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Scattering dynamics and boundary states of a non-Hermitian Dirac equation
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We study a non-Hermitian variant of the (2 + 1)-dimensional Dirac wave equation that hosts a real energy
spectrum with pairwise-orthogonal eigenstates. In the spatially uniform case, the Hamiltonian’s non-Hermitian
symmetries allow its eigenstates to be mapped to a pair of Hermitian Dirac subsystems. When a wave is
transmitted across an interface between two spatially uniform domains with different parameters, an anomalous
form of Klein tunneling occurs, whereby reflection is suppressed while the transmittance is substantially higher
or lower than unity. The interface can even function as a simultaneous laser and coherent perfect absorber.
Remarkably, the violation of flux conservation occurs entirely at the interface, with no wave amplification or
damping taking place in the bulk. Moreover, at energies within the Dirac mass gaps, the interface can support
exponentially localized boundary states with real energies. These features of the continuum model can be
reproduced in non-Hermitian lattice models.
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I. INTRODUCTION

The Dirac equation, formulated by Dirac in 1929 to
describe relativistic electrons and positrons [1], has long
fascinated physicists with its rich implications, from the
determination of the electron’s magnetic moment to the phe-
nomenon of Klein tunneling [2]. In recent years, the Dirac
equation has also taken on a key role in condensed matter
and other nonrelativistic systems: Two-dimensional (2D) and
3D Dirac equations are used to describe electronic states in
materials such as graphene [3–6], and band structures near a
topological phase transition typically simplify to a Dirac equa-
tion or one of its relatives [7,8]. Moreover, by exploiting the
mathematical similarity of single-particle Schrödinger equa-
tions and classical wave equations, the Dirac equation can be
realized in a variety of classical wave metamaterials [9,10],
such as photonic and acoustic crystals [11–18], resonator ar-
rays [19], and waveguide arrays [20–22].

The study of classical wave metamaterials has also mo-
tivated interest in non-Hermitian wave equations, due to
the ease with which gain and/or loss can be controlled in
such systems. The first non-Hermitian Hamiltonians to be
thus studied were those obeying parity/time-reversal (PT)
symmetry, a non-Hermitian symmetry originally conceived
by Bender and Boettcher for a hypothetical generalization
of quantum mechanics [23,24]. PT symmetric Hamiltonians
have now been realized in a wide range of experimental
platforms, such as optical waveguide arrays [25–27]. Their
two most remarkable features—the ability to exhibit real en-
ergy spectra despite being non-Hermitian and the spontaneous
breaking of PT symmetry whereby pairs of real energies
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merge and turn complex—have been found to produce many
interesting applications, such as unidirectional invisibility
[28] and laser mode stabilization [29]. More recently, there
has also been progress on other aspects of non-Hermitian
physics, including the topology of non-Hermitian band struc-
tures [30–33], which is associated with phenomena such
as non-Hermitian topological modes [34–36] and the non-
Hermitian skin effect [37–40].

Recently, Xue et al. proposed a class of non-Hermitian
Hamiltonians whose band structures host non-Hermitian
Dirac cones [41]. These Hamiltonians obey a set of non-
Hermitian symmetries related to but distinct from PT
symmetry, leading to the existence of pairs of real energy
eigenvalues with eigenvectors that are mutually orthogonal,
according to the usual inner product employed for Hermi-
tian systems (by contrast, the eigenvectors of PT symmetric
Hamiltonians need not be orthogonal in this sense). When
two such eigenvalues become degenerate, they form a diabolic
point (e.g., a Dirac point), unlike the exceptional point de-
generacies more commonly found in non-Hermitian systems
[27,33]. The non-Hermitian Dirac points were shown to have
properties matching Dirac points in Hermitian band struc-
tures, such as the ability to undergo band inversions giving rise
to topological boundary states [41]. However, these features
were explored only in the context of discrete (tight-binding)
models. The nature of the non-Hermitian Dirac equation,
which ought to govern the non-Hermitian Dirac-like bands in
the continuum limit, was not discussed in detail.

In this paper, we develop the non-Hermitian Dirac equa-
tion (NHDE) that governs the non-Hermitian Dirac cones
described in Ref. [41] and study its physical implications.
The NHDE takes the form of a four-component Dirac-like
equation in (2 + 1)D, with a non-Hermitian mass operator. By
a variation of Dirac’s argument [1], we show that it supports
relativistic (hyperbolic) dispersion relations. The NHDE can

2469-9950/2023/108(4)/045419(11) 045419-1 ©2023 American Physical Society

https://orcid.org/0000-0001-5840-2756
https://orcid.org/0000-0002-8649-7884
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.045419&domain=pdf&date_stamp=2023-07-25
https://doi.org/10.1103/PhysRevB.108.045419


TERH, BANERJEE, XUE, AND CHONG PHYSICAL REVIEW B 108, 045419 (2023)

be transformed into a pair of two-component Hermitian Dirac
subsystems whose Dirac masses correspond to the eigenvalues
of the non-Hermitian mass operator. Notably, the mass gaps
depend on a non-Hermitian parameter corresponding to on-
site gain and loss, so it is possible for band inversions to occur
via gain/loss tuning [41–45].

Next, we study the nature of wave propagation based
on the NHDE. For a plane-wave incident on an interface
separating two uniform semi-infinite domains with unequal
scalar potential and/or certain choices of Hamiltonian param-
eters, we show that the NHDE can exhibit exactly the same
reflection and transmission characteristics as the Hermitian
Dirac equation, including Klein tunneling (i.e., 100% trans-
mission when the incident energy is far detuned from the mass
gap [2]).

For other parameter choices, flux conservation is violated,
resulting in an anomalous form of Klein tunneling whereby
reflection is suppressed but the transmitted flux is larger or
smaller than the incident flux. Remarkably, the violation of
flux conservation appears to originate at the domain wall
itself, since wave amplification or damping does not oc-
cur in the bulk domains, which host real-energy plane-wave
solutions. At certain energies, the violation of flux conser-
vation can become so extreme that the domain wall acts as
a simultaneous laser and coherent perfect absorber [46–49],
spontaneously emitting flux with no input while also perfectly
absorbing a specific configuration of input waves. On the
other hand, at energies lying in the mass gaps, the domain
wall can host chiral boundary states that behave much like
the topological boundary states of the Hermitian Dirac equa-
tion. These boundary states have real energies, even if the
domain wall violates flux conservation at energies outside the
mass gaps.

II. NON-HERMITIAN 2D DIRAC EQUATION

Consider the following time-dependent Dirac-like equa-
tion, defined in 2 + 1 dimensions:

i
∂ψ

∂t
= (M − iα1∂1 − iα2∂2)ψ (r, t ). (1)

Here r = (x, y) denotes 2D spatial coordinates, t is the time
coordinate, ∂i = ∂/∂xi for i ∈ {1, 2}, and {M, α1, α2} are ma-
trices to be specified. If we choose M = mσ3 and αi = σi,
where {σi} are the Pauli matrices, then Eq. (1) reduces to the
standard (2 + 1)D Dirac equation, with ψ a two-component
wave function, m representing the Dirac mass, and the speed
of light and h̄ both set to unity. We are interested in a
non-Hermitian Dirac equation obtained with an alternative
choice of M and α1,2. We shall see that the non-Hermitian
model can exhibit numerous features normally associated with
the Hermitian Dirac equation [41].

Before proceeding, we define

�μ =
[

0 σμ

σμ 0

]
= τ1σμ, (2)

where μ ∈ {0, 1, 2, 3} and τνσμ denotes the tensor product
between Pauli matrices τν and σμ. In Ref. [41], it was shown

that if a Hamiltonian H obeys the symmetries,

�0H�0 = H†, (3)

{H, �3�1T } = 0, (4)

where T is the complex conjugation operator, then there
are two consequences. First, the eigenvalues are either
real (symmetry-unbroken) or appear in complex conjugate
pairs (symmetry-unbroken). Second, if |ψ〉 is an eigenstate
with eigenvalue E , then |ψ ′〉 = �1�3T |ψ〉 is an orthogonal
eigenstate with energy −E∗ (where T is the complex con-
jugation operator and the orthogonality relation 〈ψ ′|ψ〉 = 0
uses the standard Hermitian inner product). Thus, the non-
Hermitian H retains a remnant of the two key properties of
Hermitian operators, eigenvalue reality and eigenstate orthog-
onality. By contrast, PT symmetric non-Hermitian Hamil-
tonians can exhibit real eigenvalues but generally have
nonorthogonal eigenstates [23,24,50].

For brevity, we will refer to Hamiltonians obeying Eqs. (3)
and (4) as “semi-Hermitian.” When semi-Hermicity is unbro-
ken, the eigenvalues form two pairs, {±E1} and {±E2}. Within
a pair (but not between pairs), the corresponding eigenstates
are orthogonal.

Returning to the 2D Dirac-type equation (1), let M be the
4 × 4 matrix,

M =
[
W V
V W †

]
, (5)

where

W =
[

m + iγ b
b∗ −m + iγ

]
, (6)

V = V † =
[

λ c
c∗ −λ

]
, (7)

for b, c ∈ C and m, γ , λ ∈ R. Then M obeys Eq. (3) and
(4) and is semi-Hermitian. We will see later how M could
be physically realized. By analogy with the Hermitian Dirac
equation, we seek α1, α2 such that

{αi, α j} = 2δi j, i, j ∈ {1, 2}, (8)

{M, αi} = 0. (9)

We do not assume M2 to be proportional to the identity, in a
departure from the formulation of the Hermitian Dirac equa-
tion. If we take the representation αi = �i, which satisfies
Eq. (8), then Eq. (9) implies b = c = 0, and M has the form

M = mσ3 + iγ τ3 + λτ1σ3. (10)

We thus arrive at the NHDE,

i
∂ψ

∂t
= (M − i�1∂1 − i�2∂2)ψ (r, t )

= τ1

⎛
⎝−i

2∑
j=1

σ j∂ j + λσ3

⎞
⎠ + mσ3 + iγ τ3. (11)

Thus, the model can also be interpreted as a pair of Dirac
“valleys” that interact via both a Hermitian coupling, mσ3, and
a non-Hermitian coupling, iγ τ3.
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FIG. 1. (a) Band structure of the 2D NHDE. All the eigenval-
ues are real as the semi-Hermiticity symmetry is unbroken. The
parameters are λ = 0.8, m = 0.6, and γ = √

λ2 − m2, chosen so
that one of the Dirac masses vanishes. (b) Geometric relationship
between the model parameters {λ, m, γ } and the Dirac masses μ1,2

based on Eqs. (22) and (21). (c) Phase diagram of the 2D NHDE.
The symmetry-unbroken regime |γ | < |λ| consists of three distinct
phases, determined by the signs of μ1,2. (d) A 2D non-Hermitian lat-
tice that yields the NHDE in the long-wavelength limit. The unit cells
(gray boxes) each contain four sites, and every hopping is Hermitian.
Reciprocal hoppings are indicated by solid and dashed lines, while
nonreciprocal hoppings are indicated by arrows and labeled by the
hopping amplitude in the arrow direction.

To derive the dispersion relation, recall that in the standard
Dirac equation, one takes the square of the Hamiltonian and
uses the anticommutivity of the Dirac matrices [1]. A variant
of this procedure can be applied to the non-Hermitian equa-
tion (11). Let |ψ〉 be an eigenstate of energy E and momentum
k. Squaring the Hamiltonian and using Eqs. (8) and (9), we
obtain

(M2 + |k|2)|ψ〉 = E2|ψ〉, (12)

where M2 �= I . This implies that |ψ〉 is also an eigenvector
of M2. If the semi-Hermiticity of M is unbroken, then it has
real eigenvalues ±μn, where n = 1, 2; then M2 has doubly
degenerate eigenvalues μ2

n, and

E = ±
√

μ2
n + |k|2. (13)

Therefore, for unbroken semi-Hermiticity, the dispersion re-
lation consists of a pair of relativistic hyperbolas, as shown in
Fig. 1(a).

Note that even if |ψ〉 is an eigenvector of M2, it need not
be an eigenvector of M; in general, |ψ〉 could be a super-
position of two eigenvectors of M whose eigenvalues have
the same square. To find these, take the ansatz |ϕ〉|	〉, where

σ3|	〉 = ±|	〉. Applying Eq. (10):

M |ϕn
±〉 |	〉 = ±μn|ϕn

±〉 |	〉, (14)

H±|ϕn
±〉 = ±μn|ϕn

±〉, (15)

H± = ±(λτ1 + m ± iγ τ3), (16)

where H± is a 2 × 2 matrix and n indexes its eigenvectors.
These sub-Hamiltonians obey the PT symmetry [23,24,50],

[H±, τ1T ] = 0, (17)

and are related by

H± = −τ1H∓τ1. (18)

Let us take

|ϕn
+〉 = 1√

2

[
1

eiφn

]
, |ϕn

±〉 = τ1|ϕn
∓〉, (19)

for some φn. Using Eqs. (15) and (16), we find that

μn = m + iγ + λeiφn . (20)

The real and imaginary parts of this equation are

cos φn = (μn − m)/λ, (21)

sin φn = −γ /λ. (22)

Given m and γ , Eqs. (21) and (22) have two sets of solutions,
{φ1, μ1} and {φ2, μ2}. Figure 1(b) illustrates the geometric
relationship between these quantities. The above derivation
also clarifies how the regime of unbroken semi-Hermiticity,
introduced in Ref. [41], corresponds to the PT-unbroken phase
for an underlying pair of 2 × 2 sub-Hamiltonians (16).

Now, for fixed n ∈ {1, 2}, consider

|ψn〉 = cn
+|ϕn

+〉|↑〉 + cn
−|ϕn

−〉|↓〉. (23)

Plugging this into the NHDE, and using the above properties
of |ϕn

±〉|	〉, we obtain

(k1σ1 + k2σ2 + μnσ3)

[
cn
+

cn
−

]
= E

[
cn
+

cn
−

]
, (24)

which is the Hermitian 2D Dirac equation with mass μn.
There is one Hermitian 2D Dirac equation (24) for each n ∈

{1, 2}, where n enumerates the solutions to the underlying 2 ×
2 eigenproblem (15). The relationship between the two 2 × 2
sub-Hamiltonians, Eq. (18), plays a role similar to particle-
hole symmetry. In the Hermitian limit γ = 0, this becomes
a standard particle-hole symmetry, and the Dirac masses are
μ1,2 = m ± λ.

We can use the signs of the Dirac masses to derive a phase
diagram for the non-Hermitian Dirac Hamiltonian. This is
shown in Fig. 1(c), plotted against m and γ . If semi-Hermicity
is unbroken, then there are three distinct phases: inside the
circle

√
m2 + γ 2 = |λ|, the Dirac masses have opposite signs,

and outside it they are both either positive or negative. Along
the phase boundary, at least one of the masses vanishes. This
occurs when, in Fig. 1(b), the dashed blue circle, centered at
m + iγ and of radius λ, crosses the origin.

Notably, we can drive the system across the phase bound-
ary by varying the non-Hermitian parameter γ , while keeping
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m and λ unchanged. Gain/loss-induced topological phase
transitions have also recently been observed in other models
[41–45]. These band inversions are associated with boundary
states, as discussed in Sec. V.

III. NON-HERMITIAN LATTICE MODEL

In this section, we present an exemplary tight-binding
lattice model that gives rise to the NHDE, Eq. (11), in its
long-wavelength limit. Such lattices can be realized physically
using metamaterials, such as photonic or acoustic structures
[9,51–55]. Previously, in Ref. [41], different tight-binding
models satisfying the semi-Hermitian symmetries (3) and (4)
have been derived, and it was shown that they can serve as
non-Hermitian analogs for Chern insulators, Weyl semimet-
als, etc. However, the relationship to the Dirac Hamiltonian
was not studied in detail.

Consider the 2D square lattice shown in Fig. 1(d). Each
unit cell contains four sites with complex on-site potentials.
All intersite couplings are Hermitian; some, drawn as solid
lines and dashes, are reciprocal (i.e., the forward and back-
ward hopping amplitudes are the same), while others are
nonreciprocal (i.e., the reverse hopping amplitudes, opposite
to the arrows, are complex conjugates of the forward am-
plitudes). Such nonreciprocal hoppings are implementable in
metamaterials, e.g., by using coupling resonators with appro-
priate phase shifts [56,57].

Let ψn denote the set of four amplitudes on unit cell n. The
time-dependent Schrödinger equation is

i
∂ψn

∂t
= H1ψn +

∑
i=1,2

(Ji ψn−ri + J †
i ψn+ri ), (25)

where H1 is the Hamiltonian for a single unit cell and
n ± ri denotes the unit cell displaced by one period
forward/backward in the ith direction by one lattice constant
�. The Ji matrices are

J1 =

⎡
⎢⎢⎣

0 0 0 0
0 0 iκ 0
0 0 0 0
iκ 0 0 0

⎤
⎥⎥⎦, J2 =

⎡
⎢⎢⎣

0 0 0 κ

0 0 0 0
0 κ 0 0
0 0 0 0

⎤
⎥⎥⎦, (26)

where κ is the hopping parameter defined in Fig. 1(d). In the
long-wavelength (continuum) limit,

ψn±ri = ψn ± �(∂iψ )n + �2

2

(
∂2

i ψ
)

n + · · · . (27)

Thus, the time-dependent Schrödinger equation becomes

i
∂ψn

∂t
=

⎡
⎣H1 +

∑
i=1,2

(Ji + J †
i )

⎤
⎦ψn

+
∑
i=1,2

(J †
i − Ji ) � (∂iψ )n + O(�2), (28)

FIG. 2. Complex band structures of the lattice (solid lines) and
the continuum NHDE (dashes), plotted against k1 for k2 = 0 and
various choices of γ . The other parameters are m = 0.6, λ = 0.8,
and κ = 1.

where H1 is the Hamiltonian for one unit cell,

H1 =

⎡
⎢⎢⎢⎢⎣

m + iγ 0 λ −(1 − i)κ

0 −m + iγ −(1 + i)κ −λ

λ −(1 − i)κ m − iγ 0

−(1 + i)κ −λ 0 −m − iγ

⎤
⎥⎥⎥⎥⎦.

From Eq. (26), J †
i − Ji = −iκ�i. Omitting terms of O(�2)

and higher, we arrive at a wave equation i∂ψ/∂t = Hψ (x, t ).
The effective Hamiltonian is

H = M − iκ�(�1 ∂1 + �2 ∂2), (29)

where M has precisely the form given in Eq. (10). After
taking the normalization κ� = 1, this is our desired non-
Hermitian 2D Dirac equation.

The lattice’s momentum space Hamiltonian is

H (k) =

⎡
⎢⎢⎢⎢⎣

m 0 λ ck

0 −m∗ c∗
k −λ

λ ck m∗ 0

c∗
k −λ 0 −m

⎤
⎥⎥⎥⎥⎦, (30)

where

ck = κ
[ − i

(
eik1� − 1

) + (
e−ik2� − 1

)]
. (31)

In Fig. 2(a), we plot the complex band structure versus k1 with
fixed k2 = 0. The bands obtained from the lattice model are
plotted as solid blue lines, while the dispersion relations for
the continuum model are plotted as orange dashes. Results are
shown for three different values of γ , with m, λ, and κ fixed;
this corresponds to traversing the phase diagram in Fig. 1(c)
along a horizontal line, passing through a phase boundary.
For small quasimomenta, the band energies of the lattice
model approximate the hyperbolic dispersion relations of the
continuum model, as expected. For γ = ±√

λ2 − m2, one of
the Dirac masses vanishes as predicted in Fig. 1(c). This gap
closing can be observed in both the lattice and continuum
models.

This band structure also hosts a second set of non-
Hermitian Dirac cones at kM = (π/2, π/2). When one of
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FIG. 3. (a) Setup for scattering calculations. Top: Potential �(x1) versus x1. Bottom: Dispersion relation at normal incidence in the left
domain, with mL = 0.6, γL = 0.75, and λL = 0.8. Semi-Hermiticity is unbroken, with μ1 = 0.322 and μ2 = 0.878. (b) Reflectance (R, red)
and transmittance (T , blue) for a normally incident wave of E = 5 in mode i = 2, versus step height �R. Both domains have the same M.
Blue and yellow shaded regions respectively indicate the n = 1 and n = 2 gaps. Results from the NHDE (solid lines) agree with the Hermitian
Dirac equation (dashes). (c) Plot of R and R + T versus �R, with γR = 0.6 and λR = 0.64, and the incident wave in mode i = 1. All other
parameters are the same as in (b). The domains have different γ and λ but the same γ /λ. The NHDE (solid lines) again agrees with the
Hermitian Dirac equation (dashes). (d) Plot of R, T , and R + T versus �R, with λR = 0.8 and all other parameters the same as in (c). The
domains have unbroken semi-Hermiticity but different γ /λ. Flux is not conserved, leading to anomalous tunneling and reflectance. (e) Plot
of R and T versus γR at E = 100. All other parameters are the same as in (d). The vertical dashes mark the point γR = γLλR/λL . (f) Plot of
R, T , and R + T versus E for two semi-infinite domains with m = 0.6, λ = 0.8, and � = 0. The left and right domains have γL = 0.6 and
γR = −0.6; semi-Hermiticity is unbroken. The wave is incident from the left with q = 0. R and T diverge at E ≈ 1.215. (g) Plot of Imax (solid
lines) and Imin (dashes) versus E for various γR. Imax and Imin are the maximum and minimum eigenvalues of S†S, where S is the scattering
matrix. When Imax → ∞ and Imin → 0, the domain wall is simultaneously a laser and coherent perfect absorber. (h) Heat maps of Imax and
Imin versus E and γR. (i) Heat maps of Imax and Imin versus E and the transverse momentum q. The region where the energy lies inside a gap,
E 2 < μ2

2 + q2, is left uncolored. In [(g)–(i)], all other unspecified parameters are the same as in (f).

the Dirac masses vanishes at k� = (0, 0), as described in the
previous paragraph, the band gap also closes at kM , similarly
to valley Hall systems [7].

For the 1D version of the NHDE, we can use a dimen-
sionally reduced version of the lattice model with only real
hoppings, as described in Sec. IV.

IV. SCATTERING FROM A DOMAIN WALL

We now ask how the NHDE is affected by spatial
nonuniformity. As discussed in Sec. II, the spatially uniform
model with unbroken semi-Hermiticity behaves as a pair of
Hermitian Dirac subsystems [see Eq. (19)]. If we now let
the parameters vary in space, then the Hermitian-like behav-
ior should be expected to persist if the variations keep γ /λ

constant; on the other hand, if γ /λ is not constant, then non-
Hermitian effects should become important. We will focus on
two important cases of spatial nonuniformity. This section will
cover reflection and transmission between two spatially

uniform domains; the case of boundary states localized at
domain walls is studied in Sec. V.

We are particularly interested in the phenomenon of Klein
tunneling [2], whereby a Dirac particle can transmit perfectly
through a potential barrier whose height �0 exceeds its own
energy E . (By contrast, for a nonrelativistic particle the trans-
mission is exponentially suppressed.) Originally predicted
for relativistic electrons [2], Klein tunneling has also been
observed with Dirac Hamiltonians arising in 2D materials
[58–61] and photonic lattices [62–66].

Let us consider how the NHDE behaves under such cir-
cumstances. Starting from Eq. (11), take an energy eigenstate

[M − i(�1 ∂1 + �2 ∂2) + �(x1)]ψ = Eψ, (32)

where E is the incident energy and � is a scalar potential that
forms a step function along x1:

� =
{

�L = 0, x1 < 0

�R, x1 > 0.
(33)
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This is plotted in the upper panel of Fig. 3(a). In the following,
we will also use L and R to label the other model parameters
for the left and right domains.

We assume semi-Hermiticity is unbroken, so that the
NHDE in each domain decomposes into two Hermitian Dirac
equations with masses μ1 and μ2, as shown in the bottom
panel of Fig. 3(a). Let q denote the conserved wave number
in the x2 direction. In each spatial domain, the wave function
can be decomposed into plane waves; the wave vectors are

kd
n,± =

[
s±kd

n
q

]
, (34)

kd
n =

√
(E − �d )2 − μ2

n − q2, (35)

where d ∈ {L, R}, and s± ∈ {+,−} is chosen so that the prob-
ability fluxes for kd

n+ and kd
n− are respectively positive and

negative along the x1 direction (see Appendix). These wave
vectors are associated with the eigenequations(

M + s±�1kd
n + �2q

)
u±

nd = (E − �d )u±
nd , (36)

M2 u±
nd = μ2

n u±
nd . (37)

We seek a solution of the form

ψ = eiqx2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u+
iL eikL

i x1 +
∑

n

rnu−
nL e−ikL

n x1 , x1 < 0,

∑
n

tnu+
nR eikR

n x1 , x1 > 0,

consisting of an incident eigenstate uL
i+ (i ∈ {1, 2}) and re-

flected and transmitted waves with coefficients {rn} and {tn},
respectively. These can be calculated by using the condi-
tion that the wave function is continuous at x1 = 0 (see
Appendix).

In Fig. 3(b), we plot the reflectance R = ∑
n |rn|2 (solid

red lines) and transmittance T = ∑
n |tn|2 (solid blue lines) as

a function of the potential step height �R. The incident wave
is prepared with i = 2, q = 0 (normal incidence), and fixed
E (indicated by an arrow on the horizontal axis). When the
incident energy E is detuned from the n = 2 gap, we observe
Klein tunneling: T → 1 and R → 0. When E lies in the gap,
T → 0 and R → 1 as expected; note that this includes a range
where E is outside the n = 1 gap, consistent with the expecta-
tion that the two Dirac subsystems are decoupled. Throughout
the plot, flux is conserved (R + T = 1). For comparison, the
red and blue dashes show the reflectance and transmittance
for a 1D Hermitian Dirac Hamiltonian μσ3 − iσ1 ∂1, using
the Dirac mass μ2. Evidently, the non-Hermitian model and
the Hermitian Dirac equation give the same results for all
values of the potential step �R. The results are also in exact
agreement when the incident wave is prepared with i = 1, as
well as for oblique incidence (q �= 0).

Next, we consider what happens when the right domain
not only has a different scalar potential but also has different
M parameters. Figure 3(c) shows the case where mR = 0.6,
γR = 0.6, and λR = 0.64, with the left domain kept the same
as before. Both domains have unbroken semi-Hermiticity but
different Dirac masses: μ1L = 0.322, μ2L = 0.878, μ1R =
0.377, and μ2R = 0.823. However, γL/λL = γR/λR, so ac-
cording to Eq. (22) they have the same decomposition into

Dirac sub-Hamiltonians. We find that the NHDE yields ex-
actly the same results (solid lines) as the corresponding
Hermitian Dirac equation (24) (dashes). In particular, flux is
conserved, and there is no coupling between the two Dirac
subsystems.

In Fig. 3(d), we investigate the situation where γ /λ is not
the same in both domains. The left domain and the incident
wave are the same as in the previous subplot, while the right
domain has mR = 0.6, γR = 0.6, and λR = 0.8, corresponding
to unbroken semi-Hermiticity with the Dirac masses μ1R =
0.07 and μ2R = 1.13 (the gaps are shaded in yellow and blue).
For E ∼ �R, the value of R can be significantly above unity.
On the other hand, when E is far detuned from the gaps of
the right domain, the system exhibits behavior similar to but
distinct from Klein tunneling: R ≈ 0, but T < 1 (thus, flux is
not conserved).

Figure 3(e) shows R and T versus γR, for E = 100
(far detuned from the Dirac mass gap), with all other pa-
rameters including γL kept the same as in Fig. 3(d). For
different γR, either T < 1 or T > 1 can be achieved. For
γR/λR = γL/λL (marked by vertical dashes), the system ex-
hibits true Klein tunneling with R → 0 and T → 1, similarly
to Fig. 3(c). However, even away from this point, R remains
small.

A more dramatic example of flux nonconservation induced
by a domain wall can be seen in Fig. 3(f). Here the two
domains have the same scalar potential � and the same M pa-
rameters except for γ , which switches sign across the domain
wall. Both R and T diverge at a certain value of E , indicating
the onset of lasing [46,49].

To further study this phenomenon, Fig. 3(g) shows the
E dependence of Imax and Imin, defined respectively as
the maximum and minimum eigenvalues of S†S, where S is the
scattering matrix for the domain wall (see Appendix). Imax and
Imin respectively represent the largest and smallest possible
total output powers scattered from the domain wall, given one
unit of total input power [67]. For a Hermitian system, S is
unitary so Imax = Imin = 1, whereas a lasing threshold corre-
sponds to Imax → ∞ (since a laser emits nonzero power even
when there are no coherent input waves). We find that each
threshold laser solution for the domain wall is accompanied
at the same E by a zero of Imin, corresponding to a coherent
perfect absorber (CPA) solution [46,47]. The domain wall thus
functions as a CPA laser: a scatterer that is poised at a lasing
threshold but can also perfectly absorb a specific set of input
waves [48,49]. In Figs. 3(h)–3(i), we show how the energy of
the CPA-laser solutions varies with γR and the transverse wave
number q. The CPA-laser solutions disappear for γR � −0.4,
as can also be seen in Fig. 3(g).

It is worth emphasizing that the domain wall itself is acting
here as a source or sink of flux. Wave amplification and
damping does not occur within the bulk domains, as these
have unbroken semi-Hermiticity and host only real-energy
plane-wave solutions. Note that the possibility of a thin-layer
CPA (not a CPA-laser) has previously been explored [68,69].

The above reflection and transmission behaviors can be
reproduced in lattice models. For example, Fig. 4 shows
results for q = 0 using a 1D lattice. The design of the lattice,
shown in Fig. 4(a), is a simplified version of the 2D lattice
presented in Sec. III obtained by dimensional reduction to
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FIG. 4. (a) Schematic of the 1D lattice. (b) Plot of R, T , and
R + T versus �R for a domain wall in the 1D lattice, calculated
with a frequency-domain solver [70] for E = 0.75. The lattice
parameters are m = 0.6, γ = 0.58, λ = 0.8, and κ = 1 for both
domains. (c) Time-domain plots of |ψ |2 for a 1D lattice of length
240 unit cells, with the wave function at t = 0 initialized to a right-
moving wave packet with central energy E = 0.75 and spatial width
�x = 32. For �R = 0.75 = E (upper panel), the wave packet is
almost entirely reflected at the potential step (cyan dashes), whereas
for �R = 0.95 (lower panel), strong transmission occurs, consistent
with the frequency-domain results. All other parameters are the same
as in (b). (d) Similarly to (b) but with mR = 0.6, γR = 0.5437, and
λR = 0.75. Note that γL/λL = γR/λR and R + T = 1. (e) Similarly to
(d) but with λR = 0.63; now γL/λL �= γR/λR, and flux conservation
is violated.

eliminate the x1 direction by setting k1 = 0. The resulting
1D lattice model contains only real and reciprocal hoppings
{±κ,±λ}. In Fig. 4(b), we plot R, T , and R + T for two semi-
infinite lattice domains with the same parameters, aside from
a potential step �R. The behavior is similar to the continuum
case shown in Fig. 3(b), except that the Klein tunneling breaks
down when E and �R are too far detuned, due to the finite
bandwidth of the lattice model. Notably, R + T = 1 through-
out the plot. Time-domain simulations, plotted in Fig. 3(c),
reveal the same behavior, i.e., strong reflection when E ≈ �R

and strong transmission when E and �R are detuned (but not
too far detuned).

In Fig. 4(d), we show that the Hermitian Dirac-like behav-
ior holds even when the lattice parameters in the two domains
are different (in this case, γL �= γR and λL �= λ − R), provided
that γL/λL = γR/λR. Similarly to the continuum case shown
in Fig. 3(c), we find that R + T = 1. On the other hand, we

see in Fig. 4(e) that when γL/λL �= γR/λR, flux conservation
breaks down, similarly to Fig. 3(d). In all of these plots,
the parameters in both domains are chosen such that the
infinite-lattice band structure has unbroken semi-Hermiticity
throughout the 1D Brillouin zone.

V. BOUNDARY STATES

The Hermitian Dirac equation supports boundary solutions
that are exponentially localized to domain walls. These play
a particularly important role in the theory of band topology
[8,71]. For example, the Su-Schrieffer-Heeger (SSH) lattice
model reduces to a 1D Dirac Hamiltonian in the limit of
long wavelengths and a small band gap. The SSH model is
known to host zero-energy boundary states tied to a topolog-
ical invariant, the Zak phase [72,73], and in the continuum
limit these states reduce to the Jackiw-Rebbi zero mode for
a 1D Dirac equation with a mass inversion [74]. In a similar
fashion, the 2D Haldane model can be reduced to a pair of 2D
Dirac Hamiltonians, and its topological phase transitions can
be understood in terms of the sign changes of the two Dirac
masses [7].

In this section, we show that the 2D NHDE can host bound-
ary states with real energies, not only when γ /λ is constant
(i.e., there is a consistent decomposition into Hermitian Dirac
subsystems) but also when it is not. The latter case is notable
because, in Sec. IV, we saw that such a domain wall generally
violates flux conservation.

As with Sec. IV, we assume a setup with a domain wall
at x1 = 0, with the parameters in the left (L) and (R) domains
given by mL/R, γL/R, etc. Both domains have � = 0 and un-
broken semi-Hermiticity. We look for boundary states with
real E lying in the mass gaps, so that the wave-function decays
exponentially away from the domain wall in both directions.
As described in Appendix, the scattering matrix framework
used for studying reflection and transmission in Sec. IV can be
adapted for finding boundary states. When E lies in the mass
gaps, we can pick an appropriate mode-sorting convention
so that boundary states correspond to poles of the scattering
matrix S.

Figure 5(a) shows the dispersion relation for the boundary
states at a domain wall. The colors represent the heat map of
Imax, defined as before as the maximum eigenvalue of S†S,
plotted against E (taken to be real) and q (the conserved mo-
mentum along x2, parallel to the domain wall). The domains
have Dirac masses μ1L = 1.57, μ2L = −0.17, μ1R = 1.32,
and μ2R = 0.28. We see that there is a branch of real-energy
boundary states (Imax → ∞) within the Dirac mass gap, with a
chiral dispersion relation. In this plot, γL/λL = γR/λR, so the
boundary states can be associated with a band inversion in one
of the Dirac subsystems, μ2L < 0 and μ2R > 0. In Fig. 5(b),
the intensity profile of the boundary state at q = 0 is plotted
as a solid curve. The intensity profile for the Hermitian Dirac
boundary state, derived from Eq. (24), is plotted using dots
and exactly matches the NHDE result. (Note that the decay
length is shorter in the right domain, as μ2R > μ2L.)

In Fig. 5(c), we repeat the calculation for a different set of
parameters. In this case, γL/λL �= γR/λR so the two domains
do not have the same decomposition into Hermitian Dirac sub-
systems. Nonetheless, we still find a family of boundary states
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FIG. 5. (a) Dispersion relation of boundary states. The heat map of Imax, the largest eigenvalue of S†S, is plotted versus real E and q = k2.
A domain wall at x1 = 0 separates semi-infinite domains with mL = 0.7, γL = 0.5, λL = 1.0, mR = 0.8, γR = 0.3, and λR = 0.6. Note that
γL/λL = γR/λR. The plotted E values lie in the mass gaps, so Imax → ∞ indicates a boundary state (see Appendix). Solid orange (dashed
blue) lines indicate band edges of the L (R) domain; some band edges lie outside this plot. (b) Intensity profile of the state marked by a star in
(a) with E = 0. Results from the NHDE (solid lines) match the Hermitian Dirac edge state (dots). (c) Similarly to (a) but with mL = mR = 0.8,
γL = 0.3, γR = 0.9, and λL = λR = 1.0. In this case, γL/λL �= γR/λR. (d) Intensity profile of the E = 0 state marked by a star in (c). (e) Band
structure for a 2D lattice based on Fig. 1(a), which forms a strip 40 unit cells wide along x1 and periodic along x2. A domain wall runs parallel
to x2, between unit cells 20 and 21, separating domains with the same {m, γ , λ} as in (a), and κL = κR = 0.4. All energy eigenvalues are real.
(f) Intensity profiles of two boundary states marked by dots in (e), at E = 0 with q = 0.142 and q = 1.405 (orange and blue dots). For each
unit cell n, the mean intensity on its four sites is plotted. (g) Left: Energy diagram for a finite 20 × 20 lattice consisting of a 10 × 10 inner
region with the parameters of the L lattice in (e) and an outer region with the parameters of the R lattice in (f). All eigenenergies are real. Right:
Intensity profiles for the four eigenstates closest to E = 0. The domain wall is marked in cyan.

with real energies and chiral dispersion. The intensity profile
for the q = 0 boundary state is plotted in Fig. 5(d). Note that
the peak occurs slightly to the right of the domain wall (i.e.,
it is not monotonically decreasing throughout x1 > 0). This is
consistent with expectations: The wave function is no longer a
solution to a single decoupled Hermitian Dirac equation with
a single-exponential x1 dependence, and the solution in each
domain is a superposition of two exponentials drawn from
both Dirac subsystems.

Note that the real-energy boundary states in Figs. 5(c) and
5(d) are purely induced by gain/loss. The parameters in the
two domains differ only in the value of γ , a local gain/loss
term appearing in the imaginary diagonal components of
the Hamiltonian [Eq. (6)]. In recent years, gain/loss-induced
boundary states have been observed in a number of other
non-Hermitian models [42–45]. However, those earlier mod-
els have exhibited complex bulk band structures, meaning
that flux is not conserved either in the bulk nor at the do-
main wall; in some cases, the boundary states themselves also
have Im(E ) �= 0. Our results here demonstrate that gain/loss-
induced boundary states with Im(E ) = 0 can be achieved
in a non-Hermitian system whose bulk states all have real
energy. This is the case even if the domain wall violates flux
conservation for reflection/transmission outside the mass gap
(as we saw in Sec. IV).

Similar boundary states also occur in the 2D lattice model
we introduced in Sec. III. Take a strip that is 40 unit cells
wide along x1, and periodic along x2. Let a domain wall
run parallel to the strip, with different lattice parameters on
each side; we set m, γ , and λ to the same values as in
Fig. 5(a), so that there is a mass inversion across the domain
wall, with the same κ in both domains. The resulting band
diagram is shown in Fig. 5(e). The spectrum is entirely real
and features a bulk gap around E = 0; this gap is sizable
compared to the bandwidth, and the band edges are nonhy-
perbolic. The gap is spanned by boundary states (there are
both positive- and negative-velocity branches since the lattice
model contains two Dirac points, as mentioned in Sec. III; this
is similar to the case of a valley Hall lattice [9]). As shown
in Fig. 5(f), these states are exponentially localized to the
boundary.

In Fig. 5(g), we consider the case of a finite 2D lattice
sample, consisting of 20 × 20 unit cells with an inner 10 × 10
region and open (Dirichlet-like) external boundaries. The in-
ner (outer) domain is assigned the same parameters as the
L (R) domain in the preceding strip calculation. The spectrum
is again observed to be entirely real and is plotted in the left
panel. In the right panels, we plot the intensity profiles for the
four states with energies closest to E = 0. These are observed
to be strongly localized to the square-shaped domain wall.
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VI. CONCLUSION

We have presented a (2 + 1)-dimensional NHDE that
exhibits numerous similarities to the Hermitian Dirac equa-
tion but also important differences. The model relies on
the non-Hermitian symmetries introduced in Ref. [41], re-
ferred to in this paper as “semi-Hermiticity,” which allow
a non-Hermitian Hamiltonian to have real spectra with
pairwise-orthogonal eigenstates. In the context of the NHDE,
under translationally invariant conditions, we used semi-
Hermiticity to derive an explicit relationship between the
plane-wave eigenstates of the NHDE and a pair of Hermitian
Dirac equations.

We then considered two uniform domains with different
scalar potentials and/or NHDE parameters, with each having
unbroken semi-Hermiticity so that their bulk solutions are
like Hermitian Dirac modes. Remarkably, depending on the
parameter choices, reflection and transmission at the inter-
face can be identical to the Hermitian case (including Klein
tunneling [2]) or significantly different due to the breakdown
of flux conservation. In the latter case, the flux noncon-
servation occurs at the domain wall, not in the bulk, and
can be strong enough for the domain wall to act as a laser
and coherent perfect absorber [46–49]. These domain walls
also host exponentially localized boundary states with real
energies.

In future work, it would be interesting to experimen-
tally realize some of the above phenomena, such as the
domain wall laser/absorber, using appropriately designed
classical wave metamaterials. It would also be worth-
while to investigate other phenomena associated with the
Hermitian Dirac equation, such as zitterbewegung [12,75,76]
and Dirac solitons [77,78], in the context of the NHDE.
In particular, whether relativistic symmetries can play any
meaningful role in this non-Hermitian system is presently
unclear.
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APPENDIX: SCATTERING CALCULATIONS

Take the NHDE (11), with all model parameters constant
in space and time. As shown in Sec. II, when semi-Hermiticity
is unbroken, there can be plane-wave solutions ψ (r, t ) =
u exp[i(k · r − Et )], where k ∈ R2, E = ±

√
μ2 + |k|2 ∈ R

where μ ∈ R is an eigenvalue of M and u satisfies

(M + �1 k1 + �2 k2)u = Eu. (A1)

The probability flux J = (J1, J2) carried by these plane waves
can be determined by taking

ψ† ∂ψ

∂t
+ ∂ψ†

∂t
ψ = − iψ†(M − M†)ψ − ∂1(ψ†�1ψ )

− ∂2(ψ†�2ψ ).

Comparing this to

∂

∂t
(ψ†ψ ) = [gain/loss term] − ∇ · J

yields the result

Jj = u†� ju. (A2)

This derivation is unaltered if we introduce a uniform scalar
potential �.

Now consider a domain wall at x1 = 0, separating two
spatially uniform domains indexed by d = L (i.e., x1 < 0) and
d = R (i.e., x1 > 0). The domains may have different M and
scalar potential �. Suppose that at a given energy E ∈ R, each
domain has four real eigenvalues {±μ1d ,±μ2d}—i.e., E lies
outside the Dirac mass gaps. Then each domain hosts plane
waves with eigenvectors,

{
us

nd

}
, where s = ±, n ∈ {1, 2}, d ∈ {L/R}. (A3)

Each us
nd is associated with a wave vector (±knd , q), with the

sign of the first component chosen so that the direction of
probability flux is s. We use Eq. (A2) to impose the normal-
ization |J1| = 1. The eigenvectors satisfy Eq. (A1) along with

M2us
nd = μnus

nd , (A4)

E2 = μ2
n + k2

n,d + q2. (A5)

In each domain d , we can construct the superposition

ψ (x1) =
∑

sn

as
nd us

nd e±iknd x1 .

Continuity of the wave function at x1 = 0 then implies

[
u+

1L u+
2L −u−

1R −u−
2R

]
jain

= [−u−
1L −u−

2L u+
1R u+

1R

]
jaout, (A6)

for each eigenvector component j = 1, . . . , 4, where

ain =

⎡
⎢⎢⎢⎢⎣

a+
1L

a+
2L

a−
1R

a−
2R

⎤
⎥⎥⎥⎥⎦, aout =

⎡
⎢⎢⎢⎢⎣

a−
1L

a−
2L

a+
1R

a+
2R

⎤
⎥⎥⎥⎥⎦. (A7)

We use this define the scattering matrix S:

S(E , q) ain = aout. (A8)

From this, we can also obtain the reflectance (R) and trans-
mittance (T ) results discussed in Sec. IV. For example, for
a wave incident from the L domain in mode n = 1, we set
ain = [1, 0, 0, 0]T , and from aout we obtain R = ∑

n |a−
nL|2 and

T = ∑
n |a+

nR|2.
We can seamlessly handle the case where E lies inside

a Dirac mass gap by adapting (A3) so that s = + (s = −)
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represents an evanescent wave decaying toward the right
(left). With this convention, setting the associated component
of ain to zero is equivalent to excluding “unphysical” waves
that grow exponentially away from the domain wall. We do

not use use Eq. (A2) to normalize evanescent waves; their
associated components in aout (which correspond to steady-
state modes localized at the domain wall) are excluded when
calculating R, T , Imin, and Imax in Sec. IV.
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