1)

c = 1.54 the de-
generacy between orbital bands is not lifted, and l = L/N = 0
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FIG. 11. Graphical solutions of Eq. (5) for c = 1, H = 0, 1, 3,
and μ = 0: case (i), zero magnetic field; case (ii), intermediate mag-
netic field; case (iii), strong magnetic field.

(weak connection between electron and lattice subsystems;
red line). For α < α(1)

c the degeneracy is totally lifted, and
l = 1 (strong coupling between electron and lattice subsys-
tems; blue line).

For intermediate values of the magnetic field, three possi-
bilities exist. First, for the weak coupling between electron
and lattice subsystems α > α(1)

c = 1.26 the degeneracy be-
tween orbital bands is not lifted (red line). For the intermediate
coupling α(1)

c > α > α(2)
c = 1.11 the degeneracy is partly

lifted, and 0 < l < 1 (green line). For the strong coupling
α < α(2)

c the degeneracy between orbital bands is totally lifted
l = 1 (blue line).

FIG. 12. The same as in Fig. 11, but for μ = 1 and H = 0, 3, 6.

The case of a strong magnetic field (H = 3) is analogous to
the small-field case. First, for the weak coupling between elec-
tron and lattice subsystems α > α(1)

c = 0.4 the degeneracy
between orbital bands is not lifted, and l = 0 (red line). For
the strong coupling α < α(2)

c = 0.38 the degeneracy between
orbital bands is partly lifted, and 0 < l < 1 (blue line). For
strong magnetic fields the solutions related to the total lifting
of the degeneracy are not realized.

The situation for μ = 1 is similar to the case μ = 0 for
small and intermediate values of the magnetic field, except
that critical values of the parameter α are renormalized. The
qualitative difference from the case μ = 0 described above
appears only for large fields H = 6, for which the situation is
reminiscent of the intermediate-field case. For weak coupling
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between the electron subsystem and the lattice subsystem,
one has l = 0 (red line), and orbital bands are degenerate.
For strong coupling the degeneracy of the orbital bands is
totally lifted, and l = 1 (blue line). For intermediate values of
the parameter α the degeneracy of the orbital bands is partly
lifted, so that 0 < l < 1 (green line). Again, similar to the
case μ = 0, the solutions related to the total lifting of the
degeneracy for strong magnetic fields are not realized.

Hence, due to the coupling between the correlated electron
subsystem and the lattice, the strains in the latter cause the
phase transition from the state with equal populations of the
orbital bands to the states with partial populations, and with
one orbital band depopulated. This phase transition is related
to the onset of the nonzero value of the parameter D, pro-
portional to the strain of the lattice, e.g., via the crystalline
electric field, which regulates the relative population of the
orbital bands. We can see how that phase transition changes
the “superconducting” properties of the considered system.
For example, for weak magnetic fields only Cooper-like spin
singlet pairs exist. For the state with zero L those states behave
as free (noninteracting) particles with the critical exponent
for the correlation function (it decays as x−γ ) γ = 1 [29].
On the other hand, if due to the nonzero strain the correlated
electron subsystem is in the state with all electrons filling one
orbital band, then the Hund-like interaction between electrons
(the effective attraction between electrons with different spin)
yields a decrease in the value of the critical exponent to
the value 1/2 � γ � 1, depending on the band filling (for
the calculation of the asymptote of low-energy correlation
functions of the considered correlated electron model, see,
e.g., Ref. [30]). For the intermediate magnetic field case the
calculation of the exponent is more complicated. For instance,
at large values of c, one can write γ = 1 − N (1 − 2mz )/
2L|c| � 1. This means that superconducting correlations de-
cay more slowly for the totally filled orbital band than for the
case of the degenerate orbital band filling. It is important to
point out that the features of the considered system in the
domain H (1)

c < H < H (2)
c can be related to the behavior of

Hund’s impurity systems studied recently [31,32], according
to which an intermediate spin-orbital selective phase may
occur as a function of the temperature (and possibly as a
function of external magnetic field at zero temperature). In
that intermediate magnetic field domain, orbital degrees of
freedom are quenched (in our approach due to the coupling to
the lattice), but the spin still fluctuates. Hence the influence of
the lattice enhances the effective attraction between electrons
and the formation of the Cooper-like spin singlet pairs for
correlated electrons with the exchange coupling. On the other
hand, the nonzero value of D decreases the value of H (1)

c , and
increases the value of H (2)

c , enlarging the range of magnetic
fields in which superconducting correlations take place.

V. SUMMARY

In summary, motivated by observations in iron-based
superconductors which reveal the nematicity of electron
characteristics perhaps related to the lattice symmetry, we
have studied a system which consists of a one-dimensional
subsystem of correlated electrons and the lattice. The corre-
lation between itinerant electrons filling two orbital bands is

supposed to be of the exchange type. The model for correlated
electrons is integrable. Using the exact quantum mechan-
ical solution, we have considered the interaction between
the strains of the lattice and correlated electrons. We pre-
dict that such an interaction yields the Jahn-Teller-like phase
transition, in which strains lift the orbital degeneracy of
correlated electron bands. Due to the phase transition the
itinerant electrons fill one of the orbital bands, while the
other becomes empty. As a result, the formation of the su-
perconducting correlations is enhanced, and the diapason of
the values of the magnetic field, in which Cooper-like sin-
glet pairs can exist, becomes larger. Naturally, the considered
one-dimensional model cannot be directly applied to the de-
scription of iron-based superconductors. However, we believe
that a similar mechanism can be applicable for more realistic
models (which, on the other hand, do not permit exact quan-
tum mechanical solutions).
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APPENDIX A

In this Appendix we show the origin of the considered
Hamiltonian.

It is standard to consider ions of solids forming a static
lattice. In this approach, one can write the approximate form
of the general Hamiltonian of itinerant electrons in a crystal
as [33–35]

HG =
∑

j

[
p2

j

2me
+ V (x j )

]
+

∑
i, j

U (xi − x j ), (A1)

where x j is the coordinate of the jth electron, p j is its mo-
mentum, me is the mass of the electron, V (x j ) is the periodic
potential of ions, and U (xi − x j ) is the screened Coulomb
interaction between the electrons. Let us denote the first term
in HG as HG0. It is obviously the one-electron part of the
Hamiltonian. The eigenfunctions of HG0 are Bloch functions
ϕmk(x) = exp(ikx)umk(x), where m is the band number, k is
the quasimomentum running over the first Brillouin zone, and
umk(x) is the periodic function.

On the other hand, one can use the other basic eigenfunc-
tions for the Hamiltonian HG0, namely, the Wannier functions
φm(x − R j ), where R j denotes the position of the jth ion. The
Bloch functions can be written as the Fourier transforms of
the Wannier functions ϕmk(x) = L−1/2 ∑

R j
exp(ikR j )φm(x −

R j ), where L is the number of lattice sites.
Introduction of the operators a†

mk,σ (amk,σ ), which create
(destroy) the electron in the Bloch state ϕmk(x) in the mth
band with the spin σ = ↑,↓ and the quasimomentum k, and
their Fourier transforms a†

m j,σ (am j,σ ) permits us to rewrite the
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Hamiltonian HG in the second quantized form as

HG =
∑

j, j,m,σ

tmi j (a
†
mi,σ am j,σ + H.c.) + 1

2

×
∑

i, j,r,q

∑
m,m′,l,l ′,σ,σ ′

U mm′ll ′
i jrq a†

mi,σ a†
m′ j,σ ′alr,σ ′al ′q,σ , (A2)

where

tmi j =
∫

d3xφ∗
m(x − Ri )

[
p2

2me
+ V (x)

]
φm(x − Ri ) (A3)

are the hopping elements, and the overlap integrals U mm′ll ′
i jrq can

be written as

U mm′ll ′
i jrq =

∫
d3x

∫
d3yφ∗

m(x − Ri )φ
∗
m′ (y − R j )

× U (x − y)φl (x − Rr )φl ′ (y − Rq). (A4)

Notice that some of the overlap integrals are zero due to
symmetry reasons. It is commonly accepted to use the defi-
nitions for some overlap integrals such as U = U mmmm

i ji j , U ′ =
U mm′mm′

i ji j , and J = U mmm′m′
ii,kk , which are known as the intraband

and interband Coulomb and exchange constants, respectively.
One can take into account possible nonzero overlap (simi-

lar to the known approach for the hydrogen molecule [36,37])
of Bloch functions in different bands Y = ∫

d3xφ∗
m(x)φm′ (x).

This yields the renormalization of the overlap
integrals Ũ mm′ll ′ as

Ũ mm′mm′
i ji j = U mm′mm′

i ji j −
∫

d3xU (x − Ri)|φm(x)|2

−
∫

d3xU (x − Rj)|φm′ (x)|2,

Ũ mm′m′m
ii j j = U mm′m′m

i ji j − Y
∫

d3xU (x − Ri)φ
∗
m(x)φm′ (x)

− Y
∫

d3xU (x − Rj)φ
∗
m′ (x)φm(x), (A5)

for the Hubbard and exchange interband integrals, respec-
tively. In particular, the nonzero overlap of the interband
Bloch functions can produce not only positive but also neg-
ative values of some renormalized overlap integrals.

It is possible to define the operators

c†
m,σ (x) =

∑
k

ϕ∗
mk(x)a†

mk,σ =
∑

j

φ∗
m(x − R j )a

†
m j,σ ,

cm,σ (x) =
∑

k

ϕmk(x)amk,σ =
∑

j

φm(x − R j )am j,σ . (A6)

Due to the space homogeneity, one can rewrite the overlap
integral Ũ mm′ll ′

i ji j = Ũ mm′ll ′ (xi, y j ) as Ũ mm′ll ′ (x − y), and using
these creation and destruction operators, we can rewrite the
Hamiltonian as

HG =
∑
m,σ

∫
d3xc†

m,σ (x)

[
p2

2me
+ V (x)

]
cm,σ (x)

+ 1

2

∑
m,m′,l,l ′,σ,σ ′

∫
d3x

∫
d3yc†

m,σ (x)c†
m′,σ ′ (y)

× Ũ mm′ll ′ (x − y)cl,σ ′ (y)cl ′,σ (x). (A7)

For instance, for the case of a single band and only intra-
site electron-electron interactions (with the assumption that
intersite interactions are small) it is possible to write the
Hamiltonian as

HH =
∑
i j,σ

ti j (a
†
i,σ a j,σ + H.c.) + U

2

∑
i,σσ ′

a†
i,σ a†

i,σ ′ai,σ ′ai,σ ,

(A8)

in which the intrasite Coulomb integral is defined as U . Such
a Hamiltonian is known as the Hubbard Hamiltonian [38]. For
the one-dimensional situation with nonzero hopping elements
for the nearest-neighbor sites it is reduced to the exactly solv-
able model [39]

HH = −t
∑
j,σ

(a†
j,σ a j+1,σ + H.c.) + U

∑
j

n j,↑n j↓, (A9)

where n j,σ = a†
j,σ a j,σ .

In the continuum limit (see, e.g., Ref. [40]) the one-
dimensional multiband Hamiltonian with only intrasite
electron-electron interactions (others are assumed to be small)
can be written as

HG ≈ a2
∑
m,σ

tm

∫
dxc†

m,σ (x)
∂2

∂x2
cm,σ (x)

+ 2a
∑

m,m′l,l ′,σ,σ ′

∫
dx

∫
dyδ(x − y)c†

m,σ (x)c†
m′,σ ′ (x)

× Ũ mm′ll ′ (x − y)cl,σ ′ (y)cl ′,σ (y), (A10)

where a is the intersite distance. For a single band in the one-
dimensional case it reduces to the Hamiltonian of the one-
dimensional Fermi gas with the δ-function interaction, which
permits the exact solution [27,28].

The Hamiltonian H0 of the main text is the special case
of this Hamiltonian for two bands with the same hopping ele-
ments for each band and the nonzero renormalized interband
exchange integral (other overlap integrals are assumed to be
zero).

APPENDIX B

In this Appendix we show the features of the exact Bethe
ansatz solution for the correlated electron system with the
Hamiltonian H0.

It was shown [26] that the two-particle scattering matrix
has the form

Ŝ(k) = kÎσ − icP̂σ

k − ic

kÎm + icP̂m

k + ic
, (B1)

where k is the difference between quasimomenta of two elec-
trons, Îσ is the unity matrix in the spin subspace, P̂σ is the
permutation operator in the spin subspace, Îm is the unity
matrix in the orbital subspace, and P̂m is the permutation op-
erator in the orbital subspace. Each factor is 1 when applied to
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the triplet state (with maximal spin or orbital moment) in the
spin or orbital subspace. Therefore the two-particle scattering
matrix acts nontrivially on the singlet (with minimal spin or
orbital moment) spin or orbital parts of the wave function
of electrons. Obviously, the two-particle scattering matrix
factorizes (i.e., it acts independently) in the spin and orbital
subspace. The two-particle scattering matrix in each subspace
satisfies the Yang-Baxter equation (see, e.g., Ref. [20]), and
therefore the model is Bethe ansatz integrable.

Within the Bethe ansatz scheme each eigenstate of the
system described by the Hamiltonian H0 is determined by the
set of quantum numbers called rapidities. The charge rapidi-
ties (quasimomenta of electrons) {k j}N

j=1, with N being the
number of electrons, describe the excitations with the charge
transfer. The spin rapidities {λα}M

α=1, with M being the num-
ber of electrons with spin ↓, describe the excitations, which
change the spin of the system. Finally, the orbital rapidities
{ξβ}Mβ=1, with M being the number of electrons in the second
orbital band (we use 0 � M � N/2; for other values of filling
of orbital bands, one can interchange indices 1 and 2 and
D → −D), describe excitations with the change in the orbital
moment. For the periodic boundary conditions in the ring of
length L the rapidities satisfy the set of Bethe ansatz equations

eik j L =
M∏

α=1

X −1
c/2 (k j − λα )

M∏
β=1

Xc/2(k j − ξβ ),

j = 1, . . . , N,

N∏
j=1

Xc/2(λα − k j ) = −
M∏

q=1

Xc(λα − λq),

α = 1, . . . , M,

N∏
j=1

Xc/2(ξβ − k j ) = −
M∏
q=1

Xc(ξβ − ξq),

β = 1, . . . ,M, (B2)

where

Xn(u) = u + in

u − in
. (B3)

Due to the Fermi-Dirac nature of wave functions all rapidities
within a given set have to be different to guarantee the lin-
ear independence of eigenfunctions. The energy of the state,
which is described by the set of rapidities, is equal to

E =
∑

j

k2
j − HMz − DL. (B4)

Here, the projection of the total spin is Mz = (1/2)(N − 2M ).
On the other hand, the value L = N − 2M is the difference
in the population of two bands with different orbital indices.
In fact, it determines the nematicity of the considered model,
because it is caused by the anisotropy of the ion potentials in
the crystal lattice.

If M = 0, the model reduces to the one of the integrable
one-dimensional Fermi gas with δ-function repulsion [27,28].
If M = 0, the model reduces to the one of the integrable one-
dimensional Fermi gas with δ-function attraction.

As usual, one-dimensional quantum many-body systems
reveal their most important behavioral features in the ground
state. In Ref. [29] it was shown that the solutions to the set
of Bethe ansatz equations can be classified as follows. First,
there exist N − 2M̂ solutions with real charge rapidities k j ,
which describe unbound electron states. Second, there ex-
ist M̂ solutions with complex-conjugate pairs k = λ ± ic/2,
which describe spin singlet orbital triplet Cooper-like pairs.
Then there exist M ′

n string solutions of the length n − 1,
λ = λ′

n + ic(n + 1 − 2p)/2 (with p = 1, . . . , n), which de-
scribe spin-transferring bound states. Finally, there exist m′

n
string solutions of the length n − 1, ξ = ξ ′

n + ic(n + 1 −
2p)/2 (with p = 1, . . . , n), which describe bound states of
the transfers between orbital bands. Here, λ′

n and ξ ′
n are

real; they describe the transfer of the center of mass of the
bound state. The imaginary part for bound states describes
the relative movement (it is imaginary, which means that
the wave function decays with the increase in the distance
between excitations bound into the string). The number of so-
lutions satisfies the following relations: M − M̂ = ∑∞

n=1 M ′
n

and M = ∑∞
n=1 m′

n. The ground state of the model is formed
by the filling of Fermi seas (as usual for electrons), in
which eigenstates with negative energies are totally filled and
ones with positive energies are empty, for four states [29],
namely, for unbound electrons, Cooper-like pairs, and orbital-
transferring states with n = 1, 2.

In the thermodynamic limit, where L, N, M,M → ∞ with
the ratios N/L, M/L, and M/L being finite, one can replace
the large set of Bethe ansatz equations by the small set of
integral equations. Let us define ε(k) as dressed energy of the
unbound electron states with the density of rapidities ρ(k),
ψ (λ) as dressed energy of the Cooper-like spin singlet orbital
triplet pairs with the density of rapidities σ (λ), and κn=1,2(ξ )
as dressed energies of the orbital string states with n = 1, 2,
respectively (states related to the transfer between orbital
bands and their bound states), with the densities of rapidities
φn=1,2(ξ ).

Let us denote

an(x) = 1

π

(nc/2)

x2 + (nc/2)2
. (B5)

The ground state integral equations, which describe densities
of rapidities, are [29]

ρ(k) = 1

2π
−

∫ Q

−Q
dλa1(λ − k)σ (λ)

+
∫ A1

−A1

dξa1(ξ − k)φ1(ξ ) +
∫ A2

−A2

dξa2(ξ − k)φ2(ξ ),

σ (λ) = 1

π
−

∫ Q

−Q
dλ′a2(λ′ − λ)σ (λ′)

−
∫ B

−B
dka1(k − λ)ρ(k) +

∫ A1

−A1

dξa2(ξ − λ)φ1(ξ )

+
∫ A2

−A2

dξ [a1(ξ − λ) + a3(ξ − λ)]φ2(ξ ),
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φ1(ξ ) =
∫ Q

−Q
dλa2(λ − ξ )σ (λ)

+
∫ B

−B
dka1(k − ξ )ρ(k) −

∫ A1

−A1

dξ ′a2(ξ ′ − ξ )φ1(ξ ′)

−
∫ A2

−A2

dξ ′[a1(ξ ′ − ξ ) + a3(ξ ′ − ξ )]φ2(ξ ′),

φ2(ξ ) =
∫ Q

−Q
dλ[a1(λ − ξ ) + a3(λ − ξ )]σ (λ)

+
∫ B

−B
dka2(k − ξ )ρ(k)

−
∫ A1

A1

dξ ′[a1(ξ ′ − ξ ) + a3(ξ ′ − ξ )]φ1(ξ ′)

−
∫ A2

−A2

dξ ′[2a2(ξ ′ − ξ ) + a4(ξ ′ − ξ )]φ2(ξ ′). (B6)

The energy E , the number of electrons N , the magnetic
moment Mz, and the difference in population between the first
and the second orbitals L per site (L is the number of sites in
the chain) are

E

L
≡ e0 =

∫ B

−B
dkk2ρ(k) + 2

∫ Q

−Q
dλ[λ2 − (c2/4)]σ (λ)

− μ
N

L
− H

Mz

L
− D

L
L

,

N

L
=

∫ B

−B
dkρ(k) + 2

∫ Q

−Q
dλσ (λ),

Mz

L
= 1

2

∫ B

−B
dkρ(k),

L
L

=
∫ B

−B
dkρ(k) + 2

∫ Q

−Q
dλσ (λ)

− 2
∫ A1

−A1

dξφ1(ξ ) − 4
∫ A2

−A2

dξφ2(ξ ). (B7)
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