
PHYSICAL REVIEW B 108, 045405 (2023)

Chiral anomalies in three-dimensional spin-orbit coupled metals:
Electrical, thermal, and gravitational anomalies
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The discovery of chiral anomaly in Weyl semimetals, the nonconservation of chiral charge and energy
across two opposite chirality Weyl nodes, has sparked immense interest in understanding its impact on various
physical phenomena. Here, we demonstrate the existence of electrical, thermal, and gravitational quantum chiral
anomalies in three-dimensional (3D) spin-orbit coupled systems. Notably, these anomalies involve chiral charge
transfer across two Fermi surfaces linked to a single Weyl-type point, rather than across opposite chirality Weyl
nodes as in Weyl semimetals. Our findings reveal that the Berry curvature flux piercing the Fermi surface
plays a critical role in distinguishing the “chirality” of the carriers and the corresponding chiral charge and
energy transfer. Importantly, we demonstrate that these quantum chiral anomalies lead to interesting thermal spin
transport such as the spin Nernst effect. Our results suggest that 3D spin-orbit coupled metals offer a promising
platform for investigating the interplay between quantum chiral anomalies and charge and spin transport in
nonrelativistic systems.
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I. INTRODUCTION

Chiral anomaly refers to the nonconservation of chiral
charges in the presence of collinear electric and magnetic
fields. It was first introduced in the context of the relativistic
field theory of chiral fermions [1–3]. Later it was shown to
be achievable in low gap semiconductors [4], with signatures
in magnetoconductance experiments. Following the discovery
of Weyl semimetals (WSMs) in recent years, the physics
of chiral anomaly has been widely studied in condensed
matter systems, resulting in a variety of nontrivial transport
[5–29] and optical [30–41] effects. Intriguingly, the presence
of a temperature gradient in Weyl systems can also result
in an anomaly similar to the axial-gravitational anomaly in
flat-space time [42–45]. This leads to a range of interesting
magnetothermal transport phenomena [15,46–53].

Central to the physics of chiral anomaly is the continuity
equation for the chiral charge. The continuity equation for
the chiral charges and energy can be derived using semi-
classical dynamics in crystalline materials and shows that
the Berry curvature monopoles govern the chiral anomaly
in Weyl metals [54–56]. The concept of chiral anomaly has
also been extended to other free-fermionic excitations with no
high-energy analog, such as multi-Weyl semimetals [57–62],
which exhibit two band crossings similar to WSMs but with
nonlinear momentum dispersion along a particular direction,
and semimetals with a higher number of band crossings near
the Weyl node [63]. These systems, while possessing a higher
chiral charge, are otherwise similar to Weyl systems in that a
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theory of chiral anomaly requires the presence of two opposite
chirality Weyl nodes.

In this paper, we delve into the connection between chiral
anomalies and the Berry curvature flux passing through the
Fermi surface (FS) [5]. This connection was recently explored
in Refs. [64,65]. Motivated by this, we generalize the theory
of quantum chiral anomalies to Hamiltonians with nonrel-
ativistic terms, specifically H = hk · σ + σ0k2. Here, the σ

represents the real spin of the system, σ0 is the identity matrix,
and hk is an odd function of k. The quadratic kinetic-energy-
like term in the Hamiltonian makes the chiral anomaly in these
spin-orbit coupled (SOC) metals to be distinctly different
from that in WSM (see Fig. 1). These types of systems can
be found in Kramers-Weyl metals with quadratic corrections
to their k · p Hamiltonians [66–75] or in systems supporting
three-dimensional (3D) electron gas with SOC. While some
aspects of the charge, heat, and spin transport in SOC metals
have been explored earlier [64,76,77], the physics of quantum
chiral anomalies in these systems is largely unexplored and
merits further investigation.

In this paper, we demonstrate that Kramers-Weyl and
spin-orbit coupled metals can exhibit all three types of quan-
tum chiral anomalies: electrical, thermal, and gravitational.
We investigate the impact of electric field and temperature-
gradient-induced quantum chiral anomalies on charge, heat,
and spin transport phenomena. Similar to the behavior ob-
served in Weyl semimetals [24], we find that chiral anomalies
in 3D SOC systems also result in negative longitudinal
magnetoresistance and positive thermal magnetoresistance.
However, a distinct feature of 3D SOC systems, as com-
pared to WSMs, is that their low-energy Hamiltonian involves
real spins. We show that quantum chiral anomalies in these
systems also lead to interesting electrical and thermal spin
transport including the spin Nernst effect.
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FIG. 1. Depiction of the quantum chiral anomalies in (a) Weyl
semimetals and (b) 3D spin-orbit coupled metals or Kramers-Weyl
metals. Both systems experience chiral charge and energy pumping,
manifesting as electrical, thermal, and gravitational anomalies, when
subjected to a magnetic field and collinear electric field (E · B �= 0)
or a temperature gradient (∇T · B �= 0). In contrast to Weyl semimet-
als, the chiral charge pumping in 3D spin-orbit coupled metals
occurs between two different Fermi surfaces associated with a sin-
gle “Kramers-Weyl” node, but with opposite Berry curvature flux
passing through them.

The structure of the rest of this paper is as follows. In
Sec. II, we discuss the origins of chiral anomalies in three-
dimensional (3D) metals with SOC and Kramers-Weyl metals.
In Sec. III, we present a mathematical derivation of the
continuity equations to demonstrate the existence of these
anomalies. The effects of these anomalies on charge and spin
transport are examined in Secs. IV and V, respectively. Fi-
nally, we summarize our findings in Sec. VI.

II. ORIGIN OF CHIRAL ANOMALIES
IN SPIN-ORBIT COUPLED METALS

To understand the chiral anomaly in 3D spin-orbit cou-
pled metallic systems (or Kramers-Weyl metals), we first
revisit the WSM. Specifically, we review the physics of chi-
ral anomaly in WSM from the perspective of semiclassical
dynamics. In WSM, the Hamiltonian for a particular Weyl
node near the band-crossing point can be approximated as
HWSM =∑a=x,y,z h̄(va · k)σ a, where k is measured from the
Weyl node. The “chirality” of Weyl node is defined as C =
sign[vx · vy × vz] [78]. In the semiclassical dynamics picture,
the existence of chiral anomaly can be understood by calcu-
lating the equilibrium current in the presence of an external
magnetic field but no electric field.

The equilibrium charge current for each Weyl node (or the
chiral current) arises from the chiral magnetic velocity (see
Sec. III A with explicit derivation shown in Appendix C). The
chiral current for WSM can be expressed in terms of the Berry
curvature flux quantum passing through the FS for the WSM

[24]. This is consistent with the intuitive picture of the Weyl
nodes acting as sinks and sources of the Berry curvature. For
the pair of Weyl nodes of opposite chirality, their FSs are
separated in the momentum space (at least for small energies).
In the presence of an external electric field aligned along the
magnetic field, the chiral charge carriers are pumped across
the FSs with distinct Weyl chirality. This flow is stabilized
by internode scattering. This results in different chiral charge
densities on the two Weyl nodes [as shown in Fig. 1(a)],
and it manifests in several interesting transport phenomena
in WSMs [5,24,51]. We emphasize two things here: (i) a
minimum of a pair of Weyl nodes of opposite chirality are
needed to produce chiral anomaly in WSM, and (ii) the chiral
anomaly can be interpreted as an FS phenomenon, where
the chiral charges are “pumped” across two FSs enclosing
opposite quantum of the Berry curvature flux. These two
points will be crucial in investigating the chiral anomalies in
Kramers-Weyl metals or 3D SOC metals.

3D SOC metals or Kramers-Weyl metals are structurally
chiral crystals with broken inversion symmetry. They host
“Weyl”-type nodal points at all the time-reversal-invariant
momentum (TRIM) points in their Brillouin zone. While the
form of the SOC can be different, a common feature of all
such materials is that they have two FSs for each band-
crossing point (or the Kramers-Weyl node). This is aided
by the kinetic energy term of the form h̄2k2/(2m) in their
dispersion, which is missing in conventional WSM. We have
tabulated all crystalline point groups that support Kramers-
Weyl points, along with their low-energy Hamiltonian in the
vicinity of the Kramers-Weyl point in Appendix A.

While our discussion applies to all classes of single-
crystalline systems of 3D SOC metals or Kramers-Weyl
metals listed in Table I, for specific calculations, we consider
the Hamiltonian [68,79,80]

H = h̄2k2

2m
σ0 + αk · σ. (1)

Here, m is the effective electron mass, α is the SOC parameter,
σ = (σx, σy, σz ) denotes the vector of the Pauli matrices in
spin space, and k is the Bloch wave vector. We note that
in contrast to conventional WSM, the Pauli matrices here
denote the physical spins of the itinerant electrons. The energy
dispersion for the Hamiltonian in Eq. (1) is

ελ = h̄2k2

2m
+ λαk. (2)

Here, λ = ±1 is the spin-split band index which
coincides with the eigenvalues of the operator Ô =
k̂ · σ, and k = |k|. The corresponding eigenstates
are given by |u〉T

+ = [cos(θk/2), eiφk sin(θk/2)] and
|u〉T

− = [sin(θk/2),−eiφk cos(θk/2)], with cos θk ≡ kz/k
and tan φk ≡ ky/kx. In Fig. 1(b), the λ = +1 (λ = −1) band
is represented by the solid (dashed) line. The two bands
of the dispersion relation (2) have a band-touching point
(BTP) at ε = 0. The λ = +1 band has a minimum at ε = 0
and increases monotonically as k increases. The λ = −1
band is nonmonotonic, and it has a minimum energy located
at εmin = −εα , with εα = mα2/2h̄2. The minimum energy
point lies on a circular contour specified by |k|2 = k2

α , where
kα = mα/h̄2.
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Clearly, there are two different types of FSs for any value of
the Fermi energy greater than the energy of the Kramers-Weyl
node. For μ > 0, the inner and outer Fermi surfaces originate
from two different bands, and both of them are interpreted to
have electronic characters. In the main text, we focus on the
μ > 0 limit, and the Berry curvature flux quantum through
each of the Fermi surfaces is defined as

Cλ = 1

2π

∫
FS

dS · �λ. (3)

Here, dS is the elemental surface area of the FS, and �λ

is the Berry curvature. More interestingly, the flux quantum
associated with the FSs is equal and opposite. We explicitly
calculate Cλ = −λ. Hence, the Berry curvature flux quantum
piercing the outer (inner) FS is +1 (−1). See Appendix B for
details.

We emphasize that this scenario is distinctively different
from the usual WSM with chiral symmetry. In WSM, the
pair of FS with the opposite sign of the Berry curvature flux
quantum corresponds to two distinct Weyl crossing points
separated by momentum or energy. These two Weyl points
have opposite chirality, defined by the sign of vector triple
product of the velocities around the nodal point. As a result,
in the case of WSM, the chirality of charge carriers (denoted
by the sign of the Berry curvature flux) and the chirality of
the nodal points are intricately related and can be treated as
identical. However, in the case of 3D SOC metals, the chiral-
ity of the single nodal point and the chirality of the charge
carriers are different. In a 3D SOC metal, for μ > 0, the
two opposite chirality charge carriers reside on distinct inner
and outer Fermi surfaces originating from different bands.
However, both of them are associated with the same nodal
point. The regime when the chemical potential is below the
energy of the Kramers-Weyl point is a bit tricky. For μ < 0,
there is only one Fermi pocket originating from the λ = −1
band. However, due to the nonmonotonic band structure of
the λ = −1 band, the chiral magnetic velocity can be positive
or negative in different regions of the Brillouin zone. More
interestingly, depending on the sign of the chiral magnetic
velocity, the Berry curvature flux contribution of the positive-
velocity and negative-velocity regions is positive and negative,
respectively. This allows us to define opposite chirality charge
carriers within the same Fermi pocket, and this is the basis of
the chiral anomaly for μ < 0. We present a detailed analysis
and calculation for this case in Appendix B.

From the above discussion, it is clear that the “chirality”
of the FSs (or the charge carriers) and the band index are
not identical. In the main text example for μ > 0, the two
FS with opposite Berry curvature flux originate from different
bands, and the Berry curvature flux for each FS turns out to be
−λ. We take advantage of this and use λ as the proxy for FS
chirality in the main text for notational simplicity. However,
this is generally not true and may not always work [64]. For
example, this association does not work in the μ < 0 limit of
the 3D SOC model. Since, for μ < 0, both the opposite chiral-
ity carriers with opposite Berry curvature flux originate from
the λ = −1 band, the carriers’ chirality cannot be associated
with the band index (see Appendix B).

The nonzero flux associated with the two FSs in SOC
metals gives rise to chiral anomalies. This is captured by the

nonconservation of the total flavor charge (N λ) and energy
(Eλ) in presence of a magnetic field (B) and an electric field
(E) or temperature gradient (∇T ). In a clean system of 3D
SOC metal, we can obtain

∂N λ

∂t
∝ −Cλ

0 E · B and
∂N λ

∂t
∝ −Cλ

1 ∇T · B. (4)

A similar calculation for the total energy of each flavor of
fermions yields

∂Eλ

∂t
∝
{−(μCλ

0 + kBTCλ
1

)
E · B,

−(μCλ
1 + kBTCλ

2

)∇T · B.
(5)

Here, μ is the chemical potential, and kBT is the energy
scale of the temperature. The coefficients Cλ

ν [Eq. (9)] for
ν = {0, 1, 2} are the coefficients of the electrical, thermal,
and gravitational chiral anomalies, respectively. See Sec. III
and Eqs. (16) and (17) for more details. More importantly,
these are finite only when the Berry curvature flux quantum
Cλ is finite. Thus, the Berry curvature flux quantum plays an
important role in defining the particles’ flavor (or chirality)
and the associated quantum flavor anomalies (or chiral anoma-
lies). We highlight the chiral charge transfer across the two
Fermi surfaces in WSM and in 3D SOC metals, with opposite
Berry curvature flux in Fig. 1.

In the next section, we explicitly demonstrate the three
chiral anomalies in 3D SOC (or Kramers-Weyl) metals using
the idea of equilibrium and nonequilibrium chiral charge and
energy currents. We specifically focus on the case when the
chemical potential is higher in energy than the Kramers-Weyl
point (μ > 0).

III. CHIRAL CURRENTS AND THE CHIRAL ANOMALIES

In this section, we first show that the existence of equi-
librium currents in the presence of a magnetic field hints at
the possible existence of chiral anomalies in the system. Next,
we explicitly calculate the continuity equation for the chiral
charges and energy current in the presence of a magnetic field
and either a collinear electric field or a collinear temperature
gradient.

A. Equilibrium chiral current induced by magnetic field

The equations of motion of charge carriers in the presence
of Berry curvature are described by the following semiclassi-
cal equation of motion [81,82]:

ṙλ = Dλ

[
vλ + e

h̄
E × �λ + e

h̄
(vλ · �λ)B

]
, (6a)

h̄k̇λ = Dλ

[
−eE − evλ × B − e2

h̄
(E · B)�λ

]
. (6b)

Here, “−e” is the electronic charge, vλ is the band velocity,
and �λ is the Berry curvature. In Eq. (6a), Dλ ≡ 1/(1 + e

h̄�λ ·
B) is the phase-space factor, which modifies the invariant
phase-space volume according to [dk] → [dk]D−1

λ [83]. The
term e

h̄ (vλ · �λ)B in Eq. (6a) is known as the chiral magnetic
velocity and as will see it plays an important role in anomaly-
related transport.
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For a given FS, the equilibrium chiral charge and energy
currents are calculated to be [18]{

jλe,eq, jλε,eq

} =
∫

BZλ

[dk]{−e, ελ} e

h̄
(vλ · �λ) fλ. (7)

In Eq. (7), fλ is the equilibrium Fermi distribution function
corresponding to the FS λ. We emphasize that the chiral
magnetic velocity solely determines the chiral currents, and
the band gradient velocity does not contribute to it. Evaluating
Eq. (7) for our model Hamiltonian, we obtain general relations
for the charge and the energy current [24,33,45]:

jλe,eq = −e
(
μCλ

0 + kBTCλ
1

)
B, (8a)

jλε,eq =
(

μ2

2
Cλ

0 + μkBTCλ
1 + k2

BT 2

2
Cλ

2

)
B. (8b)

Here, we note that all the anomaly coefficients appear in the
equilibrium current. In Eqs. (8a) and (8b), the coefficients are
specified by

Cλ
ν = e

4π2h̄2

∫
dε

(
ε − μ

kBT

)ν(
−∂ fλ

∂ελ

)
Cλ. (9)

It is evident from Eq. (9) that for any quantum system with
finite Cλ, all the chiral anomaly coefficients are nonzero. We
mention here that in defining the anomaly coefficients in
Eq. (9), we have converted the Fermi-sea integration of Eq. (7)
into Fermi-surface integration using the rule of partial deriva-
tive. We provide the details of the calculations in Appendix C.

The importance of the equilibrium currents given in
Eqs. (8a) and (8b) is multifold. First of all, the presence of
finite chiral charges and energy currents in equilibrium is an
indication of the existence of chiral anomalies. This is be-
cause, for both chiral anomaly and nonzero chiral equilibrium
current, nonzero Berry curvature flux is a prerequisite. Sec-
ond, the chiral charge ( j+e,eq − j−e,eq) and energy ( j+ε,eq − j−ε,eq)
currents are nonzero. This highlights that in systems hosting a
pair of fermions with opposite Berry curvature flux quantum,
the chiral magnetic velocity induces a dissipationless chiral
charge and energy current along B [15,84–87]. Finally, we
can expect a finite anomaly-induced current in nonequilib-
rium. In equilibrium, the total charge ( j+e,eq + j−e,eq) and energy
( j+ε,eq + j−ε,eq) currents from the two opposite chirality FSs
will add up to zero due to same chemical potential and temper-
ature. However, in the presence of chiral chemical potential
(μ+ �= μ−) and chiral temperature (T+ �= T−) imbalance in-
duced by the quantum anomalies, these expressions will result
in finite charge and energy current.

Note that the general expressions of equilibrium charge
and energy currents jλe,eq and jλε,eq are valid for any 3D
systems with band-touching point. These currents originate
from the chiral magnetic velocity e/h̄(vλ · �λ)B. As a result,
the equilibrium currents are identically zero for any two-
dimensional system, for which vλ · �λ = 0. The absence of
chiral magnetic velocity in 2D systems forbids the existence
of quantum chiral anomalies in two-dimensional systems.
For three-dimensional systems, vλ · �λ is generally nonzero,
which gives rise to finite equilibrium currents. However, to
have quantum chiral anomalies in the system, there should
be a pair of FS with opposite Berry curvature flux quantum
passing through them so that jλe/ε,eq = − j−λ

e/ε,eq.

Having discussed the general expressions for the
equilibrium charge and energy currents, we now calculate all
the anomaly coefficients for a 3D spin-orbit coupled system.
For the Hamiltonian in Eq. (1), the Berry curvature is given by
�λ = −λk/2k3. The chiral anomaly coefficients are obtained
to be {

Cλ
0 , Cλ

1 , Cλ
2

} = −λ
e

4π2h̄2 {F0,F1,F2}. (10)

We note that the equilibrium currents of Eqs. (8a) and (8b),
along with the chiral anomaly coefficients of the above equa-
tions, do not get affected by the orbital magnetic moment.
Here, Fν’s are the dimensionless functions of (i) x = β(εα +
μ) for λ = −1 band, and (ii) x = βμ for λ = +1 band with
β = 1/kBT being the inverse temperature. Their functional
form is given by

F0(x) ≡ 1/(1 + e−x ), (11)

F1(x) ≡ x/(1 + ex ) + ln[1 + e−x], (12)

F2(x) ≡ π2

3
− x

(
x

1 + ex
+ 2 ln[1 + e−x]

)
+ 2 Li2[−e−x].

(13)

Here, Li2 is the polylogarithmic function of order two. With
the replacement of (εα + μ) → μ, Eq. (10) and Eqs. (11)–
(13) become identical to that in the WSMs [24]. The
temperature dependence of all three chiral anomaly coeffi-
cients is similar to Fig. 6 in Ref. [24]. In the zero-temperature
limit, F0 → 1 and F2 → π2/3. It is worth noting that for
T = 0, the thermal chiral anomaly coefficient Cλ

1 ∝ F1 → 0
becomes finite only for finite T .

B. Steady state in the presence of chiral anomaly

The presence of external perturbations, such as an electric
field E, or a temperature gradient ∇T , drives the system
out of equilibrium. In the nonequilibrium steady state, the
distribution function (gλ) corresponding to the FS λ satisfies
the following Boltzmann transport equation:

∂gλ

∂t
+ ṙλ · ∇r gλ + k̇λ · ∇k gλ = Icoll{gλ}. (14)

Here, Icoll{gλ} is the collision integral and gλ is the nonequi-
librium distribution function for each Fermi function. Similar
to that in WSM, the charge and energy pumping between the
two FSs dictates that the collision integral should incorporate
both the intra- and inter-Fermi-surface scattering processes
[24,51,88]. Within the relaxation time approximation, both the
scattering processes can be captured by the following form of
the collision integral [16,18]:

Iλ
coll = −gλ − ḡλ

τ
− ḡλ − fλ

τv

. (15)

Here, ḡλ represents the “local” steady-state distribution
function for each FS with a local chemical potential
μλ ≡ μ + δμλ, and local temperature Tλ ≡ T + δTλ [88], and
fλ specifies the global equilibrium function. The first term
in the right-hand side of Eq. (15) represents the intra-Fermi-
surface scattering (with scattering rate 1/τ ), which establishes
the local equilibrium. The inter-Fermi-surface scattering has
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been represented by the second term in Eq. (15) with scat-
tering rate 1/τv . The ratio of inter- and intra-Fermi-surface
scattering time for Hamiltonian (1) considering screened
Coulomb impurity potential has been calculated in Ref. [64].
In the small-μ limit, it is given by τv/τ ∼ (2mα2/h̄2)2/μ2

[64]. Hence, for small μ, similar to the WSM [7,89], we have
τv > τ .

Now, we construct the continuity equation for the particle
number and the energy density. Substituting Eq. (15) in (14),
and then integrating over all the momentum states for the FS
λ, we obtain

∂N λ

∂t
+ eE · BCλ

0 + ∇r · Jλ
e = −N λ − N λ

0

τv

. (16)

Here, ∇r · Jλ
e = kBCλ

1 ∇T · B is the divergence of particle cur-
rent. The quantities {N λ

0 ,N λ} = ∫ [dk]D−1
λ { fλ, gλ} represent

the total particle number density in each FS before and after
applying the perturbing fields. In Eq. (16), the terms E · BCλ

0 ,
and kBCλ

1 ∇T · B represent the chiral-anomaly-induced flow
of the charge carriers. Similarly, the continuity equation for
the energy density, which we construct by multiplying the
energy dispersion ελ in Eq. (14) and integrating over all the
momentum states, is obtained to be

∂Eλ

∂t
+ (μCλ

0 + kBTCλ
1

)
eE · B + ∇r · Jλ

E = −Eλ − Eλ
0

τv

.

(17)

The second term on the left-hand side is −E · jλe,eq that rep-
resents the work performed by the electric field and ∇r ·
Jλ
E = (μkBCλ

1 + k2
BTCλ

2 ) ∇T · B represents the divergence of
energy current in presence of ∇T . The quantities {Eλ

0 , Eλ} =∫
[dk]D−1

λ ελ{ fλ, gλ} are the total energy density in each FS be-
fore and after applying external fields, respectively. Here, μCλ

0
and μCλ

1 specify the energy carried out by the chiral charge
transfer, whereas TCλ

2 represents the energy pumped out by
the term ∇T · B [24]. In constructing Eqs. (16) and (17), we
have used the fact that the intra-Fermi-surface scattering does
not change the number of particles and energy in each FS.
The detailed derivation of Eqs. (16) and (17) is outlined in
Appendix D.

IV. CHIRAL ANOMALY AND CARRIER TRANSPORT

To calculate the chiral-anomaly-induced charge, heat, and
spin currents, we first calculate the nonequilibrium distribu-
tion function to linear order in applied perturbing field. In the
linear response regime, we can safely assume that the change
in chiral chemical potential and temperature is small, i.e.,
δμλ < μ, and δTλ < T [18,24,88]. Then, to the lowest order
in δμλ and δTλ, the nonequilibrium distribution function can
be calculated to be

gλ = fλ +
(

−∂ fλ
∂ελ

)[(
1 − τ

τv

)(
δμλ + ελ − μ

T
δTλ

)

− τDλ

(
vλ + e

h̄
(vλ · �λ)B

)
·
(

eE + (ελ − μ)
∇T

T

)]
.

(18)

Here, the chiral chemical potentials δμλ and temperature δTλ

are given by [18]

δμλ = − τv(
Dλ

2Dλ
0 − Dλ

1
2) [(Dλ

2Cλ
0 − Dλ

1Cλ
1

)
eE · B

+ (Dλ
2Cλ

1 − Dλ
1Cλ

2

)
kB∇T · B

]
, (19)

kBδTλ = − τv(
Dλ

2Dλ
0 − Dλ

1
2) [(Dλ

0Cλ
1 − Dλ

1Cλ
0

)
eE · B

+ (Dλ
0Cλ

2 − Dλ
1Cλ

1

)
kB∇T · B

]
. (20)

In the above equation, we have defined the magnetic-field-
dependent generalized density of states at finite temperature
as

Dλ
ν =

∫
dε

(
ελ − μ

kBT

)ν(
−∂ fλ

∂ελ

)
Dλ. (21)

Here, ν = {0, 1, 2}, and Dλ = ∫ [dk](1 + e/h̄�λ · B)δ(μ −
ελ) being the density of states corresponding to the FS of
the band λ. It is evident that both the electric field and the
temperature gradient components parallel to B contribute to
generating the system’s chiral chemical potential and chiral
temperature imbalance.

Having obtained the nonequilibrium distribution function,
we now calculate the charge and heat current in each FS,
which are defined as { jλe , jλQ} = ∫ [dk]{−e, (ελ − μ)}ṙλgλ.
Focusing only on the anomaly-induced contribution ∝τv , we
obtain [18](

jλe

jλQ

)
= τvB

⎛
⎝ 1

Dλ
0

(
eCλ

0

)2
ekB

Dλ
1

Dλ
0Dλ

2
Cλ

0Cλ
2

ekBT Dλ
1

Dλ
0Dλ

2
Cλ

0Cλ
2 T 1

Dλ
2

(
kBCλ

2

)2
⎞
⎠

×
(

E · B
−∇T · B

)
. (22)

In deriving the above equation, we used the fact that in the
μ � kBT limit (or βμ � 1) limit, Cλ

1 → 0, and Dλ
0 ,Dλ

2 >

Dλ
1 . Now, the transport coefficients can be obtained by com-

paring the total currents ( je,Q =∑λ jλe,Q) from Eq. (22) and
the phenomenological linear response relations [90] je,a =∑

b[σab Eb − αab ∇bT ] and jQ,a =∑b[ᾱab Eb − κ̄ab ∇bT ].
Here, σ , α, ᾱ, and κ̄ denote the electrical, thermoelectric,
electrothermal, and constant voltage thermal conductivity ma-
trix, respectively. Note that the thermopower matrix is defined
as Sab = [σ−1α]ab, and the open circuit thermal conductivity
matrix is expressed as κab = [κ̄ − ᾱσ−1α]ab. From Eq. (22),
we see that both the charge and energy currents flow along the
direction of the magnetic field. This is consistent with the fact
that these originate from the chiral magnetic velocity.

We calculate the generalized energy density using the
Sommerfeld approximation in the limit μ � kBT . Retaining
only the leading-order term in the Sommerfeld expansion,
we obtain

Dλ
ν ≈ m3/2√εα√

2π2h̄3

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1+λ
√

1+μ̃)2

√
1+μ̃

F0 ν = 0,

μ̃

2βεα (1+μ̃)3/2 F2 ν = 1,

(1+λ
√

1+μ̃)2

√
1+μ̃

F2 ν = 2.

(23)

Here, we have defined the scaled chemical potential μ̃ =
μ/εα . In calculating the above-generalized energy densities,

045405-5



SUNIT DAS, KAMAL DAS, AND AMIT AGARWAL PHYSICAL REVIEW B 108, 045405 (2023)

we have neglected the magnetic field corrections, which are
very small. Note that (i) Dλ

0 becomes the exact density of
states in the zero-temperature limit for the corresponding
bands [91], and (ii) Dλ

1 is independent of λ, i.e., it is identical
for both the FSs.

The chiral-anomaly-induced transport coefficients (σ , α,
ᾱ, and κ̄) is obtained from Eq. (22) using the expressions
of Cλ

ν , and Dλ
ν . In the μ � kBT limit, for arbitrary orienta-

tion of the magnetic field, the anomalies-induced transport
coefficients are

(
σab αab

ᾱab κ̄ab

)
= τve3B2

4π2m2αμ̃2
Aab(θ, φ)

⎛
⎝e

√
1 + μ̃(2 + μ̃) π2kB

6βεα

(μ̃2+8(1+μ̃))
μ̃

√
1+μ̃

π2

6β2εα

(μ̃2+8(1+μ̃))
μ̃

√
1+μ̃

π2kB
3eβ

√
1 + μ̃(2 + μ̃)

⎞
⎠. (24)

Here, A(θ, φ) is a 3 × 3 matrix, which captures the angular dependence of all the transport coefficients, with (θ, φ) denoting the
polar and azimuthal angle of the spherical polar coordinate for the magnetic field. The A(θ, φ) matrix is obtained to be

A(θ, φ) =

⎛
⎜⎜⎝

sin2 θ cos2 φ 1
2 sin2 θ sin 2φ 1

2 sin 2θ cos φ

1
2 sin2 θ sin 2φ sin2 θ sin2 φ 1

2 sin 2θ sin φ

1
2 sin 2θ cos φ 1

2 sin 2θ sin φ cos2 θ

⎞
⎟⎟⎠. (25)

As a consistency check, we note that the longitudinal elec-
trical conductivity (σaa) derived above matches with that
obtained recently in Ref. [64]. The conductivity matrix of
Eq. (24) is valid for the arbitrary direction of the applied
magnetic field. So, in the planar configuration of the mag-
netic field (θ = π/2), the xy component of the transport
coefficients represents various planar Hall effects. For in-
stance, the σxy, αxy, ᾱxy, and κ̄xy represent the usual planar
Hall response, planar Nernst effect, planar Ettinghausen ef-
fect, and planar Righi-Leduc effects, respectively [90]. Hence,
our work generalizes the chiral-anomalies-induced transport
to the thermoelectric and thermal conductivity matrices for
spin-orbit coupled systems. We emphasize that the chiral-
anomaly-induced responses of Eq. (24) become zero for
εα = 0. This is expected because the system’s inversion sym-
metry is restored as α → 0, causing the “Weyl” point, related
Berry curvature, and chiral magnetic velocity to vanish.

We present the variation of chiral-anomaly-induced elec-
trical conductivity with μ and εα in Fig. 2. We find that
the other conductivity components of Eq. (24) also follow a
similar qualitative trend in μ and α. The anomaly-induced
response decreases as μ increases. This is consistent with
the fact that the chiral anomalies originate from the Berry
curvature, which peaks in the vicinity of the band-touching
points.

To investigate the impact of the chiral anomaly on various
longitudinal transport phenomena, we define the following
generalized magnetoresistance: MRR ≡ R(B)/R(B=0) − 1.
Here, R denotes the different transport contributions in
Eq. (24). In the μ � kBT limit, we calculate the Drude con-
ductivities to be

σD = eτmα

3h̄4 × 2eεα

π2
(2 + μ̃)

√
1 + μ̃, (26)

αD = −eτmα

3h̄4 × kB

3β

(3μ̃ + 4)√
1 + μ̃

, (27)

κ̄D = eτmα

3h̄4 × 2εα

eπ2

π2kB

3β
(2 + μ̃)

√
1 + μ̃. (28)

In this limit, the longitudinal MR in resistivity is obtained
to be

MRρ = − 3τvγ
2

3τvγ 2 + 4τ
. (29)

Here we have defined γ = eh̄3B
m2α2μ̃

. The “magnetoresistance” in
the Seebeck coefficient can be calculated to be

MRS = MRρ

4(μ̃2 + 3μ̃ + 2)

μ̃(3μ̃ + 4)
. (30)

We note that both of these, MRρ and MRS , show negative
magnetoresistance, similar to the band-inversion WSM [24].
However, unlike the case of conventional WSM, the relation
MRρ/MRS = 1

2 is not satisfied in spin-orbit coupled systems.

FIG. 2. Variation of the chiral-anomaly-induced electrical con-
ductivity with the chemical potential and the spin-orbit coupling
energy strength. The electrical conductivity is expressed in units of
σ0 = τve4B2

4
√

2π2m3/2 h̄
. The anomaly-induced response is larger for larger

SOC strength and smaller chemical potential. Here, we have used
α = 0.7 eV Å, and m = 1.4me, where me is the electronic mass [68].
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In the case of constant voltage thermal conductivity and
thermoelectric conductivity, we find

MRκ̄ = 3τv

4τ
γ 2, (31)

MRα = −MRκ̄

μ̃2 + 8(1 + μ̃)

μ̃
√

1 + μ̃(3μ̃ + 4)
. (32)

Clearly, MRα is negative while MRκ̄ is positive. This is similar
to the results obtained for WSM in Refs. [24,92].

V. CHIRAL ANOMALY AND SPIN TRANSPORT

Unlike WSM, where the Pauli matrices in the Hamiltonian
represent pseudospins, the Pauli matrices in SOC systems
described by Eq. (1) represent physical spins. Consequently,
the two bands in SOC systems are spin momentum locked
with opposite spin orientations on the inner and outer FSs
[93]. Thus, it is natural to expect that chiral anomalies can
also influence spin transport [94] along with charge transport.
Motivated by this, we explore the chiral-anomalies-induced
linear spin transport (∝ E · B or ∇T · B) in this section.
Spin transport in a 3D SOC system was recently explored in
Ref. [93] without considering the effect of chiral anomaly.
In Ref. [64], the authors studied electrical chiral-anomaly-
induced linear electrical spin current in 3D SOC systems.
Here, we include the temperature-gradient-induced spin cur-
rents and study the chiral-anomaly-induced spin Nernst effect,
in addition to other effects.

The spin current operator is defined via the anticommutator
relation Ĵ sb

a = 1
2 {v̂a, ŝb}, where v̂a is the velocity operator, ŝb

is the spin operator, and a, b denote the Cartesian coordi-
nates [95]. Now, the spin current can be calculated as the
expectation value of the spin current operator weighted by the
nonequilibrium distribution function

jsb
a =

∑
λ

∫
[dk]D−1

λ 〈uλ(k)|Ĵ sb
a |uλ(k)〉gλ. (33)

The matrix of spin transport coefficients is related to the spin
current via the relation jsb

a = σ sb
acEc − αsb

ac∇cT . Here, σ sb
ac is

the electrical spin conductivity matrix, and αsb
ac is the ther-

moelectric spin conductivity matrix. These tensors represent
response coefficients for the spin current flowing along the a
direction for spin polarization along the b direction, while the
electric field or the temperature gradient is applied along the
c direction.

The spin current operator for Hamiltonian (1) is given by

Ĵ sb
a = h̄ka

m
σ0 + δab

α

h̄
σb, (34)

where δab = 0 or 1 depending on a �= b or a = b, respectively.
Using the eigenstates of Hamiltonian (1), we evaluate the
expectation value of the above equation to be〈

uλ

∣∣Ĵ sb
a

∣∣uλ

〉 = α

h̄
Iab + λ

h̄k

m
Aab(θk, φk ). (35)

Here, I denotes the 3 × 3 identity matrix, and A(θk, φk ) is
a 3 × 3 matrix defined in Eq. (25). Following the symmetric
energy dispersion, the distribution function gλ [see Eq. (18)]
is independent of θk and φk . As a consequence, the angular
integration over φk makes all the off-diagonal elements of
〈uλ|Ĵ sb

a |uλ〉 to be zero, and jsb
a = 0 for a �= b. Thus, the spin

FIG. 3. The variation of the longitudinal thermoelectric spin con-
ductivity with the chemical potential μ and the spin-orbit coupling
energy strength εα . The conductivity αsx

xk is scaled by τvekBB
9
√

2h̄2β
√

m
.

Similar to the chiral-anomaly-induced electrical response, the chiral-
anomaly-induced spin response is also larger for larger spin-orbit
coupling and smaller chemical potential. The parameters used in this
plot are identical to those in Fig. 2.

current is finite only when the spins are aligned along the
direction of the velocity of the carriers. Hence, the chiral-
anomaly-induced spin currents are finite only when the spins
are polarized along the respective directions of current, and
we have jsx

x = j
sy
y = jsz

z = js
CA. We calculate the spin current

induced by the chiral anomalies to be (see Appendix E for
details)

js
CA = τv

∑
λ

Cλ
0

Dλ
0

[Dλ
1

Dλ
2

L1 − L0

]
eE · B

− Cλ
2

Dλ
2

[Dλ
1

Dλ
0

L0 − L1

]
kB∇T · B. (36)

Here, we have defined

Lν =
∫

[dk]

(
α

h̄
+ λ

h̄

m
ka · k̂

)(
ελ − μ

kBT

)ν(
−∂ fλ

∂ελ

)
, (37)

with ka = kaâ being a vector along the a direction with
magnitude equal to the component of k along the a di-
rection, and k̂ = sin θk cos φk x̂ + sin θk sin φk ŷ + cos θk ẑ. We
now have jsa

a ∝ E · B for any arbitrary direction of the applied
electric field along the k direction. We calculate the corre-
sponding chiral-anomaly-induced electrical spin conductivity
to be

σ sx
xc = σ s

0

[√
1 + μ̃ − π2

6β2ε2
α

(μ̃2 + 9μ̃ − 20)

μ̃2(1 + μ̃)2

]
ĉ · B̂, (38)

where we have defined σ s
0 = τve2Bα

6π2 h̄3 . The second term on the
right-hand side of Eq. (38) is the finite-temperature correc-
tion to the electrical spin conductivity, which vanishes in the
T → 0 limit.

For the thermoelectric part of the spin conductivity, we
find that it behaves like the electric spin conductivity. All the
thermoelectric spin currents, where the spin is not aligned
along the current direction, vanish. We obtain jsb

a = 0, for
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b �= a, and jsa
a ∝ ∇T · B. Our calculations show that only the

conductivity components αsa
ac are finite, and αsx

xc = α
sy
yc = α

sz
zc.

We calculate the thermoelectric spin conductivity for the tem-
perature gradient applied along the c direction to be

αsx
xc = αs

0

[
2

μ̃2
+ μ̃2 + 3μ̃ − 2

μ̃2
√

1 + μ̃
− μ̃2 + 7μ̃ + 6

2μ̃(1 + μ̃)3/2

]
ĉ · B̂,

(39)

where αs
0 = τvekBαB

18h̄3βεα
. The above expression represents the

chiral-anomaly-induced spin-Seebeck (for c = x) or the spin
Nernst coefficient (for c �= x), with the spins polarized along
the x direction. The variation of α

sx
xk with μ and εα is presented

in Fig. 3. The electrical spin conductivity also follows similar
trends in μ and εα . The anomaly-induced effects in general de-
crease with increasing μ and increase with increasing α which
is a proxy for the degree of inversion symmetry breaking.

VI. CONCLUSION

In summary, we have provided evidence that quantum
chiral anomalies can be understood as a feature of FSs. Specif-
ically, the chirality of charge carriers can be determined by
the sign of the Berry curvature quantum passing through the
associated Fermi surface. This has significant implications
for 3D SOC metals or Kramers-Weyl metals, where chiral
charge pumping can occur across the two Fermi surfaces
associated with a single Kramers-Weyl node. To the best of
our knowledge, this kind of chiral anomaly has no analog
in relativistic field theories of chiral fermions. We have also
demonstrated the existence of three distinct types of quantum
chiral anomalies (electrical, thermal, and gravitational) in 3D
SOC metals and Kramers-Weyl metals.

The effect of these quantum chiral anomalies can be
observed in electrical and thermoelectric charge and spin
transport in 3D SOC metals and Kramers-Weyl metals. While
the electrical transport signatures of chiral anomalies in
3D spin-orbit coupled metals are similar to those in Weyl
semimetals, the signatures in electrical and thermoelectric
spin transport are unique to 3D SOC metals. We have shown
that spin conductivities are finite only when spins are polar-
ized along the direction of carrier flow. We found that the
chiral-anomaly-induced spin conductivities are proportional
to the strength of the magnetic field, unlike charge conductiv-
ities which scale with the square of the magnetic field. Our
findings contribute to the understanding of chiral-anomaly-
induced charge, heat, and spin transport in 3D SOC metals
and Kramers-Weyl systems.
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APPENDIX A: 3D NONCENTROSYMMETRIC SOC
METALS AND KRAMERS-WEYL METALS

In this Appendix, we discuss the SOC-induced chiral
anomaly in other 3D systems with different forms of the SOC,

compared to Eq. (1). Comparing the list of single-crystalline
point groups which support 3D spin-orbit coupled metals [96]
with the list of Kramers Weyl metals [67], we find that these
are identical. However, 3D electron gas with SOC can also
arise in some heterostructures of two different single crystals.
Both of these systems have doubly degenerate band-touching
points, which we refer to as “Kramers-Weyl” points. Kramers-
Weyl metals are realized in structurally chiral crystals that
lack mirror, inversion, or rotoinversion symmetry [67]. There
are 65 Sohncke chiral space groups corresponding to 11 chiral
point groups which characterize the structurally chiral crystals
[70].

The bands of nonmagnetic chiral crystals are at least
doubly degenerate at the time-reversal-invariant momenta
(TRIM) points due to Kramers theorem [67]. However, the
SOC lifts the Kramer’s degeneracy at all other points in the
momentum space, leaving behind Weyl-type Kramers-Weyl
nodes at the TRIM points. All these band-degenerate points
are topologically nontrivial, carrying finite Chern numbers
[67]. In general, the chiral crystals can host multiple band
crossings at the TRIM points in the Brillouin zone along with
multifold band degeneracy [66–68,70,74].

In this paper, we focus on Kramers-Weyl metals that have
a twofold-degenerate Kramers-Weyl point at TRIM. In Ta-
ble I, we summarize the chiral space groups and point groups
which support Kramers-Weyl fermions, along with some
material examples [64,67,96,97]. The generic Kramers-Weyl
system will have a low-energy Hamiltonian of the form H =∑

ab h̄2kakb/(2mab) + hk · σ, in the vicinity of the Kramers-
Weyl point for which |hk| = 0. Here, a, b = x, y, z, mab is the
effective mass tensor, and k is the momentum with respect
to the Kramers-Weyl point. The specific form of symmetry
allowed hk for each of the chiral point groups is also sum-
marized in Table I. Each of these Kramers-Weyl points has a
chiral charge with value ±1. For example, the Hamiltonian (1)
with isotropic SOC term αk · σ can be realized in point groups
T and O in K2Sn2O3, β-RhSi, CoSi crystals [67,68,72–75].

APPENDIX B: BERRY CURVATURE FLUX QUANTUM
AND CHIRAL ANOMALY FOR NEGATIVE

CHEMICAL POTENTIAL

In this Appendix, we calculate the Berry curvature flux
quantum for each Fermi surface and discuss the chiral
anomaly for Fermi energies below the Kramers-Weyl node,
i.e., μ < 0. We start by calculating the Berry curvature flux
quantum for the FSs. The Berry curvature flux through any FS
is defined as Cλ = 1

2π

∫
FS dS · �λ, where dS is the elemental

surface area of the FS. Using the divergence theorem, and
capturing the Fermi surface via the Heaviside step function
[�(μ − ελ)], we have

Cλ = 1

2π

∫
dk ∇k · �λ�(μ − ελ)

= − 1

2π

∫
dk �λ · ∇k�(μ − ελ)

= h̄

2π

∫
dk �λ · vλδ(μ − ελ). (B1)
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TABLE I. The space groups and the point groups for topologically nontrivial chiral crystals hosting Kramers-Weyl fermions with chiral
charge ±1. Some material examples, along with the form of the symmetry-allowed SOC terms in the vicinity of the Kramers-Weyl points for
each space group, are also presented.

Space group Point group (Laue class) Material SOC term

1 C1(1) Li6CuB4O10 (α1kx + α2ky + α3kz )σx + (α4kx + α5ky + α6kz )σy + (α7kx + α8ky + α9kz )σz

3–5 C2(2) Pb3GeO5 (α1kx + α2ky )σx + (α3kx + α4ky )σy + α5kzσz

16–24 D2(222) AlPS4 α1kxσx + α2kyσy + α3kzσz

143–146 C3(3) β-Ag3IS
75–80 C4(4) BaCu2Te2O6Cl2 (α1kx + α2ky )σx + (α1ky − α2kx )σy + α3kzσz

168–173 C6(6) α-In2Se3

149–155 D3(32) Ag3BO3

89–98 D4(422) CdAs2 α1(kxσx + kyσy ) + α2kzσz

177–182 D6(622) NbGe2

195–199 T(23) K2Sn2O3, β-RhSi α1(kxσx + kyσy + kzσz )
207–214 O(432) BaSi2, SrSi2

Note that in the zero-temperature limit, the above expression
reduces to the electrical chiral anomaly coefficient defined in
Eq. (10). Below, we explicitly calculate the Cλ.

Case I (μ > 0). For μ > 0, there are two Fermi wave

vectors kF
λ = −λkα +

√
k2
α + 2mμ/h̄2 with λ = ±, corre-

sponding to two FSs of the two bands. The kF
+ (kF

−)
corresponds to the inner (outer) FS. Now, using the expres-
sions of vλ, �λ, and the δ-function property, Cλ for each band
λ becomes

Cλ = h̄

2π

∫
dk

−λ

2k2

(
h̄k

m
+ λ

α

h̄

)
δ(μ − ελ),

= −λ

∫
dk

(
h̄2k

m
+ λα

)
δ
(
kF
λ − k

)
|ε′

λ|
. (B2)

Here, ε′
λ is the first derivative of ελ with respect to k. Evaluat-

ing this integral yields Cλ = −λ.
Case II (μ < 0). For μ < 0, there is only one Fermi sur-

face corresponding to the λ = −1 band. However, due to
the nonmonotonic band dispersion (see Fig. 4), the Fermi
surface contains both holelike carriers, as well as electronlike

FIG. 4. (a) The band dispersion and the Brillouin zone partition-
ing for the λ = −1 band of a 3D SOC system. For the blue-shaded
region with negative-band velocity, the Berry curvature flux is −1,
while the Berry curvature flux is +1 for the red-shaded region with
positive-band velocity. (b) The corresponding cross section of the
Fermi surface for μ < 0 for the λ = −1 band, highlighting the two
partitions Fermi pockets.

carriers. In the region near the nodal point, the band veloc-
ity is negative, while in other regions, the band velocity is
positive. As a result, we have regions within the same Fermi
surface that have opposite signs of the chiral magnetic ve-
locity (∝ vλ · �λ). This ensures that the Berry curvature flux
through the entire FS calculated using Eq. (B1) is zero. This
is consistent with the μ > 0 case, in which the sum of the
Berry curvature flux through the Fermi surfaces of two distinct
bands is zero.

We show the partitioning of the FS in Fig 4, with the
blue and red regions capturing the holelike and electronlike
quasiparticles. Here, the χ is used as the index for denoting the
inner (outer) region of the FS, with χ = −1 for the blue region
(χ = +1 for the red region). To calculate the Berry curvature
flux using Eq. (B1), we first compute the Fermi wave vectors
corresponding to the two different regions of the Fermi pocket
of the λ = −1 band. The Fermi wave vectors corresponding
to the inner (χ = −1) and outer (χ = −1) boundaries of the

Fermi pocket are given by kF
χ = kα + χ

√
k2
α + 2mμ/h̄2. Re-

call that kα = mα/h̄2 corresponds to the minima in the energy
of the λ = −1 band. The χ = − (+) region of the Fermi
pocket corresponds the kF

− < k < kα (kα < k < kF
+). These

regions are represented by blue and red colors, respectively,
in Fig. 4. For λ = −1 band, the Cλ is given by

Cλ = h̄

2π

∫
dk

1

2k2

(
h̄k

m
− α

h̄

)
δ(μ − ε−). (B3)

Now, for either of the two regions, the above equation reduces
to

Cχ

λ =
∫

dk

(
h̄2k

m
− α

)
δ
(
kF
χ − k

)
|ε′−| . (B4)

As the band velocity ε′
− = h̄2k/m − α is negative (positive)

for the region with kF
− < k < kα (kα < k < kF

+), Eq. (B4)
yields Cχ

λ = χ . We note again that the sign of Cχ

λ is essentially
tied to the sign of the chiral magnetic velocity proportional
to the (vλ · �λ) term. The partitioning of the Brillouin zone,
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as per the sign of the chiral magnetic velocity, allows one to
define two regions of FS with opposite Berry curvature flux
quantum. This had been used in Ref. [64] to discuss the conti-
nuity equation and the associated electrical chiral anomaly for
μ < 0, on the same footing as we have discussed for μ > 0
[64] in the main text. However, the case of μ < 0 is even
more interesting compared to the μ > 0 case, as the carriers
with opposite Berry curvature flux or opposite chirality reside
on the same Fermi pocket. This is an example of the chiral
anomaly arising from the chiral carriers, both of which reside
on the same Fermi surface.

Having discussed the chiral anomaly for μ < 0, we con-
clude this Appendix with a small discussion on the chirality
of Weyl-type nodes and the Berry curvature flux quantum.
For the WSM, the Berry curvature flux through the FS of a
node represents the “chirality” of that node, irrespective of the
conduction or the valence band. This is easily seen because,
in the m → ∞ limit, the Hamiltonian in Eq. (1) reduces to
the Hamiltonian for a single Weyl node HWSM. In contrast
to the bands of Hamiltonian in Eq. (1), both bands of HWSM

are monotonous, and only one FS exists at any particular
energy in the vicinity of a nodal point. Then a straightforward
calculation following Eq. (B2) yields Cλ = −sign(α) for both
the conduction and valence bands of HWSM. Because the Cλ

depends on the sign of α, the Berry curvature flux quantum
becomes opposite for opposite chirality nodes where α has
the opposite sign. This establishes that for WSM, the chirality
of each Weyl node can be represented as the Berry curvature
flux quantum through the node [5,24,78,98]. However, for
the Kramers-Weyl nodes, the Berry curvature flux quantum
and the chirality of the node are not identical. The chirality
of the Kramers-Weyl nodes depends on the sign of α for
Hamiltonian (1), which is specific to a given TRIM point of
the material [67].

APPENDIX C: CALCULATION
OF EQUILIBRIUM CURRENTS

In this Appendix, we derive the expressions of the equilib-
rium currents obtained in Eqs. (8a) and (8b). In the presence
of only a magnetic field, the velocity of the center of mass
of the wave packets for the carriers in each band is given by
ṙλ = Dλ[vλ + e

h̄ (vλ · �λ)B]. The equilibrium charge current
for the FS λ (corresponding to each band) is given by

jλe,eq = −e
∫

[dk]D−1
λ ṙ fλ = −eB

∫
[dk]

e

h̄
(vλ · �λ) fλ.

(C1)

Here, we have used the fact that the band velocity vλ does
not contribute to the equilibrium current (due to angular inte-
gration being zero). Now, we use the identity ∇k · (ελ�λ) =
∇kελ · �λ + ελ∇k · �λ to express the above equation as

jλe,eq = −e2B

h̄2

∫
[dk][∇k · (ελ�λ) − ελ∇k · �λ] fλ (C2)

= −e2B

h̄2

∫
[dk]∇k · (ελ�λ) fλ (C3)

= e2

h̄2 B
∫

[dk]ελ�λ · k̂
∂ fλ
∂k

(C4)

= −eB
∫

[dk](μ + ελ − μ)
e

h̄
(vλ · �λ)

(
−∂ fλ

∂ελ

)

= −e
(
μCλ

0 + kBTCλ
1

)
B. (C5)

To evaluate Eq. (C3), we have used the fact that ∇k · �λ =
±2πδ3(k) for a system with doubly degenerate band-touching
point with linear dispersion. This makes the last integral of
Eq. (C2) to be zero. To obtain Eq. (C4) from (C3), we have
used integration by parts. Here, we have defined Cλ

ν as

Cλ
ν =

∫
[dk]

e

h̄
vλ · �λ

(
ε − μ

kBT

)ν(
−∂ fλ

∂ελ

)
. (C6)

These can also be rewritten in terms of Cλ given in Eq. (10).
The energy current jλε,eq can be evaluated in a similar manner.

Finally, we derive the spatial divergence of the equilibrium
particle and energy currents, which will be used in the follow-
ing Appendix. Following Eq. (C1), the equilibrium particle
current is given by Jλ

e = ∫ [dk] e
h̄ (vλ · �λ)B fλ. The divergence

of the equilibrium particle current becomes

∇r · Jλ
e = ∇r ·

[
B
∫

[dk]
e

h̄
(vλ · �λ) fλ

]

= B ·
∫

[dk]
e

h̄
(vλ · �λ)∇rT

ελ − μ

T
(−∂ε fλ)

= kBCλ
1 ∇T · B. (C7)

Here, we have the relation ∇r fλ = ∇T ελ−μ

T (−∂ε fλ), and the
definition of Cλ

1 .
Similarly, for the divergence of the equilibrium energy

current, we start with

∇r · Jλ
E = ∇r ·

[
B
∫

[dk]
e

h̄
(vλ · �λ)ελ fλ

]

= B ·
∫

[dk]
e

h̄
(vλ · �λ)(μ + ελ − μ)

×∇rT
ελ − μ

T
(−∂ε fλ)

= μkBB · ∇rT
∫

[dk]
e

h̄
(vλ · �λ)

ελ − μ

kBT
(−∂ε fλ)

+ k2
BT B · ∇rT

∫
[dk]

e

h̄
(vλ · �λ)

×
(

ελ − μ

kBT

)2

(−∂ε fλ)

= (μkBCλ
1 + k2

BTCλ
2

)∇T · B. (C8)

We will use these expressions in the next Appendix for deriv-
ing the particle and energy continuity equations.

APPENDIX D: DERIVATION OF PARTICLE
AND ENERGY CONTINUITY EQUATIONS

Within the relaxation time approximation, the Boltzmann
transport equation, including the inter-Fermi-surface scatter-
ing term, is given by

∂gλ

∂t
+ ṙλ · ∇r gλ + k̇λ · ∇k gλ = −gλ − ḡλ

τ
− ḡλ − fλ

τv

.

(D1)
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Using the equation of motion of Eqs. (6a) and (6b) in the above equation, we obtain

∂gλ

∂t
+ Dλ

[
vλ + e

h̄
E × �λ + e

h̄
(vλ · �λ)B

]
· ∇rgλ − Dλ

[
eE + evλ × B + e2

h̄
(E · B)�λ

]
· ∇kgλ = −gλ − ḡλ

τ
− ḡλ − fλ

τv

.

(D2)

Integrating the above equation over all the momentum states with
∫

[dk]D−1
λ , for linear order response, we obtain

∂N λ

∂t
+
∫

[dk]vλ · ∇T

(
ελ − μ

T

)
(−∂ε fλ) +

∫
[dk]

e

h̄
(E × �λ) · ∇T

(
ελ − μ

T

)
(−∂ε fλ)

+
∫

[dk]
e

h̄
(vλ · �λ)B · ∇T

(
ελ − μ

T

)
(−∂ε fλ) +

∫
[dk]eE · vλ(−∂ε fλ) +

∫
[dk]e(vλ × B) · vλ(−∂ε fλ)

+
∫

[dk]
e2

h̄
(E · B)�λ · vλ(−∂ε fλ) = −N λ − N λ

0

τv

. (D3)

Here, we have used the relation ∇r fλ = ∇T ελ−μ

T (−∂ε fλ), and ∇k fλ = h̄vλ(∂ε fλ). In Eq. (D3), we have defined {N λ
0 ,N λ} =∫

[dk]D−1
λ { fλ, gλ}, which represents the total particle number density in each FS before and after applying the perturbing fields.

Since the intra-Fermi-surface scattering does not change the number of particles, the τ -dependent intra-Fermi-surface term in
the right-hand side of Eq. (D3) vanishes. The second term in both the first and second lines of Eq. (D3) vanishes owing to the
angular integration over the polar angle θ , and the isotropic energy dispersion of Hamiltonian (1). The third term in the first line
represents the mixed nonlinear response as it contains both the perturbing field E and ∇T . We ignore this term as we focus on
the linear response regime. The third term in the second line is identically zero as it involves the vector triple product, with two
of them being identical. Accounting for these, we are left with the equation

∂N λ

∂t
+ kB∇T · B

∫
[dk]

e

h̄
(vλ · �λ)

(
ελ − μ

kBT

)
(−∂ε fλ) + eE · B

∫
[dk]

e

h̄
(vλ · �λ)(−∂ε fλ) = −N λ − N λ

0

τv

. (D4)

Using the definition of Cλ
1 of Eq. (10), the second term becomes kBCλ

1 ∇T · B. Using Eq. (C7) we write this term as ∇r · Jλ
e . The

first term in Eq. (D4) can be rewritten as eE · BCλ
0 using Eq. (10). Combining these, we arrive at Eq. (16). The derivation of

the energy continuity equation (17) is very similar to that of particle continuity equation (16). To evaluate the energy continuity
equation, we integrate Eq. (D2) over all the momentum states weighted by energy expression ελ (i.e.,

∫
[dk]D−1

λ ελ):

∂Eλ

∂t
+
∫

[dk]ελvλ · ∇T

(
ελ − μ

T

)
(−∂ε fλ) +

∫
[dk]ελ

e

h̄
(E × �λ) · ∇T

(
ελ − μ

T

)
(−∂ε fλ)

+
∫

[dk]ελ

e

h̄
(vλ · �λ)B · ∇T

(
ελ − μ

T

)
(−∂ε fλ) +

∫
[dk]ελeE · vλ(−∂ε fλ) +

∫
[dk]ελe(vλ × B) · vλ(−∂ε fλ)

+
∫

[dk]ελ

e2

h̄
(E · B)�λ · vλ(−∂ε fλ) = −Eλ − Eλ

0

τv

. (D5)

Using arguments similar to those used for Eq. (D3), the corresponding terms also vanish here. This yields the equation

∂Eλ

∂t
+ kB∇T · B

∫
[dk]

e

h̄
(vλ · �λ)ελ

(
ελ − μ

kBT

)
(−∂ε fλ) + eE · B

∫
[dk]

e

h̄
(vλ · �λ)ελ(−∂ε fλ) = −Eλ − Eλ

0

τv

. (D6)

The above equation can be rewritten as

∂Eλ

∂t
+ kB∇T · B

∫
[dk]

e

h̄
(vλ · �λ)(ελ − μ + μ)

(
ελ − μ

kBT

)
(−∂ε fλ) + eE · B

∫
[dk]

e

h̄
(vλ · �λ)(ελ − μ + μ)(−∂ε fλ)

= −Eλ − Eλ
0

τv

(D7)

⇒ ∂Eλ

∂t
+ k2

BT ∇T · B
∫

[dk]
e

h̄
(vλ · �λ)

(
ελ − μ

kBT

)2

(−∂ε fλ) + μkB∇T · B
∫

[dk]
e

h̄
(vλ · �λ)

(
ελ − μ

kBT

)
(−∂ε fλ)

+ eE · BkBT
∫

[dk]
e

h̄
(vλ · �λ)

(
ελ − μ

kBT

)
(−∂ε fλ) + μeE · B

∫
[dk]

e

h̄
(vλ · �λ)(−∂ε fλ) = −Eλ − Eλ

0

τv

. (D8)
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Using the definitions of Cλ
ν , the above equation reduces

to

∂Eλ

∂t
+ (μCλ

0 + kBTCλ
1 ) eE · B + ∇r · Jλ

E = −Eλ − Eλ
0

τv

.

(D9)

Here, we have used Eq. (C8) to write ∇r · Jλ
E = (μkBCλ

1 +
k2

BTCλ
2 ) ∇T · B.

APPENDIX E: DETAILS OF SPIN
CURRENT CALCULATIONS

To calculate the spin current proportional to the E · B
(or ∇T · B), we consider the band velocity term of Eq. (6a)
and calculate the spin current operator. The band velocity
operator along the i direction is given by v̂i = h̄ki

m σ0 + α
h̄ σi.

Without loss of generality, here we show the calculation of
spin current in the x direction. Using the expressions of the
eigenstates and the spin current operator given in the main
text, we obtain 〈uλ|Ĵ sx

x |uλ〉 = (α/h̄ + λh̄kx sin θk cos φk/m).
Now, the chiral-anomaly-induced spin current is
given by

jsx
x = τv

∑
λ

∫
[dk]

(
α

h̄
+ λ

h̄kx

m
sin θk cos φk

)

×
(

δμλ + ελ − μ

T
δTλ

)(
−∂ fλ

∂ελ

)
. (E1)

In the βμ → ∞ limit, writing the expressions of δμλ and δTλ

explicitly, we have

jsx
x = τv

∑
λ

[Dλ
1Cλ

0

Dλ
2Dλ

0

L1 − Cλ
0

Dλ
0

L0

]
eE · B

−
[Dλ

1Cλ
2

Dλ
2Dλ

0

L0 − Cλ
2

Dλ
2

L1

]
kB∇T · B. (E2)

The definition of Lν is given in the main text. We evaluate
the Lν using the Sommerfeld approximation in the μ � kBT
limit. We obtain the expressions

L0 = −λ
m2α2

6π2h̄5

[μ̃ − μ̃2 + 2(1 + μ̃)]

1 + μ̃
, (E3)

L1 = kBT

9h̄3

(−λ + √
1 + μ̃)[λ(2 + μ̃) + √

1 + μ̃]

(1 + μ̃)3/2
. (E4)

Using these expressions along with Cλ
ν and Dλ

ν in Eq. (E2), we
obtain the spin conductivities of Eqs. (38) and (39). Following
a similar procedure, we can calculate other spin currents.

We show that due to rotational symmetry j
s j

i = 0 for i �= j.
Without loss of generality, we will explicitly show the cal-
culation for jsz

x . The expectation value of the spin current
operator Ĵ sz

x is given by 〈uλ|Ĵ sz
x |uλ〉 = λ

p
2m sin 2θk cos φk . Now,

as the distribution function is independent of θk and φk , so the
angular integration over φk of the 〈uλ|Ĵ sz

x |uλ〉 yields jsz
x = 0.

Similarly, all the spin currents with spin polarization perpen-
dicular to the propagation velocity can be easily shown to be
zero due to the vanishing angular integration over φk .
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