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We have investigated a periodically driven Creutz ladder in the presence of two different driving protocols,
namely, a sinusoidal drive and a δ kick imparted to the ladder at regular intervals of time. Specifically, we have
studied the topological properties corresponding to the trivial and the nontrivial limits of the static (undriven)
case via computing suitable topological invariants. Corresponding to the case where the chiral symmetry of the
ladder is intact, in addition to the zero energy modes, π energy modes appear in both these cases. Further, two
different frequency regimes of the driving protocol emerge, where the Floquet-Magnus expansion is employed
particularly to study the high-frequency regime for the sinusoidal drive. Apart from the physics being identical
in the high-frequency and the static scenarios, the zero energy modes show distinctive features at low and high
frequencies. For the sinusoidal drive, there exists a sharp frequency threshold beyond which the zero energy
modes only exist in the topological limit, while in the trivial limit, it exist only up to the same threshold frequency.
In presence of the δ kick, the Creutz ladder demonstrates higher values of the topological invariant, and as a
consequence, the system possesses a larger number of edge modes.

DOI: 10.1103/PhysRevB.108.045415

I. INTRODUCTION

Topological insulators are materials that exhibit bulk states
which are gapped, similar to a conventional insulator, whereas
the states at the boundaries are gapless. These states contribute
to the electronic transport properties. The presence of these
localized boundary states is solely determined by the bulk
properties of the system (“bulk-edge correspondence”), and
they are immune to local perturbations that do not close the
spectral gap and hence allow for nondissipative electronic
transport [1–5]. The Creutz ladder is an example of such a
material having quasi-1D structure and consists of two rungs
of lattice sites that are coupled by diagonal, vertical, and hori-
zontal hoppings. Additionally, a magnetic flux can penetrate
the ladder perpendicularly to its plane, giving access to an
extra degree of freedom in the form of the Peierls phase [6–8],
associated with the horizontal hopping amplitude. Moreover,
the localization of the zero energy modes is also characterized
in terms of Aharonov-Bohm caging. Due to this dual pro-
tection (Aharonov-Bohm caging and topological symmetry
conservation), the edge modes are very robust irrespective of
the system size. These intriguing properties may make the
Creutz ladder a promising candidate for different applications
in high-performance electronics and quantum computing.

The dynamics of quantum systems is another topic of
considerable interest, and is actively explored in the field of
topology. Recent studies have established that applying exter-
nal periodic drives can open a route to engineer topological
nontriviality with high tunability from materials that are even
topologically trivial in equilibrium [9–12]. Furthermore, be-
cause of the periodicity in time, the energy bands are folded
back to a Floquet Brillouin zone (FBZ), at the boundary of
which a new variety of edge modes, namely, the so called
π modes, appear. The value of the topological invariants,
predicting the number of the zero and the π quasienergy

end states, can be controlled by the parameters, such as fre-
quency and amplitude of the drive. In general, the Floquet
topological insulators (FTIs) show rich topological phases that
may not have any analogy with the undriven case. Examples
include generation of higher Chern numbers in a 1D extended
Su-Schrieffer-Heeger (E-SSH) model [13,14], and some other
2D models [15,16], emergence of the time crystalline phase
along with period doubling oscillations in 1D time Floquet
SSH models [17,18], rich entanglement properties of the
time-periodic Kitaev chain [19–21], and Floquet analysis of
higher-order topological insulators [22–25]. These works have
continued to draw attention from the community owing to
the experimental success in driving quantum systems. For
example, the experimental realization of FTIs is done on a
nanophotonics platform using a lattice of strongly coupled
octagonal resonators in the silicon-on-insulator material sys-
tem [26]. Further, the time periodicity of any system may be
exploited by the means of photoinduced band gaps, which
further can be resolved by the technique called time and angle
resolved photoemission spectroscopy (t-ARPES) [27,28].

The application of Floquet dynamics is well explored in
the field of 1D topological insulators, like the SSH chain
or Kitaev chain with p-wave superconductivity [29–32].
Among other systems, Floquet topological characterization of
some chaotic models [33–35], for example, a kicked Harper
model, on-resonance double-kicked rotor model [36,37], etc.,
have unveiled interesting features. Recent work [38] has
suggested that the mechanism of the two seemingly dis-
parate topics of chaotic behavior and topology may have
a one-to-one correspondence. Further, studies on several
nonequilibrium quantities for chiral ladder networks have
emerged as an active field of research [39,40]. This in-
trigues the fundamental interest in quest of a richer variety
of topological properties in time-periodic 1D models with a
nominal quasi-one-dimensionality. In this context, the Creutz
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ladder denotes a paradigmatic model, owing to its experi-
mental realizability in cold-atomic systems [41–43]. Unlike
the generic 1D topological insulators, due to the presence of
magnetic-flux-dependent chiral symmetry and the (controver-
sial) time-reversal symmetry [39,44], it is hard to place the
model in the Altland-Zirnbauer (AZ) classification scheme
[45]. Interestingly, ladder networks of the Creutz family are
very useful in unveiling important two-dimensional topolog-
ical aspects and symmetry classification schemes owing to
their apparent quasi-1D nature [3]. Moreover, the Aharonov-
Bohm caging effect leads to destructive quantum interference
that impedes the motion of the particles. As a result, one
gets perfectly localized energy modes, a special property of
flat band networks [8,46]. Recent investigations propose var-
ious modified versions of the Creutz ladder, which reflects
rich information in the field of localization dynamics [47,48],
many-body interactions [44], etc.

In this work, we shall highlight the Floquet aspects
captured by the ladder when the hopping amplitudes are mod-
ulated in time by two different driving protocols, namely,
(a) a sinusoidal drive and (b) a δ kick. We shall also provide a
comparison between the two protocols and the corresponding
insights induced by them. In a generic sense, these two drives
account for any kind of periodically driven system. Our pri-
mary goal is here to compare and contrast time-independent
Floquet Hamiltonians, constructed from these two drives.

The layout of the subsequent discussion is as follows. In
Sec. II, we describe the static (undriven) version of the model
to recapitulate its symmetries. We also introduce the Floquet
formalism and briefly discuss the spectra. In Sec. III, we
shall discuss our results on the sinusoidal drive, where the
explicit time dependence is eliminated via the Shirley-Floquet
approach. Further, we have explored the analytical behavior
of the Hamiltonian in the high-frequency regime. Finally, we
shall discuss the δ-kick scenario, where easy factorization of
the time evolution operator yields a way to analyze various
topological invariants. At the end, we summarize and con-
clude our findings in Sec. IV.

II. THE HAMILTONIAN
AND THE FLOQUET FORMALISM

The Creutz ladder consists of two rungs of lattice sites that
are coupled by diagonal (tD), vertical (tV ), and horizontal (tH )
hoppings, as shown in Fig. 1. There are two sublattices an,
bn within each unit cell. The real-space Hamiltonian can be
written as

H0 = −
∑

n

tH (eiθ a†
nan+1 + e−iθ a†

n+1an + e−iθ b†
nbn+1

+ eiθ b†
n+1bn) + tD(a†

nbn+1 + b†
n+1an + a†

n+1bn

+ b†
nan+1) + tV (a†

nbn + b†
nan), (1)

H0 = HH + HD + HV . (2)

The complex phase, θ , associated with the horizontal hopping
leads to a destructive interference, as a consequence of which
localization of particles for a certain region of parameter space
is observed. The Creutz ladder shows a flat band dispersion
for the rungless case (tV = 0), implying that group velocities

FIG. 1. The figure depicts a schematic representation of the
quasi-1D Creutz ladder, where an and bn denote the two distinct
sublattices. The different hopping amplitudes tH , tV , and tD denote
the horizontal, vertical, and diagonal hoppings, respectively.

of the resulting states are zero. In an open boundary condition,
this leads to complete localization of states at the edges.

In momentum space, the Hamiltonian reads as

H0(k) = 2tH cos(k) cos(θ )σ0 + 2tH sin(k) sin(θ )σz

+ [tV + 2tD cos(k)]σx. (3)

Here σi = x, y, z are the Pauli matrices. If φ denotes the total
flux through each plaquette, then 2θ = φ

φ0
, where φ0 denotes

the magnetic flux quantum.
At this point it is important to talk about the symmetries

of the model [39,44,49,50]. The model has an inherent inver-
sion symmetry with respect to an axis that lies symmetrically
between the two legs of the ladder. It is expressed by the rela-
tion σxH0(k)σx = H0(−k). Furthermore, it possesses a chiral
symmetry that is illustrated by σyH0(k)σy = −H0(k), only
for the values θ = π

2 . In spite of the presence of a magnetic
field, the system has an inherent time-reversal symmetry given
by σxH∗

0 (k)σx = H0(−k). Lastly, a particle-hole symmetry
exists in the system for θ = π

2 , which can be illustrated by
σzH∗

0 (k)σz = −H0(−k).
Now we are all set to study the Floquet topological aspects

of the periodically driven model, which in a Creutz ladder
enters through the modulation of the hopping amplitudes in
time. To set the notations, let us start our discussion for a
generic Hamiltonian, by considering the driving in the form of
a sinusoidal variation, that is, H (t ) = H0 + 2V0 cos ωt , with
V0 and ω, being the driving amplitude and the driving fre-
quency, respectively, and H0 is a generic static Hamiltonian.
The properties of interest in our work can be obtained using
Floquet theory [51–53], according to which the time-
dependent Schrödinger equation can be solved using the
Floquet ansatz, |ψ (t )〉 = e−iEt |u(t )〉, where |u(t + T )〉 =
|u(t )〉 denotes the time-periodic Floquet modes, and E repre-
sents the Floquet quasienergies. These Floquet states are also
the eigenstates of the Floquet evolution operator. We can find
E and |uk (t )〉 by solving the Floquet-Bloch equation,

[H (t ) − i∂t ] |uk (t )〉 = E |uk (t )〉 . (4)

The operator H (t ) − i∂t = HF is termed as the Floquet
Hamiltonian. Because of the time periodicity, it is convenient
to consider the composite Hilbert space R ⊗ T , where R is
the usual Hilbert space with a complete set of orthogonal
basis, and T is the space of time-periodic functions spanned
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by e−imωt . This yields the following form of HF ,

HF =
∑
m,m′

(
mωδm,m′ + 1

T

∫ T

0
dtH (t )e−i(m−m′ )ωt

)
. (5)

This leads to a situation where we can split the driven
spectrum into an infinite number of copies of the undriven
Hamiltonian separated by mω; that is, the index m defines a
subspace, called the mth Floquet replica. A general represen-
tation of the Floquet Hamiltonian thus can be represented as

HF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

. . .
...

...
...

...
... . .

.

. . . H0 − 2ω H−1 H−2 H−3 H−4 . . .

. . . H1 H0 − ω H−1 H−2 H−3 . . .

. . . H2 H1 H0 H−1 H−2 . . .

. . . H3 H2 H1 H0 + ω H−1 . . .

. . . H4 H3 H2 H1 H0 + 2ω . . .

. .
. ...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(6)

where the elements H±m = 1
T

∫ T
0 H (t )e±imωt dt get rid of the

explicit time dependence.
Coming back to our context of the Creutz ladder, it is

important to understand the consequences of adding periodic
drives to either one, two, or all three hoppings, namely, tV , tD,
and tH . For instance if we include a drive to the horizontal
hopping (tH ) then in the Fourier space of HF , H±m will appear
in the form of an identity matrix. Physically this suggests that
the drive fails to induce overlap of different Floquet replicas,
and hence the system cannot generate the so called π energy
modes at the boundaries of the Floquet BZ. A clearer pic-
ture will emerge from the subsequent discussions. In order
to realize meaningful Floquet topological features, we must
associate the drive to either the diagonal hopping (tD) or the
vertical hopping (tV ). In both these cases, the drive connects
different sublattice degrees of freedom. While we have veri-
fied that the scenarios for tD and tV are qualitatively similar,
we have chosen the Floquet driving in tV for our numeric
computation.

III. RESULTS

A. Sinusoidal drive

We first describe the harmonic drive, associated only with
the vertical hopping (tV ), which can be written as

HV (t ) = (2V0 cos ωt + tV )
∑

n

(a†
nbn + anb†

n). (7)

The rest of the terms in Eq. (1) are left unaltered. The Fourier
components |H |±m except for m = 0,±1 vanish owing to the
mathematical form of the drive. Hence we can truncate the
infinite-dimensional matrix into a 3 × 3 block and can study
the corresponding quasienergy spectrum. By using Floquet
theory we can show that driving induces additional gaps and
edge states depending upon the driving frequency and the
strength of the driving field. Before going into that, we reem-
phasize that for our purpose the chiral symmetry of the model
is of prime importance. Since the emergence of the π energy
modes is protected by the chiral symmetry, we fix a partic-
ular value of the phase, namely θ = π

2 . Let us first briefly

FIG. 2. The Floquet quasienergy spectrum in the frequency
space with m ∈ [−1, 1], obtained for different sets of values of the
hopping parameters as well as the driving amplitude, V0. The open-
ing and closing of the zero and the π gaps are clearly illustrated.
The parameters used are (tV , tD ) = (2, 1) in panels (a) and (c) and
(tV , tD ) = (1, 1) in panels (b) and (d). The amplitude of the drive is
chosen as V0 = 0 for panels (a) and (b), whereas V0 = 0.5 for panels
(c) and (d). The rest of the parameters are chosen as tH = 1, ω =
3, θ = π/2.

recapitulate the topological properties of the static model.
The topological phase transition is signaled by the ratio tV

2tD
.

The system shows nontrivial behavior for tV
2tD

< 1 and trivial
behavior tV

2tD
> 1. Figures 2(a) and 2(b) show the spectra for

tV = 2tD and tV �= 2tD, respectively. While the former denotes
a gap closing scenario, at k = ±π (the lattice constant is taken
as unity), the latter does have a gap at the edges of the BZ
with a magnitude 
 = 2|tV − 2tD|. The color scale represents
different replicas; for example, blue denotes m = 0, whereas
green denotes m = ±1. The importance of topology can be
explored at the points E = 0, ±π

T (±π
T is equivalent to ±ω

2 ),
where the spectra show degeneracies.

Once the time-dependent perturbation is switched on as
shown in Figs. 2(c) and 2(d) the degeneracies at ±ω

2 (in-
volving states with m = 0, m = ±1) are lifted, leading to
the formation of drive-induced band gaps, with magnitude

 ≈ 4|V0|. One can also verify, since the energy spectrum
is symmetric about ±mω/2, the π gap opening relies on the
presence of the chiral symmetry of the system. Even when the
frequency is very high, the zero and the π gaps remain open,
but different replicas are widely separated from each other.
This prohibits any overlap between the m = 0, m �= 0 bands.
On the other hand, for low frequencies, more replicas start
overlapping, and inside the spectrum of m = 0 we observe a
large number of degeneracies due to the mixing of different
bands.

In order to show evidence of the topological phase transi-
tion in our driven scenario, we need to consider the Floquet
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FIG. 3. The Floquet real-space quasienergy spectrum as a func-
tion of the driving frequency, ω. Panel (a) corresponds to the static
nontrivial condition with the parameter choice (tV , tD) = (1, 1). Panel
(b) corresponds to the static trivial condition with the parameter
choice (tV , tD ) = (2.2, 1). The remaining parameters are chosen as
tH = 1, θ = π/2,V0 = 0.5.

spectrum of a semi-infinite system in a wide range of fre-
quencies. Due to the existence of an edge, one can infer
the topological character from the presence of edge states.
Figure 3 shows the driven quasienergy spectrum in both the
situations that correspond to trivial ( tV

2tD
> 1) and topological

( tV
2tD

< 1) pertaining to the static case. In the subsequent dis-
cussions, the parameters such as E , tV , tD, ω,V0 are measured
in units of tH , where we have set tH = 1. As soon as the time-
dependent perturbation is switched on, the π energy modes
appear, which have an extended nature up to a certain range
of frequencies depending upon the magnitude of the band gap
between E = ±ω

2 states. However in the limit tV
2tD

> 1, for
which the system was completely trivial, now in the presence
of driving it shows nontrivial behavior with the emergence of
zero energy modes [see Fig. 3(b)]. One can also verify, for
the rungless case (tV = 0), due to flat-band-like dispersion,
there is no possible overlapping between different replicas,
and hence, we cannot generate localized π energy modes even
when the drive is intact (V0 �= 0).

If one can interpret the hopping parameters as tV = t0 + δ

and 2tD = t0 − δ, then analytically we can set a threshold
value of the frequency, say ω = 2t0. Above this value, in the
static topological limit ( tV

2tD
< 1), the system hosts the zero

energy mode, whereas in the static trivial limit ( tV
2tD

> 1) the
system preserves its zero energy mode up to this threshold
frequency. For example in Fig. 3(a), for the parametric choice
(tV , tD) = (1, 1), the zero energy mode is formed at a fre-
quency, ω such that ω > 2t0 [ω = 3 in Fig. 3(a)], whereas in
Fig. 3(b) for the parametric choice (tV , tD) = (2.2, 1.0), the
zero energy mode is preserved up to a frequency ω, such
that ω < 2t0 [ω = 4.2 in Fig. 3(b)]. Hence, we say for fre-
quency ω > 2t0, close to E = 0, the topology of the driven
system corresponds to that of the undriven one. We label
this regime as the high-frequency regime. Similarly close to
E = ±ω

2 , the high-frequency regime corresponds to ω > 4t0,
where the spectral gaps at E = ±ω

2 are nonexistent. One can
also notice that in the static nontrivial limit ( tV

2tD
< 1), there

are no zero energy modes up to ω = 2t0. This can alterna-
tively be verified from the bulk spectrum, where within the
frequency range ω < 2t0, although the spectral gaps at the
edges of the BZ are open, there are other gapless points

corresponding to the m = 0 replica. As we increase more
branches, for example m = ±1 (or even m = ±2, etc.), spec-
tral gaps open up at these degenerate points. However, these
are π energy modes, and we have no zero energy modes
for ω < 2t0. Based on the above discussions, we may con-
clude that under static nontrivial conditions ( tV

2tD
< 1), the

driven system has no zero energy mode in the low-frequency
regime, whereas, under static trivial condition ( tV

2tD
> 1), the

driven system has no zero energy mode in the high-frequency
regime.

To further confirm the topological signatures in terms of
“bulk-edge correspondence,” we resort to the calculation of
the topological invariant [54]. The relevant invariant for a
3 × 3 Floquet-Bloch Hamiltonian in the frequency domain is
the Berry phase [55,56], which denotes the geometric phase
acquired by a wave function as the system is smoothly taken
across the Brillouin zone. A Hamiltonian with a nontrivial
Berry phase cannot be adiabatically connected to an atomic
insulator unless a gap closing transition occurs. The Berry
phase is defined as

γ = i
∮

dk〈uk|∇kuk〉, (8)

where |uk〉 are the Bloch states. The numerical calculation of
the Berry phases γα [α denotes band index, marked with the
letters A–F in Fig. 2(d)] for each of the bands for a particular
frequency, say, ω = 4.5, in units of tH , is obtained as

γα =
{

0, (α = A, F ),

π, (α = B,C, D, E ),
for

(
tV
2tD

)
> 1, (9)

γα =
{
π, (α = A, F ),

0, (α = B,C, D, E ),
for

(
tV
2tD

)
< 1. (10)

It is interesting to note that there is at least one band below
the Fermi level that corresponds to the nonzero Berry phase,
and thus signals that the system is in a topologically nontrivial
state. Hence, irrespective of the choice of whether tV > 2tD or
otherwise, the topological properties of a driven Hamiltonian
are now controlled by frequency of the driving field. One can
also verify that the cumulative sum of Berry phases, that is,
γ = |mod(

∑
α γα, 2)|, corresponds to the edge states found in

the real-space spectrum. Figures 4(a) and 4(b) and Figs. 4(c)
and 4(d) show the results for the cumulative sum of the Berry
phase up to E = 0 (zero mode) and E = π

T (π mode) corre-
sponding to the nontrivial and trivial limits for the undriven
case.

B. Floquet-Magnus effective Hamiltonian

To analyze the correct analytical behavior of the Floquet
Hamiltonian for large frequencies, that is, ω > 2t0, we resort
to the high-frequency calculation, which involves a rotating
frame transformation in the Floquet formalism. In the rotating
frame, given by unitary transformation S(t ), the transformed
Floquet Hamiltonian Eq. (6) takes the form

H̃k (t ) = S†(t )HF (t )S(t )

= S†(t )Hk (t )S(t ) − iS†(t )Ṡ(t ). (11)

We may choose to work with some particular choices
for rotating frames, where the unitary transformation is

045415-4



TOPOLOGICAL PROPERTIES OF A PERIODICALLY … PHYSICAL REVIEW B 108, 045415 (2023)

FIG. 4. The panels depict total Berry phases for the states filled
up to E = 0 and π/T , as a function of the driving frequency, ω.
Panels (a) and (c) give the total Berry phases for the zero and the
π energy modes, respectively, under static nontrivial conditions,
with the parameter choice being (tV , tD ) = (1, 1). Panels (b) and
(d) give the total Berry phases for the zero and the π energy modes,
respectively, under static trivial conditions, with the parameter choice
being (tV , tD ) = (2.2, 1). Other parameters are chosen as tH = 1, θ =
π/2,V0 = 0.5.

defined as

S(t ) = eiθ (t )σx , θ (t ) = αωt

2
+ 2V0 sin ωt

ω
, (12)

so that the transformed Hamiltonian H̃α
k (t ) can be written as

H̃α
k (t ) = 2tH (sin k)e2iθσ+ + 2tH (sin k)e−2iθσ−

+
(

tV − αω

2
+ 2tD cos k

)
σx, (13)

where

σ± = σz ± iσy

2
. (14)

Note that the modified Hamiltonian [H̃α
k (t )] shares the same

periodicity as that of the original one [H (t )]. With H̃α
k (t )

being periodic in time, the Fourier decomposition, H̃α
k (t ) =∑

p eipωt H̃α
p,k , with p = 0,±1,±2, . . . and so on, allows us

to write an expansion in powers of the inverse of the driv-
ing frequency, namely, 1/ω, which is known as the Magnus
expansion [57–59]. This yields an effective Hamiltonian Heff,
given by

Heff = H̃α
0,k + 1

ω

[
H̃α

0,k, H̃α
1,k

] − 1

ω

[
H̃α

0,k, H̃α
−1,k

]
− 1

ω

[
H̃α

−1,k, H̃α
1,k

] + O

(
1

ω2

)
, (15)

where, [H̃α
p,k, H̃α

p′,k] denotes a commutator. The convergence
criterion of the expansion is given by∫ T

0

∣∣∣∣H̃α
k (t )dt

∣∣∣∣ < π. (16)

There is a subtle point about the choices of the reference
frames that deserves a mention. The Hamiltonian H̃α

k (t ) in
different time frames has different convergence criteria, that
should depend upon values of α. For example, in the high-
frequency regime, that is, ω > 2t0, the convergence criterion
is satisfied by the choice α = 0, whereas for any intermediate
frequency range, say, t0 < ω < 2t0, the series converges for

α = 1, provided tV
2tD

> 1. However, for ω < t0, the approxi-
mation starts failing. By using the expansion [60,61]

eiz sin θ =
∞∑

n=−∞
Jn(z)einθ , (17)

with Jn being the nth-order Bessel function of the first kind,
the Fourier component of the transformed Hamiltonian can be
written as

H̃α
p,k =

(
tV − αω

2
+ 2tD cos k

)
σx

+
[

2tH sin kJ−p−α

(
2V0

ω

)]
σ+

+
[

2tH sin kJp−α

(
2V0

ω

)]
σ−. (18)

Within the region of convergence, H̃α
0,k is the dominant term,

whereas the other components can be neglected owing to the
fact that the Bessel functions Jp decay rapidly for p �= 0.
Hence, the time-independent effective Hamiltonian can be
written as

Heff = (
t eff
V + 2tD cos k

)
σx + 2t eff

H sin kσz, (19)

where

t eff
H = tHJ−α

(
2V0

ω

)
, t eff

V = tV − αω

2
. (20)

The effective Hamiltonian in the momentum space can be
expressed as a massless Dirac equation of the form

H (k) = �d (k) · �σ , (21)

where �σ denotes the Pauli matrices (σx, σy, σz) and d (k)s are
the corresponding vector components, having the forms

dx(k) = tV − αω

2
+ 2tD cos k, (22a)

dz(k) = tHJ−α

(
2V0

ω

)
sin k. (22b)

Hence, the topological properties of the system can be quan-
tified by the invariant called the winding number, defined as
[54,62]

ν = 1

2π

∫ 2π

0

dzd (dx ) − dxd (dz )

d2
x + d2

z

dk. (23)

Mathematically, the winding number quantifies how many
times the vector �d (k) winds around the origin as k is varied
over the BZ. Physically, the winding number carries the same
information as the Berry phase which we have already ob-
tained earlier.

In Fig. 5, we have plotted the topological phase diagram in
terms of the winding number, for two cases, say, for ω > 2t0
[Fig. 5(a)] and for ω = 1.2t0 [Fig. 5(b)]. We see a sharp
change in the value of the winding number from ν = 0 to
a finite value of ν. Additionally, in the nontrivial region, a
new topological phase, characterized by ν = −1, appears.
The transition between different topological phases, corre-
sponding to ν = 1 and ν = −1, occurs at zeros of the Bessel
function, J−α ( 2V0

ω
). Hence, the different topological phases

are characterized by the winding number, ν = sgnJ−α ( 2V0
ω

).
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FIG. 5. The topological phase diagram of Floquet-Magnus ef-
fective Hamiltonian. Panel (a) corresponds to ω > 2t0 and panel
(b) corresponds to ω = 1.2t0. The topological-trivial phase transition
occurs at tV = 1 in panel (a) and tV = 4 in panel (b). The parameters
are chosen as tD = 0.5, θ = π/2.

Further, we can compare the quasienergy spectra as well
as the topological phase diagrams corresponding to both HF

and Heff. When a truncation to high enough ω is applied to
HF , its spectrum should be close enough to the exact Floquet
effective Hamiltonian obtained from the time-ordered product
of the Floquet evolution operator. Further, for a fixed value of
ω, the quasienergy spectrum of HF can be confined to the first
quasienergy BZ [π/T : π/T ] or [−ω/2 : ω/2] [see Fig. 6(a)].
Depending upon different convergence criteria at different
ranges of frequencies, we have shown the quasienergy spec-
trum corresponding to Heff only in the region ω > t0, which
further can be split into two cases, such that ω > 2t0 [see
Fig. 6(b)] and t0 < ω < 2t0 [see Fig. 6(c), which is plotted
for ω = 1.2t0].

Let us start by comparing the outcomes of two methods by
fixing the parameters as tD = 0.5,V0 = 0.5, ω = 3. For ω >

2t0, the results obtained by both the methods show features
similar to that of a static one, where the system is nontrivial
(trivial) for tV < 1 (tV > 1), whereas for the other, namely,
t0 < ω < 2t0, we observe longer-range hoppings induced by
the periodic driving. As a result, one can get topologically
protected zero energy modes even when tV is very large.

However, it is clear from the figures that in the region t0 <

ω < 2t0, the spectra of HF and Heff show significantly differ-
ent features. For example, in the case of the Magnus effective
Hamiltonian (Heff), topologically protected zero energy modes
will always emerge at tV

2tD
> 1 or tV > 1, and it will continue

to exist up to a certain value of tV , depending upon the value
of frequency under consideration, inside the region t0 < ω <

2t0. However, this is not true for the truncated Hamiltonian,
HF , where the region t0 < ω < 2t0 comes into existence for
tV > 2. Again the range of the zero energy modes will be
dependent upon the frequencies we are working with. Fur-
thermore, we have seen that for ω < t0, due to the breakdown
in the convergence criteria, the Floquet Magnus effective
Hamiltonian (Heff) fails to yield correct topological properties.
This is supported by the quasienergy spectrum obtained using
HF [see Fig. 6(a)], which does not show any evidence of the
localized zero energy modes in the region ω < t0.

We can also compare the corresponding topological phase
diagrams obtained via the two Hamiltonians, namely, HF

and Heff. It should be noted that the topological phase di-
agram corresponding to the truncated Floquet Hamiltonian,
HF , is enumerated via the Berry phase, whereas for the
Magnus approximated Hamiltonian the winding number is
used [Figs. 5(a) and 5(b)]. It can also be shown that the phase
diagrams based on the winding number for the time-ordered
Floquet evolution operator show identical results to that of
the Berry phase corresponding to HF . The computation of the
winding number in this case relies on the mechanism of sym-
metric time frames, which we shall explain in the next section.
From the study of the topological phase diagram, it has been
clear that for ω > 2t0, both the methods show features similar
to the static one, whereas in the limit t0 < ω < 2t0, there are
some regions where the spectra corresponding to HF and Heff

are significantly different. Hence, in the limit t0 < ω < 2t0,
using Heff to study the topological phase diagram could be
problematic, while HF is expected to yield identical results
to that of the time-ordered product Hamiltonian. Moreover,
for t0 < ω < 2t0, due to the failure of the convergence cri-
terion laid down in Eq. (16), the winding number becomes
ill defined in the region where tV

2tD
< 1. This is supported by

FIG. 6. Panel (a) shows the Floquet quasienergy spectrum [obtained by the direct truncation of the Hamiltonian in Eq. (6), namely,
HF ] inside the first FBZ, as a function of the vertical hopping parameter (tV ), whereas panels (b) and (c) show the quasienergy spectrum
corresponding to the Floquet-Magnus effective Hamiltonian for ω > 2t0 and in the range t0 < ω < 2t0 (for concreteness we have taken
ω = 1.2t0), respectively. In panel (a) different frequency regimes are shown via different colors indicated in the figure. The other parameters
are chosen as ω = 3 [in panel (a)], tD = 0.5,V0 = 0.5, tH = 1.
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the quasienergy spectrum obtained using HF , which does not
show any evidence of localized zero energy modes in the
region tV

2tD
< 1 for ω < 2t0.

C. δ kick

In this section we will discuss another variant of periodic
drive, namely, a δ kick, again associated with the vertical
hopping (tV ) such that the Hamiltonian becomes

HV (t ) =
[

tV + V0

m=∞∑
m=−∞

δ(t − mT )

] ∑
n

(a†
nbn + anb†

n).

(24)

Unlike the sinusoidal case, the Floquet Hamiltonian cor-
responding to such a kick cannot be expanded in the
frequency domain [see Eq. (6)], since the truncation of the
infinite-dimensional matrix is not possible. Rather, a different
technique is followed here. We consider the Floquet time
evolution operator defined as

U (T ) = T e−i
∫ T

0 dtH (t ), (25)

where T is the time-ordering operator. Now using the Suzuki-
Trotter decomposition of the first kind [63], for a δ-driven
Hamiltonian, the Floquet time evolution operator can be writ-
ten as a product of two exponential matrices, which are

U (T ) = e−iV0
∑

n(a†
nbn+anb†

n )e−iH0T

= e−iHeffT , (26)

where Heff is the time-independent effective Hamiltonian
analogous to HF [Eq. (6)] that we had obtained corre-
sponding to the sinusoidal case. Now to study the Floquet
quasienergy spectrum, we plot the eigenvalues of Heff which
will be confined within the FBZ, namely, (−π

T : π
T ) shown in

Fig. 8(a). Similarly in the momentum space Eq. (26) can be
written as

Uk (T ) = e−iV0σx e−iH0(k)T

= e−iHeff (k)T . (27)

Here, the topological invariant is again the winding number.
The effective Hamiltonian obtained in this way has the form
of a massless Dirac equation with all three components of the
�d (k) vector being present. The components of the d vectors in
this case are

dx(k) = − Ek

sin(EkT )

[
sin V0 cos(Ek,0T )

+ tV + 2tD cos k

Ek,0
cosV0 sin(Ek,0T )

]
, (28)

dy(k) = Ek

sin(EkT )

[
tH sin k

Ek,0
sin V0 sin(Ek,0T )

]
, (29)

dz(k) = − Ek

sin(EkT )

[
tH sin k

Ek,0
cosV0 sin(Ek,0T )

]
, (30)

where Ek,0 is the eigenvalue of the undriven model,
and Ek is the quasienergy of the effective Hamiltonian,

FIG. 7. The closed curves in the dx-dz plane for both chiral
symmetric time frames with winding number being ν ′ and ν ′′, re-
spectively. The parameters used are (tV , tD ) = (1.0, 1.5) in panels
(a) and (b) and (tV , tD ) = (2.0, 1.0) in panels (c) and (d). The other
parameters are chosen as tH = 1,V0 = 0.5, θ = π/2, ω = 2.5.

given by

Ek = 1

T
arccos

[
cosV0 cos(Ek,0T )

− tV + 2tD cos k

Ek,0
sin V0 sin(Ek,0T )

]
. (31)

Apparently the chiral symmetry of Heff loses its meaning.
Since, unlike the static version of the Creutz ladder, due to
the presence of σy in the Bloch Hamiltonian, Heff, here the
parameter vector �d (k) does not lie on the x-z plane. Conse-
quently, the winding about any arbitrary axis becomes difficult
to visualize. As a remedy, we rely on the mechanism of a pair
of “symmetric time frames,” which are defined by the choice
of time frames, resulting in the Floquet evolution operator
assuming a form

Û = F̂ Ĝ, (32)

where F̂ and Ĝ are related by the chiral symmetry operator as

ĈF̂Ĉ = Ĝ−1. (33)

It is also easy to verify that if a symmetric time frame exists
corresponding to a Floquet evolution operator Û ′ = F̂ Ĝ, then
also there must exist another symmetric time frame corre-
sponding to the Floquet operator Û ′′ = ĜF̂ . However, the
geometrical picture of winding in either of the frames does
not necessarily give complete information about the number
of edge modes (generalization of this cannot be done for
any arbitrary system). Rather, based on the periodic table of
FTIs [64] each of the nontrivial phases of the system can
be characterized by a pair of winding numbers ν0 and νπ ,
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FIG. 8. Panel (a) shows the Floquet quasienergy spectrum inside the first FBZ, as a function of the vertical hopping parameter (tV ) and with
fixed diagonal hopping (tD = 1.5) for the δ-kick case. The topological phase transitions are marked by the gap closing at E = 0 and π/T with
the corresponding appearance or disappearance of the zero and π energy modes. Panels (b) and (c) depict the topological phase diagram in the
tV -tD plane, computed using the winding numbers corresponding to the zero (ν0) and the π (νπ ) energy modes, respectively. The parameters
used are ω = 2.5,V0 = 0.5, tH = 1.

given by [65–67]

ν0 = ν ′ + ν ′′

2
, νπ = ν ′ − ν ′′

2
, (34)

where (ν0, νπ ) ∈ Z × Z. Further, ν ′ and ν ′′ are the winding
numbers for the two effective Hamiltonians corresponding to
the two symmetric time frames Û ′ and Û ′′, respectively. In
our model, the Floquet operator in one of the symmetric time
frames from t = T/2 to t = 3T/2 reads as

U ′
k = e−iH0(k)T/2e−iV0σx e−iH0(k)T/2

= e−iH ′
eff (k)T , (35)

where

H ′
eff(k) = dx

′(k) · σx + dz
′(k) · σz. (36)

Similarly, using the chiral symmetry operator, the Floquet
time evolution in the second time symmetric frame assumes
the form

U ′′
k = e−iV0σx/2e−iH0(k)T e−iV0σx/2

= e−iH ′′
eff (k)T , (37)

where

H ′′
eff(k) = dx

′′(k) · σx + dz
′′(k) · σz. (38)

The plots in Fig. 7 show the geometrical picture of winding
corresponding to the two chiral symmetric time frames. Fi-
nally, when combined, followed by Eq. (34), they can ensure
the correct number of zero and π energy modes. Figures 8(b)
and 8(c) show the topological phase diagrams in the tV -tD
plane, plotted for certain values of ω and V0 given by ω = 2.5
and V0 = 0.5. The confirmation of the bulk-edge correspon-
dence is done by comparing the results with the real-space
quasienergy spectrum as a function of tV plotted for a fixed
value of tD, say, tD = 1.5 [see Fig. 8(a)].

However, a simplified technique to compute the winding
numbers following Ref. [68] exists. According to that, the two
topological invariants can be found from the half evolution

operator,

Û ′
k

(
T

2

)
= F̂ =

[
P†

k Qk

−Q†
k Pk

]
, (39)

in the first symmetric frame as

ν0 = ν[Qk], νπ = ν[Pk], (40)

where

ν[h] = 1

2π i

∫
BZ

dk
d

dk
ln h(k). (41)

In the static case (V0 = 0), Pk is constant and Qk ∝ | �d (k)|.
Thus one finds νπ = 0 and ν0 = ν, which is expected. The
results obtained by this method are similar to the topological
phase diagram already obtained in Fig. 8.

It may be noted that there are regions in the quasienergy
spectrum corresponding to certain values of the parameters
where the zero and the π energy modes coexist. On the basis
of recent studies [17,18], it has been proven that the superpo-
sition of the zero and the π energy modes leads to new kinds
of symmetry-protected discrete time crystal phases, known
as the “period-2T topological Floquet time crystals.” The
robustness of this period-doubling feature against any kind
of perturbation is supported by computing the two distinct
nontrivial gap invariants. As a result, it can be viewed as Rabi
oscillations occurring between the two Floquet eigenstates
that are split by an amount π/T .

One can also observe that there are instances of gap closing
not associated with the topological phase transition (as is well
known for the static case) but corresponding to higher values
of the winding number. We can verify that as the value of the
winding number increases, more states from the bulk become
localized states and appear at the edges.

Further, we have studied the variation of the winding num-
bers (ν0, νπ ) with respect to the strength of the drive (V0).
Figure 9(a) shows the periodic pattern of the winding num-
bers, oscillating between zero and finite values. Next, if we fix
the strength of the drive, and compute the winding numbers
as a function of the time period T [Fig. 9(b)], we observe a
linear growth of the winding numbers. However, the steplike
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FIG. 9. Panel (a) shows the variation of the winding numbers
(ν (0,π ) ) with respect to the strength of the drive (V0), whereas panel
(b) shows the variation of the winding numbers (ν (0,π ) ) with respect
to the time period (T ). The parameters are chosen as tV = tD = 1.0,
ω = 2.5 in panel (a), whereas tV = 2tD = 1,V0 = 0.5 in panel (b).

increment can only be obtained corresponding to tV = 2tD.
The results are reminiscent of the plateaus in the Hall re-
sistivity, as seen in quantum Hall effect. The linear growth
of the winding numbers can alternatively be understood by
the fact that the Baker-Campbell-Hausdorff formula for the
computation of the effective Hamiltonian involves a series
of commutators that are attached to increasing powers of T .
Thus, a large time period can induce progressively longer-
range interactions in Heff. As a result, one gets larger values of
the winding numbers.

Although our system demonstrates higher values of the
winding numbers as a function of T , one should note that as T
increases, the existence of robust zero energy modes will suf-
fer owing to the reduced bulk gap in the FBZ [−π/T : π/T ].

IV. FINAL REMARKS

For the undriven Creutz ladder, the topological and the
trivial limits are set by tV

2tD
< 1 and tV

2tD
> 1, respectively.

We have taken these values as benchmarks and explored the
scenario in a driven system. For the sinusoidal drive, we get
at least one band to retain its topological character in the
trivial limit ( tV

2tD
> 1) as seen from the nonzero Berry phase.

Further, the situation nicely distinguishes between the low
and the high frequency regimes of the driving potential. Cor-
responding to the trivial (topological) case, the zero energy
mode ceases to exist above (below) a certain value of the
driving frequency. The high frequency limit understandably
reproduces the results for the static case, which we have
explicitly verified using Floquet-Magnus expansion. On the
other hand, in the presence of the δ kick, the Creutz lad-
der presents larger values of the topological invariant, and
as a consequence of that, we have a large number of edge
modes in the system. Further, the variations of the wind-
ing numbers with regard to the time period of the driving,
T , yield steplike growth, reminiscent of the quantized Hall
plateaus.

It is important to deliberate whether we can define the
winding number as the topological invariant for the sinusoidal
drive. The answer is affirmative. But unlike the case of the
periodic δ kick, the Floquet operator can no longer be ex-
pressed as a product of just two operators. Rather, it has to be
computed by dividing the time period T into a large number
of time steps, each of width 
t , where 
t = T

N and N denotes
the number of time steps. Hence, one can multiply each of
the operators in a time-ordered fashion. The corresponding
numerical computation consumes much more time, although
it can be done. Indeed the corresponding results are verified by
us, and are in excellent agreement with those already obtained
from the analysis of the Berry phase.

Note added. Recently, we became aware of Refs. [69,70],
where spinful and non-Hermitian Creutz ladders are
studied.
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