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Magnon-plasmon hybridization mediated by spin-orbit interaction in magnetic materials
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1Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
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We propose a mechanism for magnon-plasmon coupling and hybridization in ferromagnetic (FM) and anti-
ferromagnetic (AFM) systems. The electric field associated with plasmon oscillations creates a nonequilibrium
spin density via the inverse spin galvanic effect. This plasmon-induced spin density couples to magnons by an
exchange interaction. The strength of magnon-plasmon coupling depends on the magnetoelectric susceptibility
of the system and the wavevector at which the level repulsion has happened. This wavevector may be tuned
by an applied magnetic field. In AFM systems, the degeneracy of two chiral magnons is broken in the
presence of a magnetic field, and we find two separate hybrid modes for left-handed and right-handed AFM
magnons. Furthermore, we show that magnon-plasmon coupling in AFM systems is enhanced because of strong
intrasublattice spin dynamics. We argue that the recently discovered two-dimensional magnetic systems are ideal
platforms to investigate proposed magnon-plasmon hybrid modes.
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I. INTRODUCTION

Collective excitations in condensed matter systems are
emergent phenomena arising from many-body interactions.
For example, three fundamental collective excitations in crys-
tals are phonons (quanta of lattice oscillations), magnons
(quanta of spin oscillations), and plasmons (quanta of charge-
density oscillations) [1–3]. Interaction between these three
bosonic excitations, at the lowest order of interaction, leads
to the hybridization of two modes and, in higher orders, leads
to various scattering phenomena. The hybridization of two
bosonic modes manifests as an energy-level repulsion, giving
rise to an anticrossing gap at the intersection in the dispersion
curves. Hybridization of the modes is interesting since it re-
sults in various topologically trivial and nontrivial emergent
modes and may reveal some information about the quantum
and topological nature of the system. Phonon-magnon [4–10]
and phonon-plasmon [11–13] hybrid modes are among the
most studied hybrid modes in the previous decades.

However, interaction between magnon and plasmon modes
has received less attention so far. In a few studies, only
a weak hybridization or scattering between magnons and
plasmons were predicted [14–17]. Hybridization of magnon-
plasmon modes needs fine-tuning the matching frequency and
wavevector of two modes and an effective interaction between
them that leads to the anticrossing gap at the intersection in
the dispersion curves. In three-dimensional (3D) metallic sys-
tems, the plasmon mode has an intrinsic band gap of optical
frequency [2]. At the same time, magnons operate at GHz and
THz regimes in ferromagnetic (FM) and antiferromagnetic
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(AFM) systems, respectively [18,19]. Therefore, it is hard to
achieve the frequency-matching criteria. On the other hand,
it is known that plasmon dispersion in two-dimensional (2D)
systems is gapless [2]. The discovery of 2D graphene lay-
ers [20] and surface states of topological insulators [21–23]
make it possible to investigate magnon-plasmon hybrid
modes in heterostructure of 2D metal and magnetic insulator
bilayers. In a recent theoretical study, a topologically non-
trivial magnon-plasmon hybrid mode at the interface of a
topological insulator–FM insulator bilayer was proposed,
leading to a large thermal Hall response [24].

In this Letter we propose a new mechanism of magnon-
plasmon hybridization based on the electronic spin-orbit
coupling (SOC) and s–d(f) exchange interaction. We argue
that the plasmon oscillations may induce a nonequilibrium
spin density via inverse spin galvanic effect or Edelstein effect
[25–33]. Hence, the plasmon-induced spin density is coupled
to magnon modes via s–d(f) exchange interaction. In this
scenario the magnon-plasmon coupling strength is linearly
proportional to the wavevector. We show that the proposed
mechanism here is very general and applies to 3D magnetic
semiconductors and 2D metallic FM and AFM systems. As
the recent discoveries of 2D magnetic systems opened a new
path toward exploring emergent quantum many-body effects
in low-dimensional magnetic systems [34,35], we focus here
mainly on 2D FM and AFM systems. In particular the 2D
metallic AFM systems, that support two chiral magnon modes
with opposite spin polarizations, seem to be exciting candi-
dates for exploring novel magnon-plasmon hybrid modes.

II. GENERAL FORMALISM OF MAGNON-PLASMON
HYBRIDIZATION

First, we should obtain an effective magnon-plasmon
Hamiltonian based on our proposal. To do that, we consider

2469-9950/2023/108(4)/045414(6) 045414-1 ©2023 American Physical Society

https://orcid.org/0000-0002-1452-7001
https://orcid.org/0000-0003-2412-0296
https://orcid.org/0000-0003-0867-6323
https://orcid.org/0000-0001-7823-6388
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.045414&domain=pdf&date_stamp=2023-07-21
https://doi.org/10.1103/PhysRevB.108.045414


ANNA DYRDAŁ et al. PHYSICAL REVIEW B 108, 045414 (2023)

a metallic low-symmetry magnetic system with the following
Hamiltonian

H = Hel +HS +Hint. (1)

The first term Hel describes the electronic subsystem and
includes kinetic term, Coulomb interaction, and SOCs. The
second term HS represents the FM or AFM magnetic
subsystem and generally includes Heisenberg exchange in-
teractions, magnetic anisotropies, dipolar interactions, and
Dzyaloshinskii–Moriya interactions (DMIs). Finally, the last
term in the Hamiltonian describes the coupling between
these two subsystems that is modeled by a Zener-type s–
d(f) exchange interaction between the spin of the conducting
s-orbital electrons si and localized d- (f-) orbital electrons Si

at site i

Hint = −I0

∑
i

Si · si, (2)

where I0 parametrizes the strength of interaction [36–38].
We are interested in the plasmon contribution of the

electronic Hamiltonian Hel. By introducing collective coor-
dinates for the long-range part of the Coulomb interactions
[3,39], the Hamiltonian of interacting electrons can be trans-
formed into an effective Hamiltonian that consists of terms
describing a short-range interacting electron liquid, free
bosonic plasmons, and electron-plasmon interactions [3,39].
The electron-plasmon term is important as it leads to strong
so-called Landau damping of plasmons by creating electron-
hole pairs when plasmon dispersion enters the electron-hole
continuum of the electron liquid at a critical wavevector qc.
Here, we only consider free and undamped plasmons, and
thus the interacting electronic HamiltonianHel reduces to the
following plasmon Hamiltonian [3,39,40]

Hpl =
∑
q<qc

h̄ωpla
†
qaq , (3)

where a†
q (aq) is the bosonic creation (annihilation) operator of

a plasmon mode with a wavevector q, ωq is the corresponding
plasmon frequency, and h̄ is the reduced Planck constant.
Within the random phase approximation (RPA), the plasmon
dispersion at long wavelengths in 3D electron liquids is given
by ωpl � �0(1 + 3v2

F q2/10�2
0), while in 2D systems, we have

ωpl � �0
√

q/2 [2,41–43]. Here �0 =
√

4πne2/m, vF is the
Fermi velocity, n is the charge carrier density, e is the electron
charge, and m is the electron effective mass. In 2D systems,
the plasmon dispersion is gapless ωpl(q → 0) = 0, while 3D
systems have an intrinsic plasmon gap of �0 that depends on
the charge density.

In the magnetic subsystem HS, we are interested in
the low-energy spin excitations, called magnons. Using the
Holstein-Primakoff bosonization technique and within the lin-
ear spin-wave theory, the spin Hamiltonian HS reduces to
the following free magnon Hamiltonian for FM and AFM
systems [19]:

HFM
m =

∑
q

h̄ωmb†
qbq, (4)

HAFM
m =

∑
q,σ

h̄ωσ
mb†

qσ bqσ . (5)

Here b†
q (bq) and b†

qσ (bqσ ) are, respectively, boson creation
(annihilation) operators at wavevector q in FM and AFM
systems, with corresponding dispersion ωm and ωσ

m, re-
spectively. AFM systems commonly have two magnon
eigenmodes with right-/left-handed spin polarization (chi-
rality), denoted by σ =↑/↓, while magnons in FM systems
are only right-handed. The degeneracy of two AFM magnon
modes can be broken by applying a magnetic field.

Now, we formulate the effective Hamiltonian of magnon-
plasmon coupling. As plasmons are associated with space-
time oscillations of the charge density, they inherently
generate an oscillating longitudinal electric field. This electric
field can couple to the magnetic subsystem via SOCs, which
effectively leads to the magnon-plasmon interaction. In fact,
coupling of plasmons to magnons can be mediated either
through the SOC in the electronic subsystem or through the
SOC in the spin subsystem. In the former case, the electric
field due to plasmons generates a dynamical spin polarization
of the charge carriers via inverse galvanomagnetic effect, and
resulting nonequilibrium spin polarization can be coupled to
the localized spins through the s–d(f) exchange interaction
Hint . In the second case, the plasmon electric field leads to
dynamical spin polarization of the spin subsystem via SOC,
which effectively gives rise to magnon-plasmon coupling. In
the following, we focus on the magnon-plasmon coupling due
to SOC in the electronic subsystem.

The longitudinal electric field associated with plasmon os-
cillations in d = {2, 3} dimensions can be computed using a
method introduced in Ref. [44]:

E = 2d−1πne

ε

(
h̄

2Ld nm

)1/2 ∑
q

q

qd−2ω
1/2
pl

(a†
−q − aq)eiq·r,

(6)

where L is the system size and ε is the material dielectric
constant.

In the linear response regime, an ac electric field of fre-
quency ω induces a nonequilibrium ac spin polarization via
the inverse spin galvanic effect

δsa
ω =

∑
b

χab
ω Eb

ω, (7)

where χab
ω is the dynamical magnetoelectric susceptibility or

spin-charge response function of the electronic subsystem,
with a, b = {x, y, z}. This response function may have an ex-
trinsic contribution, proportional to the electron’s relaxation
time, and/or intrinsic contribution, arising from the Berry
curvature of electronic bands [45]. Therefore, the SOC acting
in the conducting electron subsystem convert the plasmon-
induced electric field, Eq. (6), to a nonequilibrium spin
density, Eq. (7). This induced ac spin density interacts with
magnon excitations via s–d(f) interaction, Eq. (2). Therefore,
we can finally obtain the lowest order effective Hamiltonian
of the magnon-plasmon interaction in FM and AFM metals as

HFM
m−pl =

∑
q

h̄(aq − a+
−q)

[
CFM

q b−q + C∗FM
q b†

q

]
, (8)

HAFM
m−pl =

∑
q

h̄(aq − a†
−q)

[
CAFM

q (b−q↓ + b†
q↑)

+ C∗AFM
q (b†

q↓ + b−q↑)
]
, (9)
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where CFM
q = BqFq/h̄ and CAFM

q = (uq + vq)BqFq/h̄
are the effective magnon-plasmon coupling strength
of FM and AFM systems, respectively. We define
Fq = F x

q − iF y
q , where F a

q = ∑
b qbχ

ab
ω=ωpl

, and Bq in

3D is given by B3D
q = I0

√
π h̄Snsωpl(εq)−1 while in 2D

is B2D
q = I0ε

−1
√

π h̄Snsωpl/2q, with S denoting the spin
number and ns the number of the lattice sites per unit cell.
The magnon-plasmon coupling constant in AFM systems
is enhanced by a factor of (uq + vq), where uq and vq are
AFM Bogoliubov transformation coefficients [18,46]. This
enhancement is attributed to the strong exchange-dominant
intrasublattice dynamics of two AFM spins in a magnetic
unit cell.

Eventually, the total Hamiltonian of the system, Eq. (1), is
reduced to the following effective Hamiltonian of interacting
FM (AFM) magnon and plasmon collective modes:

HFM(AFM) = Hpl +HFM(AFM)
m +HFM(AFM)

m−pl . (10)

III. MAGNON-PLASMON HYBRID MODES IN GENERIC
2D SYSTEMS

The proposed magnon-plasmon coupling mechanism,
Eq. (10), is quite generic and can be applied in 3D and 2D
magnetic systems. However, as we mentioned earlier, the plas-
mon dispersion in 3D systems has an intrinsic gap of optical
frequency and can hardly be hybridized with FM and AFM
magnons that are in GHz and THz regime, respectively. On
the other hand, plasmons in 2D systems are soft modes with
a tunable energy dispersion [35], hence recently discovered
2D magnetic materials are promising candidates for exploring
magnon-plasmon hybrid modes. Therefore, in the rest of this
paper, without loss of generality, we assume 2D FM and AFM
metallic systems with square lattice structure. Accordingly,
the spin Hamiltonian of the magnetic subsystem is

HS = ∓J
∑
〈i j〉

Si · S j − Kz

∑
i

(
Sz

i

)2 + gμBH0

∑
i

Sz
i , (11)

where 〈i j〉 denotes summation over nearest-neighbor sites, i
and j, J > 0 represents the isotropic exchange interaction, and
the sign ∓ in front of J corresponds to FM/AFM ordering,
respectively. Furthermore, Kz > 0 is the anisotropy constant,
H0 is the magnetic field along the z direction, g is the Landé
factor, and μB is the Bohr magneton. The dispersion of FM
and AFM magnons read

h̄ωm = gμB(H0 + HA) + zJS(1 − γk ), (12)

h̄ω↑,↓
m =

√
(zJS + HA)2 − (zJSγq)2 ∓ gμBH0, (13)

where γq = z−1 ∑
δ exp (iq · δ) is the lattice structure factor,

with z and δ denoting the coordination number (z = 4 for
2D square lattice) and nearest-neighbor vectors, respectively,
while HA = 2KzS/gμB is the anisotropy field. Note that AFM
magnon dispersion, Eq. (13), is valid below the critical spin-
flop magnetic field.

To compute the magnon-plasmon hybrid modes, we should
first find the effective magnon-plasmon coupling strength Cq
in Eqs. (8) and (9) that is proportional to BqF a

q in both FM
and AFM systems. Bq is linearly proportional to the s–d(f)

exchange interaction I0 and F a
q is related to the dynamical

magnetoelectric susceptibility χab
ω of the magnetic system.

In the following, for numerical calculations, we compute the
effective magnon-plasmon coupling up to the linear order in
I0. Therefore, the magnetoelectric susceptibility can be cal-
culated in the nonmagnetic limit χab

ω (I0 → 0). On the other
hand, the induced spin polarization in 2D nonmagnetic ma-
terials is perpendicular to the applied electric field direction
and is proportional to the electron relaxation time (see, e.g.,
Refs. [28,32,33,45]). Therefore, in the frequency region of the
interest, ωplτ � 1, where τ is the electron scattering time, it
is approximately frequency independent.

IV. 2D FM MAGNON-PLASMON HYBRIDIZATION

First, we find the dispersion relation of magnon-plasmon
modes in FM case. The total FM magnon-plasmon Hamilto-
nian, Eq. (10), can be written asHFM

m = ∑
q �†

qH
FM
q �q, with

the vector field operator �q = (aq, bq, a†
−q, b†

−q)T , and HFM
q

defined as

HFM
q = h̄

⎛
⎜⎜⎜⎜⎝

ωpl CFM 0 C∗
FM

C∗
FM ωm −C∗

FM 0

0 −CFM ωpl −CFM

CFM 0 −C∗
FM ωm

⎞
⎟⎟⎟⎟⎠. (14)

For clarity reasons, the q dependence of the coupling pa-
rameter has been suppressed here. This bosonic Hamiltonian
is now diagonalized using the procedure described in Refs.
[18,47], and we find the following dispersion relations for FM
magnon-plasmon hybrid modes:

ω1,2
m−pl = 1√

2

√
ω2

pl + ω2
m ±

√(
ω2

pl − ω2
m

)2 + 16|CFM|2ωplωm.

(15)

In the absence of magnon-plasmon coupling CFM = 0, the
above relations reduce to those of decoupled magnon and
plasmon modes.

Figure 1(a) shows that the dispersion curves of noninter-
acting magnons and plasmons in a 2D FM system have an
intersection at certain wavevector and frequency. Upon turn-
ing the magnon-plasmon coupling on, CFM �= 0, the hybrid
magnon-plasmon states are formed around the intersection,
that manifests as a level repulsion (level anticrossing) of the
two modes. The magnon gap in FM system can be tuned by
an external magnetic field, Eq. (12). Thus, the frequency and
magnitude of the anticrossing gap can be tuned as well.

V. 2D AFM MAGNON-PLASMON HYBRIDIZATION

2D AFM systems are more interesting since there are two
polarized magnon modes, and by an applied magnetic field,
one can tune the hybridization of two magnon modes with
plasmons. The effective AFM Hamiltonian, Eq. (10), can
be written as HAFM

m = ∑
q �†

qH
AFM
q �q, with the vector field
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FIG. 1. Magnon-plasmon hybridization in a 2D FM system (a), and a 2D AFM system in the absence (b) and presence (c) of a magnetic
field. Red and blue dashed lines present decoupled magnon and plasmon eigenmodes, respectively. Solid lines are hybridized magnon-plasmon
modes. HEFF in (a) is a sum of external and anisotropy fields HEFF = H0 + HA. The other parameters are: J = 5meV, I0 = 3.6 × 10−15 meVcm2,
m = 0.9m0, n = 1.1 × 1013 cm−2, ns = 1.1 × 1015 cm−2, ε = 1, while χ xy = 1012 s/

√
cm3g. With these parameters, the condition ω 
 qvF

is held, and plasmons do not decay into electron-hole excitations via the Landau damping mechanism [2].

operator �q = (aq, bq↑, a†
−q, b†

−q↓)T , and HAFM
q given by

HAFM
q = h̄

⎛
⎜⎜⎜⎜⎜⎝

ωpl C∗
AFM 0 C∗

AFM

CAFM ω↑
m −CAFM 0

0 −C∗
AFM ωpl −C∗

AFM

CAFM 0 −CAFM ω↓
m

⎞
⎟⎟⎟⎟⎟⎠

. (16)

We should solve the following quartic equations for the hybrid
modes ω = ω1−4

m−pl:(
ω2 − ω2

pl

)
(ω ± ω↓

m )(ω ∓ ω↑
m ) − 2|CAFM|2ωpl(ω

↓
m + ω↑

m )=0.

(17)

The general solutions of these two equations for nondegen-
erate AFM magnons are lengthy, and we do not represent
them here. However, if AFM magnon modes are degenerate
ω↓

m = ω↑
m, the form of AFM magnon-plasmon dispersion is

similar to the FM case, see Eq. (15).
Figures 1(b) and 1(c) represent the dispersion curves of the

noninteracting magnons and plasmons in a 2D AFM system.
The degeneracy of AFM magnon modes is broken in the pres-
ence of external magnetic field, Eq. (13), and thus the plasmon
curve can intersect AFM magnon bands in two separate points
with different frequencies and wavevectors, see Fig. 1(c).
Again upon turning the magnon-plasmon on, CAFM �= 0, the
corresponding hybrid magnon-plasmon states appear as an-
ticrossing level repulsion of bands around the intersection
curves. Therefore, we can have two separate magnon-plasmon
hybrid modes with opposite chirality at different frequen-
cies and wavevectors, see Fig. 1(c). Furthermore, since the
strength of the magnon-plasmon coupling is proportional to
the wavevector hence, the right-handed magnon mode ω

↓
AFM

has a stronger interaction with plasmon mode and hence a
larger anticrossing gap than the left-handed magnons ω

↑
AFM.

VI. SUMMARY

We have formulated a magnon-plasmon hybridization
mechanism in FM and AFM systems. The hybridization in
this model is mediated by SOC in the electronic subsystem.
An electric field associated with plasmon oscillations induces
a nonequilibrium spin polarization via the Edelstein effect
or inverse spin galvanic effect. This plasmon-induced spin
polarization may interact with the magnons via a Zener-like
s–d(f) coupling interaction. The strength of magnon-plasmon
hybridization depends on the magnetoelectric susceptibility
and s–d(f) exchange interaction. We propose the recently
discovered 2D FM and AFM systems are ideal candidates
for observation of this effect. Also the interface of a mag-
netic insulator and a heavy metal may host magnon-plasmon
hybrid mode associated with our proposed mechanism. In
AFM systems, we can tune the band splitting of two
chiral AFM magnon eigenmodes and thus adjust the fre-
quency, wavevector, coupling strength, and polarization of the
magnon-plasmon hybrid mode. We found an enhancement
of magnon-plasmon coupling in AFM systems compared to
their FM counterpart. This enhancement appears because two
AFM sublattices are strongly entangled and involved in the
magnon dynamics in AFM systems, and is described by a
factor proportional to the corresponding Bogoliubov trans-
formation coefficients. We believe that the magnon-plasmon
hybridization will become an important issue in the following,
as a connection of already well-developed plasmonics and
magnonics.

Note added. Recently, we became aware of two papers
that discussed magnon-plasmon hybridization in 2D FM sys-
tems. In Ref. [48], the mechanism of FM magnon-plasmon
hybridization is based on the direct Zeeman coupling of the
electromagnetic field of plasmon oscillations to the localized
spins. However, in Ref. [49], the hybridization mechanism is
based on the spin polarization of the bands in 2D FM metals.
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