
PHYSICAL REVIEW B 108, 045402 (2023)

Accurate force-field methodology capturing atomic reconstructions in transition metal
dichalcogenide moiré system
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In this work, a generalized force-field methodology for the relaxation of large moiré heterostructures is
proposed. The force-field parameters are optimized to accurately reproduce the structural degrees of freedom of
some computationally manageable cells relaxed using density functional theory. The parameters can then be used
to handle large moiré systems. We specialize in the case of 2H-phased twisted transition-metal dichalcogenide
homo- and heterobilayers using a combination of the Stillinger-Weber intralayer and the Kolmogorov-Crespi
interlayer potential. Force-field parameters are developed for all combinations of MX 2 for M ∈ {Mo, W}
and X ∈ {S, Se, Te}. The results show agreement within 20 meV in terms of band structure between density
functional theory and force-field relaxation. Using the relaxed structures, a simplified and systematic scheme for
the extraction of the interlayer moiré potential is presented for both R- and H-stacked systems. We show that
in-plane and out-of-plane relaxation effects on the moiré potential, which is made both deeper and wider after
relaxation, are essential. An interpolation based methodology for the calculation of the interlayer binding energy
is also proposed. Finally, we show that atomic reconstruction, which is captured by the force-field method,
becomes especially prominent for angles below 4◦–5◦, when there is no mismatch in lattice constant between
layers.
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I. INTRODUCTION

Two dimensional (2D) moiré systems are currently an
especially attractive playground for new technological appli-
cations [1–4]. Lattice mismatch combined with the twist angle
between the constituent layers allows for an ingenious way
of external mechanical control of the moiré period and thus
the resulting electronic properties. Without a doubt, the pio-
neering discovery of twisted bilayer graphene and its magic
angle of 1.05◦ [5] was the major driving force toward the
study of 2D heterostructures and constituted the basis for
the field of twistronics. An interesting and widely studied
class of moiré systems is the 2D family of transition metal
dichalcogenides (TMDs), featuring strong light-matter inter-
action and large spin-orbit coupling with a sizable band gap
[6]. A fundamental advantage of TMDs is that flat minibands
are not only realised at specific angles, but exist in a contin-
uum of small angles [7]. An example of a moiré-structured
TMD system can be seen in Fig. 1. Moreover, experimen-
tal and theoretical findings of the excited states in type-II
aligned heterostructured TMDs show evidence of spatially in-
direct excitons localized within certain registries of the moiré
structure [7–10]. Moiré structured TMDs provide a platform
for studying correlated quantum phenomena [11] including
hole Mott insulator states at integer and fractional fillings
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with generalized Wigner crystallization, essentially creating
a Fermi-Hubbard system [12–16]. Moiré structured TMD bi-
layer systems also allows for realization of Bose-Hubbard
physics with excitons trapped in a periodic triangular potential
and subject to strong Coulomb interactions [17].

Moiré physics in TMDs are largely determined by the
shape of the twist-induced moiré potential, which arises
from local stacking configurations, lattice corrugation and,
for small angles, atomic reconstruction [7,18–25]. As a
consequence, relaxation effects are important for numerical
simulations that involve moiré structured TMD systems prone
to atomic reconstruction, and/or structures with a moiré pe-
riod large enough to corrugate the individual layers [26,27].
From an ab initio standpoint, this presents a large challenge
owing to the fact that relaxation is a computational bottleneck
in such calculations. In an excellent paper by Naik et al. [28],
a method to overcome this problem is suggested by using a
force-field model based on a combination of the Stillinger-
Weber (SW) [29,30] and Kolmogorov-Crespi (KC) [31,32]
potentials. The SW force-field accurately describes the in-
tralayer forces, while the KC potential captures van der Waals
(vdW) interaction between layers and includes a stacking-
dependent term. Previously, this had been parametrized and
applied to graphene and hexagonal boron nitride [33–36] but
is now also available for MX 2 homobilayers, where M ∈
{Mo, W} and X ∈ {S, Se} [28,37].

However, the parameters presented in Ref. [28] are some-
what inaccurate when comparing to density functional theory
(DFT) calculated results, e.g., for some structures, the band
gap is inaccurate by up to 100 meV. Even more importantly,
the band curvature and energetic position of, e.g., the lowest
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FIG. 1. WS2 on MoS2 twisted at an angle of 6.0◦. Sulphur atoms
are shown in orange, molybdenum in blue, and tungsten in grey. The
moiré unit cell is shown with black solid lines and has a moiré period
m0 of 30.1 Å encompassing 546 atoms. The long diagonal rdiag is
marked with a dashed black line.

conduction band and highest valence band are skewed on
similar scales. In Ref. [28], the parameters are developed by
fitting to DFT binding energies which will not guaranty the
force-field model to reproduce the DFT relaxed structure. In
this work, the structural parameters of the DFT optimized
structures (i.e., atomic positions and unit cell size) are used
directly as target values for the optimization of the force-
field parameters. Furthermore, the KC parametrization of
Ref. [28] is presented on a per interaction basis, meaning that
atom-atom interactions are considered the same for different
systems, e.g., S-S parameters for MoS2 and WS2 bilayers
are the same. However, from a fundamental point of view,
vdW interaction, being of long-range nature, is known to
be sensitive to the surrounding environment. As such, we
reparametrize the KC potential on a per system basis, which
yields more accurate band structures. Furthermore, we ex-
pand the set of parameters to include heterobilayers with
and without lattice mismatch, essentially covering all bilayer
combinations of 2H-phased MX 2 for M ∈ {Mo, W} and X ∈
{S, Se, Te}. However, the method presented here is, in prin-
ciple, extendable to any 2D moiré structure and not limited
to TMDs. Our force-field parameters, along with a variety of
relaxed structures can be found via Ref. [38].

Lastly, we present two interpolation-based schemes to de-
scribe the interlayer exciton moiré potential of lattice-matched
heterostructures with type-II band alignment by using a com-
bination of the force-field method and DFT, which provides
easy access to the potential for almost any angle. We ex-
tend this analogy to the binding energy, which allows for
visualization of atomic reconstruction and the rate at which
the reconstructed domains form with decreasing twist angle.
Specifically, we see that atomic reconstruction becomes sig-
nificant for angles below 4◦–5◦ for the TMD heterostructures
studied here.

II. METHODOLOGY

The first step is to develop the SW-parameters, which is
done by considering the constituting monolayers one at a time.
For 2H-phased TMD monolayers, the hexagonal symmetry
reduces the structural degrees of freedom into two (target)
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FIG. 2. The six high-symmetry stacking configurations of a
bilayer with no lattice mismatch. (a)–(c) [(d)–(f)] belong to the
R(H)-stacking group. The stacking RX

X /RM
M is also referred to as AA

stacking, and HM
X /HX

M as AB stacking. The dotted black lines indicate
atoms that coincide along z, justifying the naming convention.

parameters only, namely, the lattice constant, a0, and the in-
tralayer distance dintra, i.e., the out-of-plane X -X distance.
Therefore the SW-parametrization is carried out using a0 and
dintra as targets and reproduces them extremely well. The
force-field relaxations are performed using the LAMMPS pack-
age [39] and the optimization of parameters is carried out with
use of the DAKOTA package [40].

For the optimization of the KC parameters, we are fol-
lowing two strategies, depending on whether the constituting
layers are lattice matched or not.

A. Lattice matched bilayers

Bilayers that have the same chalcogen atom have a lat-
tice constant mismatch δ ∼ 0.1% and are treated as lattice
matched. In this case, only one additional structural parameter
is considered, namely the interlayer spacing, dinter (M-M dis-
tance). The KC parameters are obtained by fitting to a0, dintra

and dinter for the six high-symmetry stacking configurations
(HSSCs), while keeping the SW parameters fixed. The HSSCs
are depicted in Fig. 2 and are divided in two groups, namely, R
and H stacking, which differ by a rotation of one of the layers
by 60◦. This procedure follows the idea that the mechanical
properties of the single layer is well described by the SW
potential and is not altered by the interlayer interaction (KC
potential). It is crucial to derive a force field that is transfer-
able between the different stacking since the twisted bilayers
correspond to combinations of three different stacking, as will
be demonstrated subsequently.

Moreover, as we will indirectly show in Sec. IV A, every
subcell of a lattice-matched moiré unit cell is, to a certain
extent, well described by a superposition of the HSSCs. Note,
that this is not the case for lattice-mismatched systems where
no local HSSCs can be identified. Justification of our method-
ology becomes trivial for smaller angles, where domains of
the HSSCs make up a large fraction of the moiré unit cell.
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TABLE I. Angles chosen for fitting lattice-mismatched struc-
tures accompanied by the lattice mismatch (δ, found using DFT),
number of atoms (natom), and the moiré lattice constant m0 (moiré
period).

X 1 X 2 θ (◦) δ (%) natom m0 (nm)

S Se 5.68 4.1 ± 0.1 525 3.0
Se Te 5.07 7.0 ± 0.1 471 3.0
S Te 0.00 11.3 ± 0.1 543 3.2

Finally, the small unit cells constructed with merely six atoms,
makes both DFT calculations and the optimization schemes of
DAKOTA and LAMMPS relatively fast.

B. Lattice-mismatched bilayers

In Table I, we show the lattice mismatch δ for the different
combinations of chalcogen atoms (the metal atom is nearly
irrelevant for the lattice constant). The lattice mismatch of the
systems investigated here (X = S, Se, and Te) is so large that
the construction of small six atom unit cells as done in the
lattice matched case is not meaningful. The in-plane strain
will radically change the electronic properties [41].

To circumvent this problem, we use relatively small (about
500 atoms) moiré structures as targets for lattice-mismatched
systems (see Table I). Due to the reduced symmetry of lattice-
mismatched systems, the only valid targets are the coordinates
of all atoms of the moiré unit cell combined with the lattice
constant. However, using all atomic coordinates, i.e., three
spatial dimensions for each atom, renders the mesh adaptive
search scheme for optimizing the KC parameters infeasible,
as the number of target values greatly exceeds the number of
fitting parameters (Fig. 3, dashdotted green curve). As such, it
is necessary to reduce the number of target values. However,
considering only the three spatial coordinates of the metal
atoms, thus reducing the target space by one third, also yields
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FIG. 3. z-coordinates of the metal atom in a 5.68◦ twisted
WS2-MoSe2 bilayer along the long diagonal of the moiré unit cell,
rdiag. The bottom curvy layer corresponds to WS2, and the top more
rigid layer corresponds to MoSe2. The solid black curve is the DFT
relaxed structure. The dashed red, dotted blue, and dashdotted green
curves are force-field relaxed with KC parameters (see text). (a) and
(b) show R and H stacking, respectively.

suboptimal KC parameters (Fig. 3, dotted blue curve). Lastly,
optimizing only for the z coordinates of the metal atoms,
which further reduces the target space by one third, results
in a much better fit (Fig. 3, dashed red curve). As such, we
ultimately choose the z coordinates of the metal atoms and
the lattice constant as target values for lattice-mismatched sys-
tems, which yields satisfactory KC parameters, as discussed in
Sec. III.

C. Kolmogorov-Crespi potential

As mentioned previously, the KC potential Vi j is intended
to model interlayer effects between atom i in one layer and
atom j in another, and is given by

Vi j = e−λ(ri j−z0 )[C + f (ρi j ) + f (ρ ji )] − A

(
ri j

z0

)−6

,

ρ2
i j = r2

i j − (niri j )
2,

ρ2
ji = r2

i j − (n jri j )
2,

f (ρ) = e−(ρ/δ)2
2∑

n=0

C2n(ρ/δ)2n. (1)

ni and n j are the surface normals of the atom site i and j in
each layer. The choice of neighbors used to determine the sur-
face normals are the six nearest atoms in the respective strata
(sublayer of the monolayer). The last term of Vi j contains
the r−6 vdW dependence, and the first term has an exponen-
tially decaying repulsion reflecting interlayer wave-function
overlap. The square bracket functions contain a stacking de-
pendent term, in contrast to, e.g., the Lennard-Jones potential
[31]. As seen, Vi j leaves in total eight parameters to be fit-
ted. As mentioned in Ref. [28], it is possible to approximate
ni, j = ẑ corresponding to completely rigid layers, however,
we do not make use of this approximation in order to capture
more accurately the corrugation caused by the relaxation.

D. Computational details

We parametrize the potentials with different combinations
of exchange correlation plus vdW correction. We find that
using PBE [42] from PSEUDODOJO [43,44] with Grimme’s
DFT-D3 vdW correction [45] plus Becke-Johnson damping
[46] is best suited for parametrization. The structures are
relaxed with QUANTUM ESPRESSO [47,48] using a k-space den-
sity of 15 × 15 (1 × 1) for high-symmetry (moiré) unit cells.
DFT computations of moiré systems are performed without
spin-orbit coupling (SOC) to save computational resources,
since they are only used for comparing DFT to SW+KC
relaxed structures. We find that the lattice constant only
converges at a cutoff energy of 40 Ha in all cases. More impor-
tantly, the chosen cutoff energy should be consistent between
monolayers, untwisted bilayers and moiré structured bilayers,
when comparing DFT to SW+KC. We use the modified SW
implementation in LAMMPS for ease of use. For optimization
in DAKOTA, we apply a mesh adaptive direct search algorithm
starting from the parameters presented in Ref. [28].
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FIG. 4. Comparison of Eg at K± in (a) and (d), interlayer spacing
(dinter) in (b) and (e), and lattice constant a0 in (c) and (f) for the
six HSSCs of a WS2 homobilayer and a MoS2-WS2 heterobilayer in
(a)–(c) (top) and (d)–(f) (bottom), respectively. DFT is marked with
black and SW+KC with red.

III. RESULTS

For lattice-matched systems, i.e., homobilayers and hetero-
bilayers having identical chalgogen sites in both layers, which
are developed by use of the HSSCs, it is of high importance
that the resulting structures can accurately reproduce the elec-
tronic properties. In Fig. 4, a comparison between purely DFT
calculated parameters and SW+KC can be seen. Note that
Eg shown in Figs. 4(a) and 4(d) is the energetically lowest
momentum-conserving transition between the highest-lying
valence band and the lowest-lying conduction band, which
occurs at the K± points for all stacking configurations and
materials considered here. LAMMPS does not provide Eg, in-
stead this is calculated using DFT with the relaxed structures
generated by our SW+KC force-field method. Note, that
for the purpose of consistency, we adopt the notation that

MoS2-WS2 implies that WS2 lies above MoS2 with respect
to z.

In the case of homobilayers, the maximum deviation of
Eg is 22 meV, and occurs in the HM

M stacking configuration.
A similar maximum deviation of 25 meV is seen for the
heterobilayer, which occurs in the HM

M stacking configuration
as well. For the remaining lattice-matched structures, the de-
viations are of similar magnitude. Figure 4 also demonstrates
the high sensitivity of the band gap with respect to changes in
the structural degrees of freedom.

Having established the SW+KC parameters of lattice-
matched systems using the HSSCs, we now tackle some
larger moiré structures. As such, we use some medium-scale
moiré structures as benchmarks. Figure 5 shows comparisons
between DFT- and SW+KC-relaxed band structures and in-
terlayer spacing profiles for different material cases. Greek
indices denote the corners of the mini Brillouin zone (BZ)
associated with a moiré structured bilayer. The interlayer
spacing is plotted along the long diagonal of the unit cell
(see Fig. 1), which has a length of

√
3m0, where m0 denotes

the moiré cell lattice constant. Figures 5(a)–5(d) displays the
case of a WS2-WS2 homobilayer twisted at 6.0◦. For R stack-
ing [(a) and (b)], the bands are well represented using our
SW+KC relaxed structure with only a 13 meV decrease of
the band gap, likely due to the slight interlayer spacing profile
discrepancy. In the case of H stacking [(c) and (d)], the same
applies except the band gap is a mere 5 meV larger compared
to the DFT relaxed structure results. In Figs. 5(e)–5(h), the
case of a MoS2-WS2 heterobilayer with a twist angle of 6.0◦ is
shown. For both R and H stacking [(e), (f) and (g), (h) respec-
tively], an excellent agreement is obtained between DFT- and
SW+KC-relaxed structures in terms of band character. For
the higher lying conduction bands around the γ point, there
is only a 10 meV discrepancy. We again attribute this to the
slightly decreased interlayer spacing profiles of SW+KC in
both cases, as seen in Figs. 5(f) and 5(h).
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FIG. 5. Comparison of band structures and interlayer spacing profiles between DFT in solid black and SW+KC in dotted red. WS2-WS2

homobilayer with θ = 6.0◦ (natom = 546) in (a), (b) and (c), (d) for R and H stacking, respectively. MoS2-WS2 heterobilayer with θ = 6.0◦

(natom = 546) in (e), (f) and (g), (h) for R- and H stacking, respectively. WS2-MoSe2 lattice-mismatched heterobilayer with θ = 5.1◦ (natom =
642) in (i), (j) and (k), (l) for R and H stacking, respectively. The band structures have the valence band maximum shifted to 0 in all cases,
and the Greek indices (γ , μ and κ) denote the high-symmetry points of the moiré (mini) BZ (usually denoted �, M and K in the BZ of the
monolayer/untwisted bilayer). The interlayer spacing is interpolated and plotted along the long diagonal of the unit cell.
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For lattice-mismatched systems, the optimization of the
KC parameters was performed for all possible combinations
of metal and chalcogen atoms, as explained in the method-
ology section (see Table I). A good agreement is obtained
between the DFT- and SW+KC-relaxed structures for all
lattice-mismatched cases. For the sake of brevity, only the
case of a WS2-MoSe2 heterobilayer rotated at 5.1◦ is shown
in Figs. 5(i)–5(l). For R stacking [(i) and (j)], the highest lying
valence band is only 7 meV higher than the DFT value at
the κ point. The lowest-lying conduction band is only 6 meV
above the DFT one. In general, we see small discrepancies
between the valence and conduction bands for the DFT and
SW+KC-relaxed structures below 20 meV. For H stacking
[(k) and (l)], the valence bands are well described except for a
4 meV discrepancy of the highest-lying valence band near the
κ point.

In general, we note that the slight difference in band gap
and band curvature between DFT and our SW+KC-relaxed
moiré structures arise from small inaccuracies in the inter-
layer spacing profiles. Note, that this is not always the case
with the KC parameters presented by Ref. [28], where the
binding energy was the target property. We also find that the
accuracy of our lattice-matched SW+KC parameters reduce
with growing twist angle. This is expected, since we fit to the
untwisted HSSCs, which are not well represented in moiré
structures with such low periodicity. Conversely, the parame-
ters are expected to have better accuracy with decreasing twist
angle. For angles below 3◦, where large-scale atomic recon-
struction starts to appear, the accuracy of methodology is still
maintained and most properties are well captured, including
the atomic reconstructions, as discussed in Sec. V.

IV. APPROXIMATING MOIRÉ POTENTIALS

A defining feature of two-dimensional lattice-matched
moiré structures is the spatial variation of local stacking order
across the structure, leading to variation of local properties.
Many combinations of TMDs possess type-II band alignment
[49,50], and as such, the variation of the local band gap at
K± across the structure will, for many purposes, describe the
interlayer moiré potential [17,27,51]. However, it is worth
mentioning, that in the case of a large lattice mismatch be-
tween the constituting layers, developing such a potential
becomes nontrivial.

We propose two interpolation-based methods for calculat-
ing the interlayer moiré potential of lattice-matched systems.
Moreover, any electronic property that can be identified lo-
cally, can be accessed in the moiré structure directly with
these two methods, e.g., variation of the VBM, CBM, etc. In
both methods, the moiré supercell is subdivided into small
units the size of the monolayer unit cell, for which local
properties can be calculated. The first method, which we call
the high-symmetry interpolation method (HSIM), is based on
the local high-symmetry stacking character—a geometrical
quantity that measures the similarity between the local stack-
ing configuration within the moiré cell and the HSSCs. Being
based only on the six HSSCs, computing the DFT properties
is fast and allows for high-throughput computations. It also
allows for easy visualization of reconstructed domains. The
second method, which we call the grid based interpolation

FIG. 6. Close-up of an R-stacked lattice-matched moiré structure
for θ = 6.0◦. For a metal site i in one layer, the nearest transverse
metal site, M, j, chalcogen site, X, j, and hexagonal center, H, j, in
the adjacent layer is seen.

method (GBIM), relies on computing the local properties
using DFT not only for the HSSCs but also every local stack-
ing configuration in between, which can then be interpolated
over the moiré supercell. In principle, this scheme is more
precise, since it relies less on interpolation and more on ab
initio calculations. However, it is time consuming, as many
DFT computations using different in-plane displacements and
interlayer spacing are needed. In what follows, both methods
are explained in detail and case studies are shown.

A. High-symmetry interpolation method (HSIM)

For every metal site in one layer, ρM,i = (xM,i, yM,i ), we
find the transverse distance to the closest metal site in the
adjacent layer, e.g., dM

M,i = min(|ρM,i − ρM, j |), where j runs
through every metal site in the adjacent layer (see Fig. 6). The
largest distance possible is a0/

√
3.

As such, we can define the parameter cM
M,i = 1 −√

3dM
M,i/a0, which is unity for perfectly aligned metal atoms,

e.g., RX
X - and HM

M stacking, and zero for the remaining HSSCs.
Eight analogous parameters can be developed, e.g.,{

cS2
S1,i

(ρS1,i ) for S1, S2 ∈ {M, X, H}},
where X and H denote chalcogen sites and hexagonal centers,
respectively. For the purpose of consistency, it is assumed that
S2 lies above S1 with respect to z. {cS2

S1,i
} is then interpolated

on a skewed grid that spans the moiré unit cell. Stacking
coefficients are now found as

CRX
X

= cM
M cX

X cH
H, CHM

X
= cM

X cX
McH

H,

CRM
X

= cM
X cX

HcH
M , CHX

X
= cM

H cX
X cH

M ,

CRX
M

= cM
H cX

McH
X , CHM

M
= cM

M cX
HcH

X .

Finally, the stacking coefficients are normalized such that∑
n Cn(ρ) = 1, where n spans the HSSCs. Cn is seen in Fig. 7

for R stacking. The Cn with n ∈ {HM
X , HX

X , HM
M} are all 0 in this

case. The next step is finding the interlayer spacing profile,
dinter (ρ), where ρ = (x, y). Using the variation of Eg, Eg(ρ),
as an example, it can be seen that

Eg(ρ) =
∑

n

Cn(ρ)Eg(n, dinter (ρ)), (2)

assuming the variation of Eg with dinter is known for all
HSSCs. Assuming that every subcell of the moiré structure
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The remaining coefficients are 0. The structure was relaxed using
LAMMPS.

can be described by a superposition of HSSCs is an approx-
imation, but has the benefit of easy visualization of domains,
as seen in Fig. 7. It shows great accuracy and Eg(n, dinter ) can
be extracted within few calculations, making it quite fast to
implement for all lattice-matched systems.

B. Grid based interpolation method (GBIM)

A more general implementation can be developed by us-
ing the untwisted bilayer with a transverse shift ρs = (xs, ys)
between the layers, where ρs = 0 corresponds to either RX

X -
or HM

M stacking. We calculate EBL
g (ρs, dinter ), where ρs is the

transverse distance between metal sites in each layer. Then,
for a given lattice-matched moiré system, for metal site i in
one layer, we can find the vector ρi = ρM, j − ρM,i, where j
denotes the index of the nearest metal site in the adjacent layer.
Then, the value of Eg at metal site i is simply

Eg(ρM,i ) = EBL
g (ρi, dinter (ρM,i )). (3)

Note, that ρi should be adjusted relative to the rotation of the
individual layers, since the layers will likely be slightly angled
compared to the systems used in computing EBL

g (ρs, dinter ).
Finally, Eg is interpolated over the entire moiré unit cell.

In principle, the GBIM should be more accurate than the
HSIM, but is also computationally more expensive. We use
twelve steps for xs and ys combined with sixteen increments
for dinter when tabulating EBL

g (ρs, dinter ). This translates to
4608 separate DFT calculations to cover R and H stacking
for one material, whereas the HSIM needs only 96. In Fig. 8,
a comparison between the HSIM and the GBIM can be seen
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for the variation of Eg in MoS2-WS2 with θ = 4.41◦. At the
high-symmetry points, both methods yield the same value as
expected, but the HSIM is slightly inaccurate in between.

V. ATOMIC RECONSTRUCTION AND ENERGETIC
LANDSCAPE

As mentioned, the energetic landscape of 2D moiré struc-
tures is constituted by three codependent factors: the local
stacking arrangement, the associated interlayer spacing, and
the atomic reconstruction. Often, the latter two, being relax-
ation effects, are not considered in simulations [11,15,17,51–
62], but can be managed with SW+KC force-field relaxation.

For MoS2-WS2, which possesses type-II band alignment
[49,50], the interlayer moiré potential is often described as
the spatial variation of the local band gap at K±. In Fig. 9, the
variation of Eg − Eg across an R- and H-stacked MoS2-WS2

bilayer with θ = 1.01◦ is seen, where Eg is the mean value
across the unit cell. In the rigidly twisted case, the average
interlayer spacing of the three R- or H-stacked HSSCs are
used as interlayer spacing for Figs. 9(a) and 9(d), respec-
tively. The discrepancy between modeling the potential with-
and without relaxation effects is apparent. In the case of R
stacking, which has larger potential depth than H stacking, the
depth with- and without relaxation effects are here estimated
to be 80 and 135 meV, respectively. For H stacking, these
numbers are much lower, namely 10 and 28 meV for rigid
and relaxed, respectively. As a consequence, phenomena such
as exciton trapping may be realized more easily in R-stacked
systems than H-stacked analogs. Interestingly, for H stacking,
the minimum of the potential resides in the HX

X -domain postre-
laxation as opposed to the HM

M -domain prerelaxation. Finally,
the effect of atomic reconstruction also greatly changes the
relative widths of the potential wells, resulting in a sharper
and more well-defined potential. We conclude that atomic
reconstruction significantly alters the range of θ in which
exciton trapping occurs.

In Table II, the interlayer binding energy per atom,
Eb, found as Eb = (EMoS2-WS2 − EMoS2 − EWS2 )/6 is shown,
where EMoS2-WS2 is the total energy of the untwisted bilayer
system, and EMoS2 and EWS2 denote the total energies of
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TABLE II. Binding energy of MoS2-WS2 in the six high-
symmetry stacking configurations from DFT and from SW+KC.

Eb (meV) RX
X RX

M RM
X HM

X HX
X HM

M

DFT −21.8 −34.3 −34.5 −34.6 −22.4 −31.6
SW+KC −25.4 −44.4 −44.6 −44.7 −28.9 −38.4

constituting monolayers found separately. As mentioned, the
discrepancy in Eb between DFT and SW+KC is expected,
since this was not the target property during development of
our KC parameters.

For R stacking, the nearly identical Eb of the RX
M and

RM
X configurations facilitates a simultaneous growth of these

domains with decreasing θ (i.e., large moiré unit cells), while
the opposite is true for RX

X , explaining the formation of a mesh
of triangular domains, as seen in Fig. 9(b). For H stacking,
the HM

X configuration is energetically favorable, resulting in
hexagonal domains with decreasing θ . The HM

M -like domains
shrink slower than those associated with HX

X , as seen from the
associated Eb (see also Ref. [63]).

Lastly, Eb(θ ) can be considered in order to access the
formation rate of domains. Using the HSIM, the variation of
the local Eb across a moiré unit cell can be approximated, and
the mean can be used to approximate Eb of the moiré unit
cell, albeit neglecting the effects of strain imposed by atomic
reconstruction and corrugation from the varying interlayer
spacing. In the case of pure DFT, Eb, is found directly as

Eb = Emoiré − (EMoS2 + EWS2 )/2, (4)

where all energies are divided by the number of atoms, and
Emoiré denotes the total energy per atom of the moiré structure.
However, Eb has contributions from the strain imposed by
layer corrugation and atomic reconstruction. The energy as-
sociated with these effects is denoted Ecorr and is not captured
by the HSIM. Instead, the Eb found by the HSIM should be
compared to

Eb − Ecorr = Emoiré − (EMoS2,moiré + EWS2,moiré)/2, (5)

where EMoS2,moiré and EWS2,moiré denote the total energy per
atom for the corrugated and reconstructed constituting mono-
layers. This is computed in separate DFT calculations having
half the number of atoms as the moiré structure they consti-
tute.

With SW+KC, Eb is found analogously to Eq. (4), but Ecorr

is found directly by comparing the energy of the SW potential
in the two layers to that of the constituting rigid monolayers.
The variation of these quantities with θ is seen in Fig. 10.

A common feature for all energy scales in Fig. 10 is the
tendency towards the value of the stable configurations for
θ → 0. For vanishing θ , the relative size of the domain walls
becomes negligible. As such, Ecorr should vanish in the limit of
vanishing θ . The faster convergence towards the Eb of RM

X /RX
M

for R stacking indicates that the triangular domains form more
rapidly with decreasing θ compared to the hexagonal HM

X
domains of H stacking. Although the values of ESW+KC

b and
ESW+KC

corr may appear off scale, they illustrate the tendencies
faithfully. Additionally, the graph of EDFT

b − EDFT
corr serves as

a benchmark, showing that the HSIM has accuracy within
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FIG. 10. Eb(θ ) for MoS2-WS2. (a) and (b) are for R and H
stacking, respectively. Black points are found using the HSIM on
the SW+KC-relaxed structures, but with DFT-based parametrization
of the HSIM as seen in Eq. (2).

the 0.5 meV range, and further that Eb of SW+KC relaxed
structures can be recovered to agree with DFT.

Figure 11 shows the mean of the stacking coefficients Cn

over the moiré unit cell of MoS2-WS2, which can be computed
using the HSIM as described in Sec. IV A. Cn represents the
normalized contributions of the different stacking configu-
rations to the fully relaxed (reconstructed) moiré structure.
For R stacking (H stacking), the three possible domains are:
RX

M (green), RX
X (red), RM

X (blue) [HM
M (green), HX

X (red),
HM

X (blue)]. For larger angles, the fraction of the unit cell
area occupied by each of the three domains is about 1/3 for
both R and H stacking. At an angle of 1◦, the structure for
R stacking [Fig. 11(a)] is already reconstructed in such a
way that the energetically less favorable RX

X (red) domains
represent only 2,5% of the structure. Both RX

M (green) and
RM

X (blue) domains are energetically equivalent, and hence,
occupy roughly 50% of the structure in the limit of small
θ . For H stacking [Fig. 11(b)], at the same angle of 1◦, the
less favorable HX

X and HM
M domains have significantly reduced

contributions compared to the favorable HM
X region, but HM

M
still represents 20% of overall structure.

Figure 11 allows us to draw quantitative conclusions on
the angle dependence of the reconstruction effect. Indeed,
neglecting reconstructions would lead to a constant equal
proportion of all three coexisting stacking (dotted lines in
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FIG. 11. The mean of Cn over the unit cell with respect to the
twist angle θ of MoS2-WS2 found using SW+KC and the HSIM.
(a) correspond to R stacking such that only RX

X , RX
M , and RM

X are
nonzero and vice versa for (b). For each stacking configuration, the
corresponding Eb of untwisted MoS2-WS2 is shown in meV.
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FIG. 12. The mean of Cn over the unit cell with respect to the
twist angle θ of eight lattice-matched bilayers found using SW+KC
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X , RX
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X are nonzero and vice versa for right panels. For
each material and stacking configuration, the corresponding Eb of
the untwisted bilayer is shown in meV.

Fig. 11). In the case of R stacking the reconstruction is nearly
complete at an angle of 1◦, i.e., the moire structure is made
of basically two type of low energy domains [RX

M (green),
RM

X (blue)] separated by a very narrow RX
X (red) energetically

unfavorable domain. For H stacking at 1◦, the less favorable
HM

M (green) domain still covers 15%–20% of the area.

Figure 12 shows the same graph as Fig. 11 for the remain-
ing eight lattice-matched materials. Generally, all R-stacked
materials (left panels of Fig. 12) display a simultane-
ous growth of RX

M and RM
X with decreasing θ except for

MoTe2-WTe2, which can be attributed to the discrepancy
in Eb for these stacking configurations. We conclude that
for both stacking and all materials considered here, except
for MoSe2-MoSe2, that atomic reconstruction becomes espe-
cially prominent below an angle of 4◦–5◦. For MoSe2-MoSe2,
atomic reconstruction occurs for angles below 6◦–7◦.

VI. CONCLUSION

In conclusion, we have shown the dramatic consequences
of incorporating relaxation effects on the interlayer moiré
potential of MoS2-WS2. For R stacking, this becomes about
twice as deep at about 135 meV, and, for small angles, much
wider. For H stacking, the potential depth is nearly tripled,
however, the width of the potential minima is still narrow,
since it corresponds to the energetically unfavorable HX

X con-
figuration. Moreover, we have quantified the formation rate of
domains due to atomic reconstruction for nine lattice-matched
TMD moiré systems, and conclude that, in general, atomic
reconstruction becomes prominent for θ smaller than 4◦–5◦,
but does so in a continuous manner.

Furthermore, we have presented a methodology for devel-
oping KC parameters for lattice-matched and -mismatched
systems, and have developed such parameters for TMD moiré
heterostructures. The method shows excellent agreement
between DFT-calculated structural parameters and SW+KC-
relaxed ones, which is further reflected in the bandstructure
and the interlayer binding energy with twist angle depen-
dence. The force-field parameters along with a variety of
relaxed structures can be found via Ref. [38]. We have further
shown two methods for capturing moiré induced fluctuations
of local properties in lattice-matched systems that do not
require extensive ab initio treatment. These methods allow
for visualization of the importance of relaxation effects and
further serve as a first step in developing accurate moiré po-
tentials. However, further investigation is required to develop
analogous tools for lattice-mismatched moiré structures.

In summary, starting from the force-field model, it is now
possible to tackle excited state physics incorporating relax-
ation effects i.e., layer corrugation and atomic reconstruction.
For models such as tight binding, this was not possible before,
and for ab initio studies, the cumbersome first step of re-
laxation can be skipped, thus saving computational resources
and time. Furthermore, a thorough dissection of the formation
rate of domains with decreasing angle is required to gain
quantitative insight into the mechanisms behind it.
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