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While the high-temperature thermal transport in crystalline materials has been recently carefully addressed,
it is much less explored for amorphous materials. Most of the existing studies have focused on the low-/mid-
temperature range and have generally found the increasing trend of thermal conductivity with temperature and
converging to a constant value, mainly due to the temperature dependence of heat capacity. In this work, we
investigate the temperature-dependent thermal conductivity of amorphous HfO2 with three different methods,
including molecular dynamics, the Allen-Feldman theory, and the quasiharmonic Green-Kubo method, with the
forces extracted from a machine-learning potential parametrized from first principles. While the Allen-Feldman
theory and the quasiharmonic Green-Kubo method show the same temperature dependence trend as the previous
expectation even at high temperatures, molecular dynamics simulations show a clear decreasing trend of thermal
conductivity at high temperatures. By comparing the results from these approaches, we identify that two
anharmonic effects, i.e., thermal expansion and vibrational mode softening, are the mechanisms of the decreased
thermal conductivity of amorphous HfO2 at high temperatures.
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I. INTRODUCTION

Understanding thermal transport in amorphous materials at
high temperatures is of great importance for thermal applica-
tions involving high-power, high-temperature [1], chemically
harsh environments and intense radiation [2]. In the past
decade, mature theoretical frameworks and advanced simu-
lation approaches [3–6] have been devoted to understanding
the thermal transport of crystalline materials at high temper-
atures. The anharmonic effects including phonon renormal-
ization [6–8] and higher-order phonon scattering [3,4] have
been carefully investigated. In amorphous materials, however,
thermal transport properties at high temperatures are much
less explored.

Through the past few decades, many studies have been
carried out to explore the temperature dependence of thermal
conductivity of amorphous materials. Experimental measure-
ments have been conducted for amorphous silicon [9,10],
silica [11,12], silicon nitride [13], and amorphous carbon [14]
and nearly all show that thermal conductivity increases with
temperature. These measurements were almost all conducted
at temperatures below 1000 K. It is generally difficult to
obtain reliable thermal conductivity data above 1000 K, due
to thermal radiation losses [2]. On the other hand, theo-
retical approaches also show a similar increasing trend of
thermal conductivity with temperature. For example, the
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Allen-Feldman (A-F) theory combined with harmonic lat-
tice dynamics calculations shows that thermal conductivity
smoothly increases with temperature until reaching a sat-
urated value [15]. Such a trend is believed to result from
a similar temperature dependence of heat capacity. Recent
molecular-dynamics (MD)-based simulations combined with
quantum correction [16–21] can also lead to a similar trend.
Moreover, Simoncelli et al. [22] have suggested that the
thermal conductivity increases with temperature by an equa-
tion derived from the Peierls-Boltzmann transport equation. It
seems that a consensus on the increasing trend of the thermal
conductivity of amorphous materials has been achieved. How-
ever, it is still unclear how thermal conductivity of amorphous
materials changes at even higher temperatures. We note that,
in a recent MD simulation of amorphous silicon [23], there is
a single data point displaying a decreasing trend of thermal
conductivity with temperatures beyond 600 K. However, it
is unclear whether such a trend is general, and what is the
possible mechanism of thermal transport at high temperature,
which deserves further in-depth investigation.

In this work, we use the homogeneous nonequilibrium MD
(HNEMD) method [24] to calculate the thermal conductiv-
ity of amorphous hafnia (a-HfO2) at high temperatures (up
to 2000 K). In order to accurately model the interatomic
interactions in a-HfO2 at large scales, here we adopt the neu-
roevolution potential (NEP) approach [25], which is one of
the most efficient and accurate machine-learning framework
for constructing interatomic potentials for complex materials
and performing large-scale MD simulations. The HNEMD
results show a decreasing trend of thermal conductivity with

2469-9950/2023/108(4)/045422(8) 045422-1 ©2023 American Physical Society

https://orcid.org/0000-0002-3524-2056
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.045422&domain=pdf&date_stamp=2023-07-28
https://doi.org/10.1103/PhysRevB.108.045422


ZHANG, GU, FAN, AND BAO PHYSICAL REVIEW B 108, 045422 (2023)

temperatures in the high-temperature range, which is different
from the results of the A-F theory and the recently proposed
quasiharmonic Green-Kubo (QHGK) method [20]. We find
that by scaling the vibrational mode frequency and force con-
stants based on a vibrational softening factor and modifying
the calculation volume based on the MD results, quantitative
agreement can be achieved between the HNEMD and the
QHGK methods. The vibrational mode softening and thermal
expansion are, therefore, identified as the mechanisms un-
derlying the decreasing thermal conductivity with increasing
temperature in a-HfO2.

The organization of this paper is as follows. In Sec. II, we
describe the NEP model we trained for a-HfO2, the atomic
models in the calculations, and the methods used for the
thermal transport calculations. In Sec. III, we show the results
of the temperature dependence of thermal conductivity in a-
HfO2 and identify the origin of reduced thermal conductivity
at high temperatures. Finally, the main findings of this work
are summarized in Sec. IV.

II. METHODS

A. The neuroevolution potential

We employ a NEP developed by Fan et al. [25] as a
machine-learning potential to describe the interatomic inter-
actions in HfO2. All MD simulations using the NEP are
performed with the Graphics Processing Units Molecular
Dynamics (GPUMD) package (version 2.9 NEP2) [24]. By
comparing the NEP with state-of-the-art machine-learning
potentials, it has been shown that the NEP method not only
achieves good accuracy, but is also more computationally
efficient [24].The NEP-based extensive MD simulations show
the effectiveness and accuracy of the NEP approach in de-
termining the thermal transport properties of materials [25],
the structural properties of amorphous materials [23], and
the mechanical properties of materials [26] in realistic situ-
ations. The details of the training process can be found in
Refs. [25,27]. The training set for HfO2 consists of 2056
cells collected from Ref. [28], and the dataset parameters
are provided in Table SI of the Supplemental Material [29].
The parameters used for training the NEP are available in
Table SII of the Supplemental Material [29]. The trained
NEP is tested by comparing the energies and atomic forces
predicted by quantum-mechanical density functional theory
(DFT) calculations and NEP predictions, which reveals a
good agreement between the two calculations, as shown in
Fig. 1. We calculate the root-mean-square error (RMSE) of the
energy and the force as 3.8 meV/atom and 107 meV/Å, re-
spectively, which show the NEP is comparable to the Gaussian
approximation potential (force RMSE is 90 meV/Å) [28] in
accuracy. We also validate the NEP described in Sec. S2 of the
Supplemental Material [29]. In this work, the NEP is mainly
used for calculating the thermal conductivity for comparison
and for extracting the second-order and third-order force con-
stants for implementing the A-F theory and QHGK methods.

B. Atomic structure

An atomic structure of a-HfO2 is obtained with a 3.1 ×
3.1 × 3.1 nm3 supercell of cubic HfO2 containing 2596 atoms

FIG. 1. The comparison of (a) the potential energy and (b) force
components between DFT calculations and NEP-based predictions.

undergoing a melt-quench scheme. This domain, which is
applied to the subsequent calculations of thermal conductivity
using the HNEMD method, the A-F theory, and the QHGK
method, is selected after a preliminary size-dependent study
(shown in Fig. S2 of the Supplemental Material [29]) on the
thermal conductivity. A Nose-Hoover thermostat is used for
all melt-quench-anneal process to connect the samples to a
heat reservoir. The initial structure is first heated to 4000 K in
the isothermal-isobaric ensemble (NPT) for 20 ps. The sample
is equilibrated in the canonical ensemble (NVT) for 50 ps
at 4000 K and then quenched to 300 K with the quenching
rate at 7.4 K/ps in the NPT ensemble within 500 ps. All NPT
simulations are performed at zero pressure. For calculating the
thermal conductivity at high temperatures, the initial struc-
ture is first relaxed at the corresponding temperature in the
NPT for 500 ps. The obtained atomic structure is then used
to calculate the thermal conductivity. A typical final sample
structure is shown in Fig. 2(a). To verify the amorphous struc-
tures, we compare the structure factors (See Sec. S4 of the
Supplemental Material for calculation details [29]) with the
experiment [30] as shown in Fig. 2(b). We can find a very good
agreement of our structure factor with that of the experimental
x-ray diffraction experiments [30] for a-HfO2, which confirms
the accuracy of the atomic structures.

FIG. 2. (a) Structure of a-HfO2 generated by MD starting from a
cubic HfO2. Blue spheres are for Hf atoms, and red spheres represent
O atoms. (b) Comparison of x-ray structure factors for a-HfO2. The
blue curve shows experiment structure factors [30] and the red curve
is obtained from MD with the NEP.
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C. Thermal transport calculations using the HNEMD method

We first calculate the thermal conductivity from HNEMD
methods with GPUMD [24], which is an efficient MD-based
method to calculate the thermal conductivity for strongly dis-
ordered systems [23]. Note that displacements from molecular
dynamics at a desired finite temperature are used to calculate
the heat flux, so all orders of anharmonic effect are naturally
considered. In this method, the classical spectral thermal con-
ductivity κ (ω, T ) as a function of the vibrational frequency ω

and the temperature T can be calculated as

κ (ω, T ) = 2

V T Fe

∫ ∞

−∞
eiωt K (t )dt , (1)

where V is the system volume, Fe is the driving force pa-
rameter with the dimension of inverse length, and K (t ) is the
virial-velocity correlation function (details of the calculations
can be found in Ref. [24]). The quantum-corrected thermal
conductivity κq(ω, T ) can be obtained by multiplying the clas-
sical one, κ (ω, T ), with a ratio between quantum and classical
modal heat capacity [17,23],

κq(ω, T ) = κ (ω, T )
x2ex

(ex − 1)2 , x = h̄ω

kBT
, (2)

where h̄ is the reduced Planck constant and kB denotes the
Boltzmann constant.

The thermal conductivity is calculated at zero pressure
with the HNEMD method. Periodic boundary conditions are
applied in all directions for a-HfO2. For all the systems, the
velocity-Verlet integration scheme with a time step of 1 fs
is used. We first equilibrate each system for 2 ns and then
apply the external force for 15 ns. The judicious choices of
the magnitude of Fe for the systems here are presented in
Fig. S3 of the Supplemental Material [29]. In addition, the
equilibrium systems at different temperatures are also used for
volume and phonon density calculations. In the calculation of
thermal conductivity at different temperatures, we randomly
perturbed some atoms of the equilibrium system to obtain
multiple samples. The average thermal conductivity of all
samples is calculated with a proper estimation of the statistical
error.

D. The A-F theory and the QHGK method

The thermal conductivity can be computed using the A-F
theory [15], which is expressed by

k = 1

V

∑
i

Ci(T )Di, (3)

where V is the volume of the system, Ci(T ) is the specific heat
of mode i, and

Ci = kB
x2ex

(ex − 1)2 . (4)

Here, we also calculated the effect of temperature on heat
capacity using MD simulations and the details are presented
in Fig. S4 of the Supplemental Material [29]. We find that at
each atom there is still a contribution to the heat capacity by
3kB at relatively low temperatures, while this value is slightly
higher when the temperature increases. Therefore, we still use

heat capacity theory based on the harmonic approximation
to obtain the classical heat capacity, and we use a quantum
correction to calculate the quantum heat capacity [Eq. (4)], as
has been done in many previous works [15,16,19]. Di is the
diffusivity of mode i. The diffusivities are calculated using

Di = πV 2

3h̄2ω2
i

�=i∑
j

|Si j |2δ(ωi − ω j ), (5)

where Si j is the heat current operator, which measures the
coupling between modes i and j based on the frequency and
spatial overlap of eigenvectors,

Si j = h̄

2V
vi j (ωi + ω j ), (6)

where vi j is the velocity operator and can be computed
through

vi j = i

2
√

ωiω j

∑
α,β

∑
m,l,0

ei,α
l ψ

βα

lo (0)e j,β
o (Rm + Rlo), (7)

where ψ
βα

lo (0) is the dynamic matrix and ei,α
l is the phonon

eigenvector. Rm is the position of cell m, and Rlo is the dis-
tance between atom l and atom o in a cell.

In Eq. (5), δ is the Dirac delta function, which is approxi-
mated by the Lorentzian function,

δ(ωi − ω j ) = η

π [(ωi − ω j )2 + η2]
, (8)

with η being the line-broadening parameter.
In the QHGK method, the mode diffusivities can be ex-

pressed by

Di = 1

3

∑
j

Di j = 1

3

∑
j

∣∣vi j

∣∣2
τi j , (9)

where τi j is the generalized lifetime defined as

τi j = �i + � j

(�i + � j )2 + (ωi − ω j )2
+ O(ε2), (10)

where �i is the linewidth of mode i. The vibrational linewidths
can be computed from the classical limit of the Fermi golden
rule as

�i = π h̄2

8ωi

∑
ml

|V ′′′
j jk|2

ωiω j

[
1

2
(1 + n j + nk )δ(ni − n j − nk )

+ (n j − nk )δ(ni − n j − nk )

]
, (11)

where ni is the Bose-Einstein occupation number of the ith
normal mode and |V ′′′

j jk| is the third derivative of the potential
energy with respect to the amplitude of the lattice distortion
along the lattice normal mode [31].

In the above calculations, the dynamic matrix and the
phonon eigenvector are obtained directly in GPUMD based
on the lattice dynamics method [32]. The third derivative of
the potential energy is obtained using the finite difference
approximation methods [33]. In the QHGK simulations, for
disordered systems thermal conductivity is not very sensitive
to the values of τi [20]; therefore, we scale to systems by
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FIG. 3. Thermal conductivity versus temperature for a-HfO2

using the HNEMD method without or with quantum correction, com-
pared with the A-F theory and the QHGK method. The broadening η

used in A-F theory calculations is set equal for each normal mode.

numerically interpolating �i computed for a 4 × 4 × 4 super-
cell (containing 768 atoms). In order to verify that the initial
structure does not significantly affect the thermal conductivity
results of the A-F theory and the QHGK method, we calculate
the thermal conductivity of three different initial configura-
tions and show that they are similar (shown in Table SIII of
the Supplemental Material [29]).

III. RESULTS AND DISCUSSION

The temperature-dependent thermal conductivity is first
calculated up to 2000 K with the HNEMD method and is
shown in Fig. 3 (denoted as HNEMD_classical). The thermal
conductivity almost continuously decreases with temperature,
which has also been found in other similar works [19,20]. It is
well-known that such an effect is due to the classical nature of
MD simulations [34]. The quantum effect must be considered
at low temperature [19]. On this basis, the quantum-corrected
thermal conductivity is obtained by multiplying the spectral
thermal conductivity with a ratio between quantum and classi-
cal modal heat capacities [23]. The thermal conductivity after
quantum correction is denoted as HNEMD_quantum and is
shown in Fig. 3. We can see that the thermal conductivity
monotonically increases under 800 K, which is consistent
with the previous studies on thermal conductivity of amor-
phous materials [15,17,19,20,22,35]. However, the thermal
conductivity decreases continuously above 800 K. A similar
phenomenon has also been observed in recent works for amor-
phous silicon [20,23].

To identify the origin of reduced thermal conductivity at
high temperatures, we also carried out the frequency domain
analysis, including the A-F theory and the QHGK method.
The A-F theory predicts thermal conductivity based on har-
monic approximation. The anharmonic coupling between
different modes is considered by introducing an empirical
broadening parameter (η). We choose a range of broadening
η that includes the broadening η value calculated using the
averaged-level spacing method [35]. Here, we use a larger

range of linewidths to show that the calculation of the A-F
theory depends on the selection of linewidths. Recently, the
QHGK method was developed to replace this empirical pa-
rameter by a mode-broadening parameter, through weighing
diffusive processes between modes with nearly resonant fre-
quencies to consider the anharmonic effect in the process of
energy transfer [20]. Both methods consider the mode cou-
pling (i.e., the imaginary part of self-energy), but for the time
being we still adopt the zero-temperature mode frequencies
as in previous implementations [20]. As shown in Fig. 3, the
A-F theory and the QHGK method can both predict thermal
conductivity for a-HfO2. In the low-temperature range, the
results for the A-F theory and the QHGK method all agree
well with the HNEMD results. As the temperature increases,
the impact of η in the A-F theory is more significant. For the
QHGK method, even slightly beyond 300 K, the deviation
from HNEMD results is non-negligible. At 2000 K, there is
a more than 20% difference between HNEMD and QHGK
results, which is clearly not due to simulation uncertainty.
Therefore, we suspect that some important physics is missing
in the current implementation of the QHGK method. Mean-
while, by convention, A-F theory and QHGK methods are
based on harmonic approximation, in which the eigenvector
and the eigenvalue are calculated by lattice dynamics at 0 K.
For crystalline materials, it has been shown that phonon renor-
malization can play a role at high temperatures [8]. Therefore,
we suspect that other anharmonic effects beyond mode cou-
pling, such as vibrational mode frequency change and volume
expansion, can play an important role for the temperature-
dependent thermal conductivity. These could be the origins of
the discrepancies between the HNEMD and QHGK methods
at high temperatures.

In particular, atomic diffusion occurs in a-HfO2, especially
at high temperatures [36,37], and it should not be disregarded
in the study of thermal conductivity [38]. To assess the in-
fluence of diffusion on thermal conductivity in a-HfO2, we
calculated the lifetime of the vibrational mode (the charac-
teristic time for thermal transport) in the QHGK method as
shown in Fig. 4(a) below. We can see that the lifetimes of most
vibrational modes are of the order of 1 ps. We also calculated
the average atomic displacement as a function of time, as
shown in Fig. 4(b). We find that the average displacement at
this timescale is still below the typical atomic spacing. Based
on the fact that the timescale for energy transfer is smaller
than diffusion, we suspect that the QHGK method based on
the quasistatic atomic position is still reasonable in calculating
the thermal conductivity of a-HfO2. Also, using three different
atomic structures yields similar thermal conductivity values
in the QHGK method (See Sec. S7 of the Supplemental ma-
terial for details [29]). Meanwhile, we employed equilibrium
molecular dynamics simulations to study the thermal transport
in a-HfO2 at 2000 K (the highest temperature we consid-
ered). We find that the contribution from the convective part
of the heat current autocorrelation function is essentially 0.
The contribution of diffusion in water to thermal conductivity
is also very limited (10%) when calculated using the same
method [39]. Therefore, we believe that within the tempera-
ture range of our study, the contribution of diffusion to thermal
conductivity in a-HfO2 can be neglected, at least in the context
of using molecular dynamics simulations. However, further
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FIG. 4. (a) The vibrational mode lifetimes at different tem-
peratures. (b) The average displacement of atoms at different
temperatures. The black dashed line shows the timescale of the
vibrational mode lifetime.

research is required to investigate the contribution of diffusion
to thermal conductivity under experimental conditions or in
other materials.

To confirm our conjectures, we further examine the tem-
perature effect of vibrational mode frequency. For crystalline
material, the mode-level frequency shift due to temperature
can be obtained with the phonon renormalization. Although
similar calculations can, in principle, be carried out with a
large cell of amorphous materials, the computational cost is
actually formidable [40]. Therefore, we examine the average
effect of the mode frequency shift by calculating the vibra-
tional density of states (VDOS) at different temperatures.
The VDOS at finite temperature is calculated by the velocity
autocorrelation method, while at 0 K the VDOS is calculated
using the lattice dynamics method [41] (See Sec. S8 of the
Supplemental material for details [29]). As shown in Fig. 5(a),
most of the spectra shift to lower frequencies with a rise of
temperature, and the peaks at 15 and 22 THz even disappear.
The peak at approximately 3 THz slightly red shifts, with a

25% decrease in frequency from 0 to 2000 K. The maximum
frequency increases with temperature due to the broadening
of the spectral features, and the vibrational states thus appear
over a wider range of frequencies. To quantify the overall
vibration mode softening at high temperature, we defined a
weighted-average frequency at temperature T ,

ω̄T = VDOS(ω, T )ωdω

VDOS(ω, T )dω
, (12)

where VDOS(ω, T ) is the vibrational density of states at
temperature T . We define a softening factor by f = ω̄T /ω̄LD,
where ω̄LD is the weighted average frequency calculated from
lattice dynamics (0 K). The frequency softening factor is cal-
culated and shown in Fig. 5(b). We can see that f decreases
with temperature, indicating that the mode is indeed softened
as the temperature increases. On the other hand, the thermal
expansion effect leads to an increased simulation cell volume
as the temperature increases. To quantify such an effect, we
also extract the volume of simulation cell in MD simulation
at different temperatures and plot the ratio of volume at finite
temperature and volume at 0 K (V/V0) in Fig. 5(b). We note
that the volume of the system increases with the temperature.

In order to consider the vibrational mode softening and
thermal expansion in the QHGK method, we modify the input
parameters in the QHGK method by scaling the corresponding
values. The frequencies are scaled by the softening factor
f . The force constant matrix ψ is scaled by a factor of f 2,
because from lattice dynamics ψ ∼ ω2 [32]. The volume is
replaced by the volume calculated from the MD simulation.
In the QHGK method, the mode diffusivities computed by
Eq. (9) using the frequency and the force constant matrix
with or without modification are compared and the results
are shown in Fig. 5(c). The mode diffusivities significantly
decrease when using the modified frequency and force con-
stant matrix. According to Eq. (3), the thermal conductivity is
predicted to decrease because the mode diffusivity decreases
and the volume increases.

The quantum-corrected thermal conductivity of a-HfO2

using the quantum HNEMD method, compared with the A-
F theory and the quantum QHGK method with modified

FIG. 5. (a) VDOS of vibrational modes at different temperatures. (b) Frequency softening factor f (left) and the ratio of volume at finite
temperature and volume at 0 K (right). (c) Comparison of the diffusivities (Di) computed using the frequency and the force constant matrix
with or without modification.
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FIG. 6. (a) Quantum-corrected thermal conductivity versus temperature for a-HfO2 using the quantum HNEMD method, compared
with the A-F theory and the quantum QHGK method with modified frequency, force constant, and volume. (b) Thermal conductivity of
selected amorphous materials as a function of temperature. Different colors correspond to different amorphous materials: silicon [11,23,42],
silica [10,12,43], a-PE [44], and silicon nitride [13].

frequency, force constant, and volume are exhibited in
Fig. 6(a). The results calculated by the A-F theory, the
quantum QHGK method, and the HNEMD method show
a consistent trend of the temperature dependence of ther-
mal conductivity. The thermal conductivity calculated by the
HNEMD method and the A-F method is consistent at low
temperatures. However, at high temperatures, the thermal con-
ductivity from the A-F method depends on the choice of the
broadening parameter. In the simulation of the QHGK method
after parameter modification, the obtained thermal conductivi-
ties can then quantitatively agree with those from the HNEMD
method. Meanwhile, we compare the thermal conductivity
spectra calculated by the QHGK and HNEMD methods and
find that they are similar to each other (see Fig. S5 of the
Supplemental material [29]). Therefore, these results confirm
that thermal expansion and vibrational mode softening due
to the anharmonic effect lead to the decrease of the ther-
mal conductivity of a-HfO2 at high temperatures. Moreover,
we summarized the reported temperature-dependent thermal
conductivities of several common amorphous materials, as
shown in Fig. 6(b). We find that the thermal conductivities
of a-Si from the HNEMD method and the experimentally
measured amorphous polyethylene (a-PE) also show a trend
of increasing first and then decreasing. Moreover, we also
calculated the thermal conductivity for a-Si, which confirms
that the thermal conductivity of a-Si decreases with tem-
perature at temperatures above 600 K (see Fig. S6 of the
Supplemental material [29]).The Debye temperatures of a-Si
and a-HfO2 are predicted by  = hvm/kB [45] to be 647
and 1104 K, respectively. For a-PE, the Debye temperature is
315 K [46]. The Debye temperatures coincide with the turning
point at which the thermal conductivity decreases. However,
the thermal conductivity of amorphous silica from experiment
seem to increase continuously with temperature. Therefore, a
unified mechanism to explain the dependence of thermal con-
ductivity of amorphous materials at high temperatures is still
desirable, which should be further studied from the theoretical
and experimental perspectives.

IV. CONCLUSION

In conclusion, we explored the temperature-dependent
thermal conductivity of a-HfO2 using the HNEMD method,
the A-F theory, and the QHGK method. The results from
the HNEMD method reveal a clear decreasing trend of ther-
mal conductivity at high temperatures, while the thermal
conductivities calculated by the A-F theory and the QHGK
method increase first and then converge to a certain value
with increasing temperature. The softening factor defined to
quantify the overall difference of frequency with temperature
shows that the overall frequency decreases (softening) by 7%
from 0 to 2000 K. In addition, apparent thermal expansion
is captured by extracting the volumes of simulation cells in
MD simulations at different temperatures. We then scale the
input parameters in the QHGK method based on the impact
of anharmonic effects on the vibration mode frequency, force
constants, and volume, and the obtained thermal conductiv-
ity can quantitatively agree with those from the HNEMD
method. As such, we conclude that two anharmonic effects,
i.e., thermal expansion and vibrational mode softening, are the
mechanisms of the decreased thermal conductivity predicted
by MD methods for a-HfO2 at high temperatures. This work
shows that the previous expectation that thermal conductiv-
ity of amorphous materials increases with temperature is not
universal. Anharmonic effects can actually reduce the thermal
conductivity of some amorphous materials at high tempera-
tures.
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