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Topological domain walls in graphene nanoribbons with carrier doping
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We theoretically study magnetic ground states of doped zigzag graphene nanoribbons and the emergence of
topological domain walls. Using the Hartree-Fock mean-field approach and an effective continuum model, we
demonstrated that the carrier doping stabilizes a magnetic structure with alternating antiferromagnetic domains,
where the doped carriers are accommodated in topological bound states localized at the domain wall. The energy
spectrum exhibits a Hofstadter-type fractal spectral evolution as a function of the carrier density, where minigaps
are characterized by the Chern number associated with the adiabatic charge pump in moving domain walls. A
systematic analysis for nanoribbons with different widths revealed that the ferromagnetic domain-wall phase
emerges in relatively wide ribbons, while the collinear domain-wall phase arises in narrower ribbons.
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I. INTRODUCTION

Zigzag graphene nanoribbon (ZGNR) and its exotic
physics properties have been extensively studied in the past
couple of decades [1–6]. One of the most prominent features
of ZGNR is the emergence of edge states, which form one-
dimensional flat bands at the charge-neutral point [7,8]. In
the presence of electron-electron interaction, the large density
of states of the flat bands leads to occurrence of an antifer-
romagnetic (AFM) order, where spins at the two edges are
polarized in an antiparallel manner, and an energy gap opens
between the flat bands [8–14]. The one-dimensional edge
magnetism of ZGNR is expected to provide an ideal platform
for spintronics devices [15–21]. In experiments, GNRs with
atomically precise edge structures have been fabricated by the
state-of-the-art techniques [22], such as STM nanolithography
[23,24], unzipping carbon nanotubes [25–28], electron-beam
lithography [29], and templated bottom-up synthesis using
appropriate monomers [30–39]. The AFM-induced band gap
was actually observed in precisely fabricated ZGNRs, by
using tunneling spectroscopy [24,40,41] and point contact
spectroscopy [42].

The thermodynamic stability of the magnetic order in
ZGNR is supported by the energy gap between the flat bands
opened by the AFM exchange field [7–10]. Here we ask how
the magnetic order survives when a ZGNR is carrier doped by
applying gate voltage or chemical doping. Naively, it seems
that doping destabilizes the AFM order, as the Fermi energy
is shifted to the band edges with large density of states above
or below the energy gap. The system is expected to take some
different ordered states to gap out the spectrum right at the
Fermi energy.

In this paper, we study the magnetic and electronic proper-
ties of ZGNRs with various ribbon widths in a wide range of
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carrier doping, on the basis of the Hartree-Fock mean-field
framework. In the low carrier density regime, we observe
that a magnetic domain structure with alternating AFM order
(Fig. 1) is spontaneously formed, consistently with Ref. [18],
where the doped carriers are accommodated in topological
localized states bound to the domain walls. We find that the
domain-wall bound state is topologically protected and it can
be described by a Jackiw-Rebbi–type model [43] with a mass
inversion. When the carrier density is further increased, the
distance of neighboring domain walls becomes smaller, and
the magnetic domain structure eventually crosses over to the
spin and charge density wave. The electronic spectrum as
a function of the electron density exhibits a fractal pattern
similar to the Aubry-André model [44–46] and the Hofstadter
butterfly [47], due to a competition of the periodic magnetic
structure and the atomic lattice constant. We show that each
gap in the spectrum can be characterized by a Chern number,
which is associated with the quantized charge pump under an
adiabatic parallel shift of the periodic domain walls.

This paper is organized as follows. In Sec. II, we intro-
duce the mean-field framework used in this paper. In Sec. III,
we calculate the spin and charge density structure in the
ground state of the carrier-doped ZGNR. We also discuss
the electronic spectral evolution as a function of the carrier
density. In Sec. IV we discuss about the topological origin of
the domain-wall bound state using the winding number and
Jackiw-Rebbi arguments in the low-energy continuum model.
In Sec. V we evaluate the thermodynamical stability of the
domain walls, and obtain a phase diagram of doped ZGNR by
considering finite-temperature effect. In Sec. VI, we present
similar analyses for ZGNRs with various widths. Finally, a
brief summary is given in Sec. VII.

II. HARTREE-FOCK HUBBARD MODEL

We define the structure of ZGNR of the width N as il-
lustrated in Fig. 2(a). The ribbon is extended along the x
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FIG. 1. Schematic picture of the typical domain wall in doped
ZGNR. Arrows indicate the spin density localized at the zigzag edge.
Doped carrier is trapped at the domain wall.

direction, and a unit cell (gray square) includes 2N atoms. We
model electrons in the system by a tight-binding model

H = H0 + Hint, (1)

H0 =
∑

i j

t i j�
†
i � j, (2)

Hint = U
∑

j

ψ
†
j↑ψ j↑ψ

†
j↓ψ j↓, (3)

where ψ js is the field operator at site j with spin s =↑,↓
and �

†
j = [ψ†

j↑, ψ
†
j↓]. H0 is the noninteracting Hamilto-

nian, where we take into account the nearest-neighbor
hopping t ≈ 3.0 eV and the third-nearest-neighbor hopping
t ′ ≈ 0.29 eV, as illustrated in Fig. 2(a). The t ′ is responsible
for the band overlapping at charge-neutral point in narrow
ZGNRs [48]. Diagonalizing H0, we obtain the noninteract-
ing band structure of the ZGNR as shown in Fig. 2(b). In
increasing N , we see that flat bands of the edge-localized
modes extend at E = 0 [7,8]. Hint is the electron-electron
interaction part, where we only take onsite Coulomb repulsion
with coupling constant U ≈ 3.4 eV. Atomic sites are labeled
by index j = (mx, my) with mx = 1, 2, . . . for the ribbon unit
cell and my = 1, 2, . . . , 2N for y coordinate [see Fig. 2(a)].
Hereafter, N is referred to as the width of the ribbon.

We employ the mean-field approximation for Hint as

Hint ≈ HHF

= U

2

∑
j,s

(
〈ψ†

j,sψ j,s〉ψ†
j,−sψ j,−s− 1

2
〈ψ†

j,sψ j,s〉〈ψ†
j,−sψ j,−s〉

−〈ψ†
j,sψ j,−s〉ψ†

j,−sψ j,s + 1

2
〈ψ†

j,sψ j,−s〉〈ψ†
j,−sψ j,s〉

)

= −U

4

∑
j

�
†
j [nμ(r j )σμ]� j + EC, (4)

where nμ(r j ) is the mean field and EC is a constant energy
shift given by

nμ(r j ) = 〈�†
j σ

μ� j〉, (5)

EC = U

8

∑
j

nμ(r j )nμ(r j ). (6)

Here σμ = (σ0, σ ) and σμ = (−σ0, σ ) are four vectors com-
posed of the identity matrix σ0 and Pauli matrices σ =
(σx, σy, σz ), and r j = (x j, y j ) indicates the position of the
site j.

We assume that the mean field is periodic in the x direction
with a period of qa (i.e., q ribbon unit cells) and the number of

the domain walls in the supercell is 2p. Here doped electrons
per a domain wall Q are a parameter which should be deter-
mined to minimize the total energy under a given electron
density n̄ and mutually prime p and q. In our mean-field
calculation, we find that optimized value is Q = 1 to make the
Fermi energy come to the largest Bragg gap of the superlattice
and therefore q/p = 1/(Nn̄).

A single-particle Schrödinger equation including the peri-
odic mean field is written as

∑
j

{
Hi j

k −U

4
nμ(r j )σμδi j

}
uνk (r j ) = Eνkuνk (ri ), (7)

where k is the Bloch wave number defined in the super-
lattice Brillouin zone, −G/2 � k � G/2, with G = 2π/qa,
uνk (r j ) = [uνk↑(r j ), uνk↓(r j )]T is the periodic part of the
Bloch wave function of the band index ν, and we defined
Hi j

k = t i jeik(xi−x j ).
Using the obtained wave function, self-consistent mean-

field equation (5) is expressed as

nμ(r j ) =
∑

ν

∫
dk

|G|u†
νk (r j )σ

μuνk (r j ) f (Eνk ), (8)

where f (E ) = [1 + e(E−EF )/kBT ]−1 is the Fermi distribution
function, and the integral in k is taken over the superlattice
Brillouin zone. The Fermi energy EF is introduced to fix the
doped carrier per a site

n̄ = 1

2Nq

∑
j

′
[n0(r j ) − 1]. (9)

Here the primed sum runs over the sites j in the super unit
cell.

We solve Eqs. (7), (8), and (9) by numerical iterations
starting from different initial conditions. We obtain several
types of ordered structures listed in Fig. 3. For each of these
states, we calculate the Helmholtz free-energy density per a
single carbon site [49–51],

F = − kBT

2Nq

∑
ν

∫
dk

|G| ln

[
1+exp

(
EF − Eνk

kBT

)]

+ (n̄+1)EF − 1

2Nq
EC, (10)

and identify the solution with the lowest F as the most stable
state. Here Eνk is the single-particle energy in Eq. (7), and EC

is the constant energy shift obtained by Eq. (6). In Sec. III, we
present the most stable solution [ferromagnetic domain wall
state, FDW in Fig. 3(c) in doped N = 5 GNR]. We will discuss
relative stability of the different ordered states in Sec. V.

III. GROUND STATE OF CHARGED ZGNRs

Figure 4 shows typical self-consistent solutions for width
N = 5 ZGNR with carrier dopings of n̄ ≈ 0.001, 0.004, and
0.008. Here, we set the temperature to T = 100 K, and we
also confirmed the results remain unchanged in even lower
temperatures. The dependence on the ribbon width N will be
discussed in Sec. VI. The first row of Fig. 4 shows spatial pro-
file of the local spin s(r j ) = (0, sy, sz ) at the top and bottom
edges (indicated by solid and dashed curves, respectively) as
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FIG. 2. (a) Lattice structure of width N = 5 ZGNR and its noninteracting dispersion relation. Shaded region indicates the ribbon unit cell.
a is lattice translation vector. mx and my are a set of labels characterizing each lattice point. To discuss the domain-wall structures we calculate
the long supercell along the x direction. (b) Dispersion relations for ZGNR with general width N . Purple and green curves in N = 6, 4, and 2
(N = 5, 3) are for the mirror-even and -odd (glide-even and odd) states (see Appendix A for more details).

a function of x. The second row is the plot for the local charge
density integrated over y. The third row presents the energy
spectrum obtained from Eq. (7).

In the lightly doped regime [e.g., n̄ ≈ 0.001 in Fig. 4(a)],
the magnetic structure exhibits a series of AFM domains. In
the left (right) region away from x = 0, the spins at the top
and bottom edges are uniformly polarized in ±z (∓z), forming
AFM ordered states as in the neutral ZGNRs [8,9]. On the

FIG. 3. Candidates of stable orders. Arrows indicate the direction
of spin and shaded areas schematically illustrate the charge distribu-
tion (see text for details).

domain boundary at x ∼ 0, the sz component is suppressed
while sy comes out instead. We note that the sy components at
the top and bottom edges are ferromagnetically aligned. The
spatial profile of sy and sz in Fig. 4 is schematically shown
in Fig. 1, where the spins at the two edges are continuously
rotated with respect to the x axis, in opposite (clockwise
and anticlockwise) directions, resulting in the AFM-FM-AFM
domain wall. We refer to this domain structure as the ferro-
magnetic domain wall (FDW). The same structure was first
found in the previous work for N = 10 [18].

In the plot of the charge density [the middle panel in
Fig. 4(a)], we see that the domain wall traps a doped charge
of −e, which is associated with topological boundary modes.
In the energy spectrum [the bottom panel in Fig. 4(a)], the
boundary modes can be seen as highlighted red lines, which
float in a bulk AFM energy gap [Fig. 5(a)]. The emergence
of the localized modes at the local FM region is consistent
with the gapless spectrum in uniform FM order [Fig. 5(c)].
Actually, the boundary modes in the FDW can be described as
a topological localized state in a mass inversion of an effective
Dirac model (this will be discussed in more detail in Sec. IV).

We can show that a single domain wall has two degenerate
boundary modes, and the charge-neutral point is located in
the middle of the two (i.e., the boundary modes are half-
filled at the charge-neutral point). In the case of Fig. 4(a),
the doped carriers are accommodated in unoccupied boundary
states, so that the Fermi energy comes to a large gap above
the boundary states, and reduce the total energy. Inversely
speaking, a carrier-doped ZGNR automatically creates AFM
domain boundaries such that the charged carriers exactly fill
the in-gap topological boundary modes, and make the Fermi
energy remain in the energy gap.

In increasing the carrier density, more and more domain
walls emerge to absorb the doped carriers, and they come
closer to each other as seen in Fig. 4(b). In the heavily doped
regime, the spin and charge spatial profile approach coexisting
spin density wave (SDW) and charge density wave (CDW)
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FIG. 4. Ferromagnetic domain walls for N = 5 ZGNR for several doped carrier densities n̄ ≈ 0.001 (a), n̄ ≈ 0.004 (b), and n̄ = 0.008
(c) at T = 100 K. First row is the spin density as a function of x j at edge atoms. Solid (dashed) curves are for top (t) and bottom (b) edges and
blue (red) ones are for sz (sy) components. The sy for the top and bottom edges are completely overlapped. Second row is the charge density
in the ribbon unit cell n(xmx ) = ∑

my
n(r j ). Third row is the energy spectrum for obtained self-consistent order parameters. In-gap states are

highlighted as red thick curves.

with sinusoidal oscillation [Fig. 4(c)]. When the carrier den-
sity is further increased, the FM region eventually dominates
and the system approaches a uniform FM phase.

In the energy spectrum, the interference of the neighboring
boundary modes leads to a finite-energy width of in-gap bands
as seen in the bottom panels of Fig. 4(c). Figure 6 displays an
evolution of the density of states as a function of the carrier
density n̄ > 0, which is calculated by

D(E ) =
∑

ν

∫
dk

|G|
1

π

η

(Eνk − E )2 + η2
(11)

with a smearing factor of η = 3 meV. We observe that the
in-gap band is broadened in increasing n̄, and it finally fills

out the main energy gap. This corresponds to the metallic
spectrum in uniform FM phase [Fig. 5(c)].

The diagram of Fig. 6 exhibits a series of mini gaps form-
ing a complex structure reminiscent of the Hofstadter butterfly
[47]. The Hofstadter butterfly is the energy spectrum in a
two-dimensional (2D) lattice under magnetic field, where the
recursive pattern emerges as a function of the magnetic flux
per a unit cell. The same pattern also appears in the spec-
trum of a one-dimensional (1D) doubly periodic lattice such
as Aubry-André model [44–46], where the ratio of the two
periods corresponds to the magnetic flux in the Hosftadter’s
model. The present system can be regarded as a 1D doubly pe-
riodic system with two competing periods, the atomic lattice
constant a and the mean-field superperiod (q/p)a, and hence

FIG. 5. The typical magnetic orders at the edge atom (top panels) and corresponding band structure (bottom). The order depicted in
(a) creates the mass gap at the Dirac point in (c).
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FIG. 6. Spectral evolution of the domain-wall state of GNR with
width N = 5 at T = 100 K as a function of doped carrier density n̄.

the Hofstadter-type structure appears as a function of p/q ∝ n̄
as seen in Fig. 6.

Each minigap of the Hofstadter butterfly is labeled by the
(first) Chern number. In the 2D lattice under the magnetic
field, the number corresponds to the quantized Hall conduc-
tivity [52], while that in the 1D doubly periodic system is
related to an adiabatic charge pumping (Thouless pumping)
associated with a relative slide of the two periodic potentials
[44–46,53–56]. For the present system, we calculate the Chern
number by considering the quantized charge pump under a
shift of the mean field nμ(r j ) with the Fermi energy fixed to
each energy gap. Considering a cyclic shift nμ(r j ) → nμ(ri +
[qδ/p]a) with shift parameter δ (0 � δ � 1), the Chern num-
ber is explicitly written as

C(ε) =
∑

Eνk<ε

∫ 1

0
dk

∫ 1

0
dδ

(
∂kA(ν)

δ − ∂δA(ν)
k

)
. (12)

Here the wave number k is normalized in units of 2π/qa,
A(ν)

α = i
∑

j u†
νk (r j, δ)[∂αuνk (r j, δ)] is the Berry connection,

and uνk (r j, δ) is the solution Eq. (7) with the shifted potential
nμ(r j + [qδ/p]a). We find C = ±2 for the upper and lower
main gaps, respectively, in Fig. 6. The difference of the Chern
numbers between the two main gaps, �C = 4, corresponds
to the number of topological bound states in a single period.
Specifically, we have two domain walls per period and each
domain wall accommodates two bound states (see Sec. IV).
When the mean field is slid by a single period, therefore, the
number of pumped charges at any cross section is 4e.

IV. TOPOLOGICAL ORIGIN OF MAGNETIC
DOMAIN WALLS

The emergence of the domain-wall bound states can be
regarded as a consequence of the bulk-edge correspondence,
where the magnetic domain corresponds to the bulk, while the
domain wall acts as the edge. The bulk states in the neigh-
boring domains are characterized by Dirac fermions with
opposite signed mass, giving rise to an edge state within the
mass gap. Below, we introduce a continuum model for the

zigzag edge states in the presence of FM and AFM order,
and demonstrate that the localized modes can be described
as Jackiw-Rebbi states in a 1D Dirac system with a mass
inversion.

In a noninteracting ZGNR with width N , the effective
Hamiltonian of edge states around k = π/a [Fig. 2(b)] can
be written as

h0 =
[

0 k̃N

k̃N 0

]
σ0 = k̃Nτxσ0. (13)

Here we take an energy unit with t = 1 and define dimen-
sionless wave number k̃ = ka − π . The first and the second
elements in 2 × 2 Hamiltonian (Pauli matrix τx) represent the
top edge state |t〉 and the bottom edge state |b〉, respectively.
The derivation of Eq. (13) is provided in Appendix A.

The Hamiltonian of ZGNR with a magnetic domain wall
in Fig. 4 is expressed as

h = h0 + hF + hA, (14)

where

hF = fy(x)τ0σy, (15)

hA = dz(x)τzσz (16)

are the FM and AFM exchange fields, respectively. Here
fy(x) = (U/t )sy(r j ) and dz(x) = (U/t )sz(r j ) represent the
spin densities at top edge sites at r j with j = (mx, 1). In
the magnetic domain wall of Fig. 1, the FM field dominates
at the domain-wall center, while the AFM field dominates far
away from the domain wall. In the following, we take the wave
basis

|ψ1〉 = 1
2 (|t〉 + |b〉) ⊗ (|↑〉 − i|↓〉),

|ψ2〉 = 1
2 (|t〉 − |b〉) ⊗ (|↑〉 + i|↓〉),

|ψ3〉 = 1
2 (|t〉 + |b〉) ⊗ (|↑〉 + i|↓〉),

|ψ4〉 = 1
2 (|t〉 − |b〉) ⊗ (|↑〉 − i|↓〉),

(17)

where |t〉 ± |b〉 represent bonding and antibonding states of
top and bottom edges, respectively, and |↑〉 ± i| ↓〉 are spin
states polarized to ±y, respectively. By using a unitary ma-
trix U1 = (|ψ1〉, |ψ2〉, |ψ3〉, |ψ4〉), the entire Hamiltonian h =
h0 + hF + hA is transformed to

U †
1 hU1 =

⎡
⎢⎢⎣

k̃N − fy dz 0 0
dz −k̃N + fy 0 0
0 0 k̃N + fy dz

0 0 dz −k̃N − fy

⎤
⎥⎥⎦. (18)

When fy(x) and dz(x) change slowly as a function of x,
the local electronic structure at every single point can be
approximately described by a uniform Hamiltonian with con-
stant fy and dz. A domain-wall bound state emerges when the
energy gap of the local band closes at a certain point in the
domain wall. Let us first consider a uniform ferromagnetic
phase [Fig. 5(c)] corresponding to the domain-wall center.
The Hamiltonian is given by Eq. (18) with dz = 0 and uniform
fy > 0. It is clear that the band crossing occurs between the
electron branch with +y spin, E+y = |k̃|N − fy [red curve in
Fig. 5(c)], and hole branch with −y spin, E−y = −|k̃|N + fy
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(blue). The crossing points of E+y = E−y occur at

k̃ = ± f 1/N
y ≡ ±kD. (19)

The energy bands near the crossing points are regarded as 1D
massless Dirac bands at two independent valleys ±kD.

If we move away from the domain-wall center, spins
are antiferromagnetically tilted (see Fig. 1). The situation is
described by introducing nonzero dz in Eq. (18). The off-
diagonal elements dz immediately create a mass gap in 1D
Dirac cones as in Fig. 5(b). The effective 1D Dirac Hamilto-
nian near the band gap can be derived by expanding Eq. (18)
around ±kD. For odd N , the low-energy states of the valley
+kD are associated with the upper left sector of Eq. (19), while
the valley −kD is associated with the lower right sector, as
kN = −|k|N for k < 0. For even N , on the other hand, both
of valleys ±kD are associated with the upper left sector. By
expanding the appropriate sector in Eq. (19), the 1D Dirac
Hamiltonian at ±kD is obtained as

h± =
[
v±

N k̃ dz

dz −v±
N k̃

]
, (20)

with the velocity

v±
N = (±1)N+1N f

1− 1
N

y . (21)

Here ± is the valley index for k̃ = ±kD.
In the magnetic domain wall (Fig. 1), the dz(x) continu-

ously changes from positive to negative, and hence the mass
in the Dirac electron is inverted at the domain wall center.
This causes zero-energy modes called Jackiw-Rebbi bound
states localized at the mass inversion point [43]. If we replace
k̃ → −i∂x and assume dz(x > 0) < 0 and dz(x < 0) > 0, the
zero-energy localized state can be explicitly written as

�0±(x) = exp

(
1

|v±
N |

∫ x

0
dz(x′)dx′

)[
1

sgn(v±
N )i

]
. (22)

The bound states at the two valleys ± correspond to the doubly
degenerate domain-wall states in Fig. 4(a).

Aside from the FDW considered above, we can consider
the AFM-DW structure shown in Fig. 3(d), where the spins
of two edges rotate in the same direction retaining the local
antiferromagnetic structure everywhere. However, the state is
found to be unstable because the effective Hamiltonian with
the AFM-DW exchange field hADW = h0 + hA + dy(x)σyτz is
locally gapped everywhere, giving no domain wall states to
accommodate doped carriers.

V. THERMODYNAMIC STABILITY OF DOMAIN WALL

In this section, we discuss the thermodynamic stability of
the FDW state. In Fig. 7(a), we compare the relative free
energies of FDW, uniform AFM, and uniform FM states
(schematically shown in Fig. 3) in N = 5 GNR at T = 100 K,
by changing carrier density n̄. Here we set the free energy
of uniform AFM to zero for reference. We actually see that
the FDW phase has the lowest energy in wide range of the
parameter.

Let us first consider the energetics of the uniform AFM and
FM states, whose spin and electronic structure is presented
in Figs. 5(a) and 5(c), respectively. At n̄ = 0, the AFM is

FIG. 7. Free-energy density of typical self-consistent solutions
for width N = 5 GNR as a function of doped carrier density n̄. Filled
symbol is for the FDW state and gray (red) dashed curve for uniform
AFM (FM).

more stable than the FM because the electronic spectrum of
the AFM is gapped at the Fermi energy [Fig. 5(a)], while that
of the FM is gapless [Fig. 5(c)]. In increasing n̄, however, the
energy difference is decreased and eventually the FM becomes
more stable in n̄ � 0.007. This is because in the FM state,
doped charges are accommodated in low-energy excited states
near the charge-neutrality point [Fig. 5(c)], whereas in the
AFM, doped carriers have to occupy high-energy states above
the gap, costing larger energy.

The free energy of FDW with a magnetic structure shown
in Fig. 3(c) is smaller than that of uniform AFM and FM
[Fig. 7(a)] because the doped carriers are accommodated to
zero-energy domain-wall states (Fig. 4) with a small energy
cost, while the rest of the system is gapped because of the
local AFM order. In other words, the FDW phase combines
the characteristics of the AFM (domain) and FM (boundary)
to reduce the total free energy. In increasing n̄, the free energy
of FDW approaches that of the uniform FM since the FDW
crosses over to the y-polarized SDW phase [Fig. 4(c)] and
eventually to the ferromagnetic state.

FIG. 8. Phase diagram spanned by the temperature and doped
carrier density. In the shaded region, FDW structure is the ground
state. The white region is the region where the metallic uniform state
is stable.
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FIG. 9. Free-energy comparison and density of states for the most stable states for width N = 6 (a), N = 5 (b), N = 4 (c), N = 3 (d), and
N = 2 (e) and T = 100 K. Color code of symbols in free-energy plot is the same as in Fig. 7. (b) Includes a replot of Figs. 6 and 7.

In T = 300 K, on the other hand, we see that the uniform
AFM phase has lower free energy than the FDW phase in the
low-density region n̄ � 0.007 (Fig. 7). The reason for this is
that the uniform AFM state with carrier doping has a higher
entropy S due to a large degeneracy of single-particle states
above the gap, compared to the FDW state where the doped
carriers occupy exclusively the domain-wall bound states. The
decrease in the free energy by −ST compensates the energy
cost and stabilizes the uniform AFM phase at high tempera-
ture. The phase diagram on the temperature and carrier density
space is presented in Fig. 8.

It should also be mentioned that the fluctuations of the
domain-wall distance, which is not included in the present
mean-field calculation, should also affect the thermodynamic
stability of the FDW state. As each domain wall traps a
single electron, the walls repel each other by the Coulomb
interaction with small screening due to one dimensional-
ity. For n̄ ≈ 0.004 [see Fig. 4(b)], for instance, the spacing
between domain walls is ∼60 Å, where the bare Coulomb

energy is estimated as ∼200 meV. At the room temperature
(kBT ∼ 30 meV), therefore, the domain walls should be ar-
ranged in equal distance with a small fluctuation, similarly
to a 1D Wigner crystal [57]. The distance fluctuation should
contribute to a configuration entropy, and make the FDW state
more stable in a finite temperature. When the carrier density
is even decreased, the domain walls are farther apart from
each other, and domain walls move more freely to stabilize
the FDW states. When these effects are appropriately incor-
porated, the FDW region in the phase diagram, Fig. 8, would
be expanded. A further consideration on the quantum fluctu-
ation and spin excitation [13,14,58–60] would be presented
elsewhere.

VI. WIDTH DEPENDENCE

We investigate the domain-wall formation in ZGNRs with
different ribbon widths N . Figure 9 summarizes numerically
obtained free energy and electronic spectra from N = 2 to 6
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plotted against the carrier density. The ZGNRs of N = 5 and
6 show qualitative similar properties argued in the previous
sections, where the FDW is stable in a wide range of the doped
regime. We confirmed that the same trend persists in wider
ribbons N = 7 and 8.

In narrower ribbons with N � 4, on the other hand, we find
that a collinear domain-wall phase [Fig. 3(e)] emerges in the
doped regime, instead of the FDW phase. It is also a domain
boundary connecting opposite AFM regions, while different
from the FDW in that spins are all parallel to the ±z direction,
and the spin polarization vanishes at the domain-wall center
[see Fig. 3(e)]. The relative stability of the collinear phase
over the FDW phase in narrow ribbons can be understood
as follows. When we compare the band structures of uniform
AFM and FM phases [Figs. 5(a) and 5(c)], we understand that
FM is less stable than AFM due to the gap closing points,
while FM is more stable than the original nonmagnetic state
because the central flat gapped region around k = π reduces
the free energy similarly to AFM. When the width N is
decreased, however, the flat region becomes narrower in k
space as shown in Fig. 2(b), so that the energy gain of the
FM becomes smaller. This effect makes the FDW state having
local FM region unstable in narrow N’s.

The collinear domain wall also forms in-gap bound states
as seen in Figs. 9(c)–9(e), which stabilize the domain wall by
accommodating the doped charge in a similar way to FDW.
In contrast to the FDW where two degenerate bound states
emerge at charge-neutrality point, the collinear domain wall
forms multiple in-gap levels, and the number of the levels
increases in increasing the width N . This behavior can be
qualitatively understood using the effective model of Eq. (14)
with hF = 0, as presented in Appendix B. We also note that
the in-gap states in the collinear phase are all doubly degen-
erate in spins. This is because the spin z component is a good
quantum number in the collinear phase, and also the spin-up
and spin-down sectors are mirror inversions of each other,
giving identical spectra. The Fermi energy is located in one of
the energy gaps which is chosen to minimize the free energy,
and it determines the number of trapped charges per a single
domain wall Q. Numerically checking the free energy as in the
top panel of Figs. 9(c) and 9(d), we observe that single domain
wall in N = 2, 3, 4 trap −2e, −3e, and −2e, respectively.

As indicated in Figs. 9(c)–9(e), energy gaps in the collinear
domain walls are also labeled by Chern numbers in Eq. (12) in
the same manner as in the FDW. For the collinear domain wall
in odd N [Fig. 9(d)], each of the subgaps are labeled by the
sequence of the Chern numbers C = 2, 6, 10, . . . , while those
in even N [Figs. 9(c) and 9(e)] are C = 0, 4, 8, . . . . As the gap
with C = 0 corresponds to the charge neutral in the present
system, the difference of the sequences can be explained by
whether in-gap states emerge at the charge-neutrality point or
not, and it is related to the mirror winding number of the effec-
tive model (14). The detailed explanation for this is presented
in Appendix B. Also note that the difference of 4 between the
Chern numbers of consecutive gaps is originating from the
fact that each bound state has twofold spin degeneracy and
the two domain walls form a single period of the structure.

We note that the formation of domain walls is a specific
property of relatively narrow ZGNRs and not expected in limit
of infinitely wide GNR. In this limit, the two edges of the

ribbon are spatially separated, inhibiting their interconnection.
This results in a vanishingly small AFM gap at the charge-
neutrality point, and uniform AFM and FM states depicted in
Figs. 3(a) and 3(b) become degenerate. In this situation, the
introduction of the carriers only leads to a minimal increase
in energy due to the absence of the gap. Consequently, there
is no significant driving force to formation of domain-wall
structures in large ribbon systems.

VII. SUMMARY

We developed a theory of magnetically ordered states
in carrier-doped zigzag graphene nanoribbons. Within the
Hartree-Fock mean-field theory, we demonstrated that the
carrier doping stabilizes a magnetic structure with alter-
nating AFM domains separated by ferromagnetic domain
walls, where doped carriers are accommodated in topological
bound states localized around domain walls. We explained
the topological origin of the domain-wall bound states in
terms of Jackiw-Rebbi arguments associated with the Dirac
mass inversion. With increasing the doped carrier, the spacing
between domain walls is narrower, and the magnetic struc-
ture crosses over to the spin and charge density wave. The
energy spectrum shows the Hofstadter-type fractal spectral
evolution as a function of the carrier density, where minigaps
are characterized by the Chern number associated with the
quantized charge pump by the adiabatic shift of periodic do-
main walls. We systematically performed the calculation for
GNRs with different widths, and found that the ferromagnetic
domain-wall phase emerges in wide ribbons of N � 5, while
the collinear domain-wall phase arises N � 4. As such, our
finding provides different perspectives for studying the novel
topological property of interacting ZGNR.
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APPENDIX A: NONINTERACTING ZGNR
AND EFFECTIVE CONTINUUM MODEL

1. Energy spectrum of width-N ZGNR

We revisit the band structure and symmetric property of
ZGNR without electron-electron interaction and spin degrees
of freedom, as a preparatory step for deriving the effective
continuum model. We use the Bloch basis

| jy, k〉 =
∑

jx

eikx j ψ
†
j |0〉, (A1)

where ψ
†
j and x j are the spinless creation operator and x coor-

dinate of pz orbital at a site j = (mx, my) [definition of mx and
my is given in Fig. 2(a)]. In this basis the Bloch Hamiltonian
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of the ZGNR is described by the matrix

H0(k) = −t

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 C 1
2

C 1
2

0 1
1 0 C 1

2

C 1
2

0 1
1 0

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

− t ′

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1
0 0 C1 0 0
0 C1 0 0 0 1
1 0 0 0 C1 0

0 0 C1 0 0
1 0 0 0

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2)

where we employ the shortened notation Cw(k) =
2 cos(wka). Diagonalizing Eq. (A2), we obtain the
noninteracting energy spectrum for ZGNR with width N
shown in Fig. 2(b).

For later convenience, we block diagonalize the Hamil-
tonian (A2) by using the symmetry of the lattice structure.
Clearly, ZGNRs with even width N have a mirror-reflection
symmetry My with respect to the zx plane [see Fig. 2(a)].
Those with odd width N have a glide mirror symmetry
{My|a/2}, namely, the combination of My and half-lattice
translation by a

2 . In the Bloch basis of Eq. (A2), these two
symmetries are described by the same matrix

G =
(

0 JN

JN 0

)
, (A3)

where JN is the N × N row-reversed identity matrix

JN =

⎛
⎜⎝

1

. .
.

1

⎞
⎟⎠. (A4)

The commutation relation [H0(k), G] = 0 allows us to block
diagonalize Eq. (A2) as

UGH0(k)U †
G = diag(H0+, H0−) (A5)

with a unitary matrix

UG = 1√
2

(
IN JN

−IN JN

)
, (A6)

diagonalizing Eq. (A3). Here IN stands for the N × N identity
matrix. The block H0+ (H0−) in Eq. (A5) is the Hamiltonian
of the mirror or glide even (odd) states whose eigenenergies
are plotted in purple (green) in Fig. 2(b).

2. Derivation of the edge effective model

When we ignore further hopping t ′ irrelevant in the wider
ZGNR with N � 5, the edge states can be described by con-
tinuum model with the significantly simple form (13) in the
main text. Let us derive this effective model. First, we focus
on the odd width N and then apply the framework to even N
straightforwardly.

Near the Brillouin zone boundary ka = π + k̃ with small k̃
(normalized in the unit of 1/a), we apply the linear expan-
sion 2 cos(ka/2) ∼ −k̃ to glide-even block of Hamiltonian
(A5) as

h0+ ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 k̃
k̃ 0 −1

−1 0 k̃
k̃ 0

. . .

0 −1
−1 k̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A7)

for the ZGNR with odd N . Here h0+ = H0+/t is a dimen-
sionless Hamiltonian and we set t ′ = 0 for the simplicity.
At the Brilloiuin zone boundary k̃ = 0, Eq. (A7) has zero-
energy solution εν,+,k = 0 with the wave function �uν (π/a) =
(1, 0, . . . , 0)T . Slightly away from k̃ ∼ 0, we can take into ac-
count the effect of finite k̃ with the second-order perturbation
theory

heff
0+ = −V †(h′

0+)−1V, (A8)

where V †(k) = (k̃, 0, . . . , 0) corresponds to 1 × (N − 1) up-
per right block of Eq. (A7), and h′

0+(k) to (N − 1) × (N − 1)
lower right block. In addition, one can analytically obtain the
inverse of h′

0+,

(h′
0+)−1 = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k̃N−2 1 k̃N−3 k̃1 k̃N−4 k̃2 · · · k̃
N−1

2 −1

... 0 0 0 0 0 · · · 0
... k̃N−4 1 k̃N−5 k̃1 · · · k̃

N−1
2 −2

... 0 0 0 · · · 0
... k̃N−6 1 · · · k̃

N−1
2 −3

... 0 · · · 0
...

. . .
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A9)

where the lower-triangular elements are symmetric to the
upper. Note that only the upper leftmost corner element of
Eq. (A9) is relevant to Eq. (A8). As the result, we obtain
effective Hamiltonian for glide-even sector

heff
0+ = k̃N . (A10)

In addition, those for glide-odd sector are straightfor-
wardly derived within the same process. Indeed, the glide-odd
block of Eq. (A5) is related to that of glide-even sector of
Eq. (A8) as

h0− = −Uexh0+U †
ex (A11)

with an antidiagonal exchange operator

Uex =

⎛
⎜⎜⎜⎜⎝

−1
1

−1
1

. .
.

⎞
⎟⎟⎟⎟⎠. (A12)

The unitary equivalence (A11) leads us to the effective model

heff
0− = −k̃N . (A13)
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Finally, by changing the basis to the original Bloch basis, we
reach the effective model

h0 = e−iτy
π
4

(
heff

0+ 0
0 heff

0−

)
eiτy

π
4 =

(
0 k̃N

k̃N 0

)
, (A14)

where τy is a 2 × 2 Pauli matrix.
The procedure for the odd width N discussed above is

applicable to the even N . Only differences are in a small part
of matrix elements of Eq. (A7). For the even N its matrix form
is replaced as

h0+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 k̃
k̃ 0 −1

−1 0 k̃
k̃ 0

. . .

0 k̃
k̃ −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A15)

Because inverse of the lower right (N − 1) × (N − 1) block
of Eq. (A15) is totally the same as Eq. (A9), the effective
Hamiltonian for the even width N is also given by Eq. (A14).

APPENDIX B: BOUND STATES IN COLLINEAR
DOMAIN WALLS

We demonstrate that the collinear domain walls [Fig. 3(e)]
form in-gap bound states and topologically characterize those
in the ribbons with width N .

1. Effective model description

The electronic structure of the collinear domain walls is
described by the continuum model (13) and AFM exchange
field (16). The total Hamiltonian has block-diagonal form
h0 + hA = diag[hN+, hN−] with spin-up and -down sectors,

hNs =
[

sdz k̃N

k̃N −sdz

]
= k̃Nτx + sdzτz, (B1)

where s = ± stands for the spin up and down, and the basis
of the 2 × 2 matrix are the top and bottom edges. Here, spin
up and down correspond to the states with even and odd
parity under the mirror reflection with respect to xy plane,
respectively. The Hamiltonian (B1) is the one-dimensional
massive Dirac model with N th-order kinetic term k̃N . The
mass dz changes the sign at the domain wall. Hereafter in
this section we only focus on the mirror-even (spin-up) state
because the mirror-odd (down-spin) Hamiltonian is unitary
equivalent to that of even (up), hN− = τxhN+τx.

We can obtain the bound states by expanding the Jackiw-
Rebbi argument of the k-linear Dirac model [43] to the
N th-order model (B1). When spin polarization dz is spatially
uniform dz(x) = d0, we have propagating modes with energy

E = ±
√

d2
0 + k̃2N (B2)

with the gap −|d0| < E < |d0|. In the real-space basis, their
eigenwave function is

ψE ,k (x) =
(

k̃N

E − d0

)
eik̃x. (B3)

Let us consider the model of sharp collinear domain wall

dz(x) = d0θ (x), (B4)

where θ (x) is Heaviside step function θ (x) = 1 for x > 0 and
θ (x) = −1 for x < 0. Extending the momentum in Eq. (B2) to
the complex plane k̃ = κeiχ we obtain the in-gap evanescent
mode with the energy

E = ±
√

d2
0 − κ2N . (B5)

Here, because the energy (B5) should be real and smaller
than the gap of the propagating modes, the complex mo-
mentum is required to be k̃ = ±kn = ±κei(2n−1)π/2N with n =
1, 2, . . . , N . The wave function of these evanescent modes is

ϕ
(L/R)
E ,n (x) =

( ∓kN
n

E ± d0

)
e∓iknx. (B6)

where upper (lower) sign is for the index L (R) in left-hand
side, indicating the decaying modes in x < 0 (x > 0). The
wave function of the bound state in the two sides of the do-
main wall is given by the linear combination of these modes,

�
(L/R)
E (x) =

∑
n

CL/R,n(E )ϕ(L/R)
E ,n (x). (B7)

To avoid the divergence of the N th-order derivative in the
Hamiltonian (B1), we require smooth connection of �

(L)
E (x)

and �
(R)
E (x) at x = 0

[
∂n

x �
(L)
E (x)

]
x=0 = [

∂n
x �

(R)
E (x)

]
x=0 (B8)

with n = 0, 1, . . . , N − 1. As a result, Eq. (B8) falls
into the homogeneous linear equation for C(E ) =
(CL,1, . . .CL,N ,CR,1, . . .CR,N )

A(E )C(E ) = 0. (B9)

Numerically solving det[A(E )] = 0, we obtain quantized
boundary modes E = Eν as shown in Fig. 10. Importantly,
for width N graphene nanoribbon, we have 2N bound states
in total (N states per a spin).

2. Even-odd effect and winding number

In Fig. 10, we see the even-odd effects on the ribbon width
N : Ribbon with odd N has zero-energy bound states at the
charge-neutral point while that with even N has an energy
gap there. This difference can be understood in terms of the
winding number for the effective Hamiltohian (B1). The key
point is that the Hamiltonian (B1) has a chiral symmetry

�hN±�† = −hN±, with � = τy. (B10)

Taking the basis diagonalizing the chiral operator �, we can
transform the Hamiltonian to antidiagonal form

UhN±U † =
[

0 k̃N ± idz

k̃N ∓ idz 0

]
(B11)
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FIG. 10. Numerically obtained bound state for collinear domain-
wall with width N . Gray area indicates the spectra of propagating
modes with antiferromagnetic gap 2d0.

by a unitary matrix U = eiπτx/4. For a uniform system with
constant dz, we can define the one-dimensional winding num-
ber [61] in each mirror sector,

wN±(dz, fy) = 1

4π i

∫
dk̃ tr{�[hN±(k̃)]−1∂k̃hN±(k̃)}

= 1

2π i

∫
dk̃ ∂k̃ ln(k̃N ± idz ). (B12)

The independent topological numbers of the system are to-
tal winding number Wtot = wN+ + wN− and mirror winding
number Wm = wN+ − wN−. For the present system, the total
winding number is Wtot = 0 for any width N , while the mirror
winding number is

Wm =
{

sign(dz ) for odd N,

0 for even N.
(B13)

For the odd-N ribbons, the difference of the mirror winding
number by 2 between dz > 0 and dz < 0 regions topologically
protects the twofold-degenerate zero modes as in Fig. 10.

In the self-consistent mean-field Hamiltonian (7) the local
charge modulation, or say CDW, breaks the chiral symme-
try. However, as long as the perturbation is small enough
and the level inversion of in-gap states does not occur, the
even-odd effect about the bound states at charge-neutral point
remains unchanged. This is why the series of the possible
Chern number for even width include C = 0 (charge neutral
gap) [Figs. 9(c) and 9(e)] while those of odd width do not
[Fig. 9(d)].

We see in Fig. 9(e) that the level spacing at the charge-
neutral gap with C = 0 is much smaller than E = 0 gap of
N = 2 in Fig. 10. This is due to the third-nearest-neighbor
hopping t ′ in Eq. (2) supporting band overlapping and cross-
ing of conduction and valence bands in the noninteracting

FIG. 11. Dynamical conductivity driven by the parallel σxx

(a) and perpendicular σyy (b) ac electric field. Color code indicates
the amount of the doped charge per a lattice point.

band structure Fig. 2(b). Two crossing in N = 2 [Fig. 2(b)]
are regarded as massless Dirac points and AFM order opens
mass gap there. As the mass inversion occurs at the collinear
domain wall, there appear two Jackiw-Rebbi zero modes,
which correspond to two energetically close bound states in
Fig. 9(e). The small splitting of in-gap level in Fig. 9(e) is
caused by the intervalley coupling. Therefore, with reducing t ′
and mixing valleys, the two levels strongly split as in Fig. 10.

It should be noted that the sharp domain-wall limit (B4)
also enhances level spacing in Fig. 10 for general N . When the
size of the domain wall is finite, e.g., by replacing step func-
tion θ (x) in Eq. (B4) to tanh(x/ξ ), the domain wall behaves
as a potential well with the size ξ . In general, with increasing
the size of the well ξ , the level spacing of the bound states
tends to be smaller and additional bound states come out at the
gap edges. This effect is taken into account in Fig. 9, where
the number of the bound states is larger than N in contrast to
Fig. 10.

APPENDIX C: OPTICAL ABSORPTION SPECTRA

Optical absorption spectroscopy, which is a basic tool to
observe the electronic structure of the graphene-based sys-
tems, can probe the topological bound states and characteristic
spectral evolution in Fig. 6. Applying the linear response
theory to the numerical solution of Eq. (7), we here evaluate
the dynamical conductivity of the doped ZGNR,

σαα (ω) = e2h̄

iS

∑
ν,ν ′

∫
dk

|G|
f (Eνk )− f (Eν ′k )

Eνk −Eν ′k

×
∣∣∑′

i, j u†
νk (ri )v

i j
α uν ′k (r j )

∣∣2

Eνk −Eν ′k + h̄ω+iη
, (C1)
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where S = (
√

3/2)Nqa2 is the size of the two-dimensional
super unit cell, v

i j
α is the velocity operator, and α = x, (y)

is parallel (perpendicular) to the ribbon. The x component
of velocity is given by v

i j
x = h̄−1∂kHi j

k with the kinetic term
Hi j

k and y component is v
i j
y = ih̄−1(yiHi j

k − Hi j
k y j ). The real

part of σαα is proportional to the absorption probability of the
light linearly polarized along α = x, y. The obtained results
are shown in Fig. 11. Absorption of the y component of the
light [Fig. 11(b)] is smaller than that of the x component
[Fig. 11(a)] since the edge states, relevant for the lower-
frequency spectra displayed in Fig. 11, are confined along the
x direction and hardly move along the y direction.

The emergence of the topological bound states affects the
dynamical conductivity σxx along the ribbon [Fig. 11(a)]. For
the extremely light doping [blue curve in Fig. 11(a)], the main

peak appears at h̄ω ≈ 0.6 eV, corresponding to the excitation
energy between the AFM gap edges (solid arrow in Fig. 6).
The bound states give rise to just a shoulder structure at
h̄ω ≈ 0.3 eV due to their diluteness. When the doped carrier
slightly increases (light-blue curve in Fig. 11), we see the
development of the lower-frequency peak in σxx caused by the
excitation from the occupied bound states to the unoccupied
conduction band (dashed arrow in Fig. 6). At the same time
the peak at h̄ω ≈ 0.6 eV is continuously suppressed since the
gap-edge states contribute to form the bound states. Due to
the shrinkage of the gap around the Fermi energy (see Fig. 6),
the lower-energy peak continuously shifts to the zero fre-
quency. In particular, the double-peak structure in Fig. 11(a)
from the infrared to microwave region is the typical signal
indicating the coexistence of the AFM gap and the topological
bound states.

[1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

[2] F. Schwierz, Nat. Nanotechnol. 5, 487 (2010).
[3] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod.

Phys. 83, 407 (2011).
[4] O. V. Yazyev, Rep. Prog. Phys. 73, 056501 (2010).
[5] V. Meunier, A. G. Souza Filho, E. B. Barros, and M. S.

Dresselhaus, Rev. Mod. Phys. 88, 025005 (2016).
[6] A. Celis, M. N. Nair, A. Taleb-Ibrahimi, E. H. Conrad, C.

Berger, W. A. de Heer, and A. Tejeda, J. Phys. D: Appl. Phys.
49, 143001 (2016).

[7] K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus,
Phys. Rev. B 54, 17954 (1996).

[8] M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe,
J. Phys. Soc. Jpn. 65, 1920 (1996).

[9] Y.-W. Son, M. L. Cohen, and S. G. Louie, Nature (London) 444,
347 (2006).

[10] Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97,
216803 (2006).

[11] L. Pisani, J. A. Chan, B. Montanari, and N. M. Harrison, Phys.
Rev. B 75, 064418 (2007).

[12] J. Fernández-Rossier and J. J. Palacios, Phys. Rev. Lett. 99,
177204 (2007).

[13] H. Feldner, Z. Y. Meng, T. C. Lang, F. F. Assaad, S. Wessel, and
A. Honecker, Phys. Rev. Lett. 106, 226401 (2011).

[14] S. Dutta and K. Wakabayashi, Sci. Rep. 2, 519 (2012).
[15] O. V. Yazyev and M. I. Katsnelson, Phys. Rev. Lett. 100, 047209

(2008).
[16] Z. Ma and W. Sheng, Appl. Phys. Lett. 99, 083101 (2011).
[17] P. Cui, Q. Zhang, H. Zhu, X. Li, W. Wang, Q. Li, C. Zeng, and

Z. Zhang, Phys. Rev. Lett. 116, 026802 (2016).
[18] M. P. López-Sancho and L. Brey, 2D Mater. 5, 015026 (2017).
[19] S. Sanz, N. Papior, G. Giedke, D. Sánchez-Portal, M.

Brandbyge, and T. Frederiksen, Phys. Rev. Lett. 129, 037701
(2022).

[20] M. Pizzochero and E. Kaxiras, Nano Lett. 22, 1922 (2022).
[21] D. Zhu, M. Kheirkhah, and Z. Yan, Phys. Rev. B 107, 085407

(2023).
[22] V. Saraswat, R. M. Jacobberger, and M. S. Arnold, ACS Nano

15, 3674 (2021).

[23] L. Tapasztó, G. Dobrik, P. Lambin, and L. P. Biró, Nat.
Nanotechnol. 3, 397 (2008).

[24] G. Z. Magda, X. Jin, I. Hagymási, P. Vancsó, Z. Osváth, P.
Nemes-Incze, C. Hwang, L. P. Biró, and L. Tapasztó, Nature
(London) 514, 608 (2014).

[25] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R.
Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Nature
(London) 458, 872 (2009).

[26] L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, Nature
(London) 458, 877 (2009).

[27] L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai, Nat.
Nanotechnol. 5, 321 (2010).

[28] D. V. Kosynkin, W. Lu, A. Sinitskii, G. Pera, Z. Sun, and J. M.
Tour, ACS Nano 5, 968 (2011).

[29] S. Wu, B. Liu, C. Shen, S. Li, X. Huang, X. Lu, P. Chen, G.
Wang, D. Wang, M. Liao et al., Phys. Rev. Lett. 120, 216601
(2018).

[30] J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S.
Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng
et al., Nature (London) 466, 470 (2010).

[31] A. Narita, X. Feng, Y. Hernandez, S. A. Jensen, M. Bonn, H.
Yang, I. A. Verzhbitskiy, C. Casiraghi, M. R. Hansen, A. H. R.
Koch et al., Nat. Chem. 6, 126 (2014).

[32] P. Han, K. Akagi, F. Federici Canova, H. Mutoh, S. Shiraki, K.
Iwaya, P. S. Weiss, N. Asao, and T. Hitosugi, ACS Nano 8, 9181
(2014).

[33] P. Ruffieux, S. Wang, B. Yang, C. Sanchez-Sanchez, J. Liu,
T. Dienel, L. Talirz, P. Shinde, C. A. Pignedoli, D. Passerone
et al., Nature (London) 531, 489 (2016).

[34] J.-T. Wang, H. Weng, S. Nie, Z. Fang, Y. Kawazoe, and C. Chen,
Phys. Rev. Lett. 116, 195501 (2016).

[35] S. Kawai, S. Saito, S. Osumi, S. Yamaguchi, A. S.
Foster, P. Spijker, and E. Meyer, Nat. Commun. 6, 8098
(2015).

[36] D. J. Rizzo, G. Veber, T. Cao, C. Bronner, T. Chen, F. Zhao,
H. Rodriguez, S. G. Louie, M. F. Crommie, and F. R. Fischer,
Nature (London) 560, 204 (2018).

[37] O. Gröning, S. Wang, X. Yao, C. A. Pignedoli, G. Borin Barin,
C. Daniels, A. Cupo, V. Meunier, X. Feng, A. Narita et al.,
Nature (London) 560, 209 (2018).

045401-12

https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1038/nnano.2010.89
https://doi.org/10.1103/RevModPhys.83.407
https://doi.org/10.1088/0034-4885/73/5/056501
https://doi.org/10.1103/RevModPhys.88.025005
https://doi.org/10.1088/0022-3727/49/14/143001
https://doi.org/10.1103/PhysRevB.54.17954
https://doi.org/10.1143/JPSJ.65.1920
https://doi.org/10.1038/nature05180
https://doi.org/10.1103/PhysRevLett.97.216803
https://doi.org/10.1103/PhysRevB.75.064418
https://doi.org/10.1103/PhysRevLett.99.177204
https://doi.org/10.1103/PhysRevLett.106.226401
https://doi.org/10.1038/srep00519
https://doi.org/10.1103/PhysRevLett.100.047209
https://doi.org/10.1063/1.3630229
https://doi.org/10.1103/PhysRevLett.116.026802
https://doi.org/10.1088/2053-1583/aa9cd1
https://doi.org/10.1103/PhysRevLett.129.037701
https://doi.org/10.1021/acs.nanolett.1c04362
https://doi.org/10.1103/PhysRevB.107.085407
https://doi.org/10.1021/acsnano.0c07835
https://doi.org/10.1038/nnano.2008.149
https://doi.org/10.1038/nature13831
https://doi.org/10.1038/nature07872
https://doi.org/10.1038/nature07919
https://doi.org/10.1038/nnano.2010.54
https://doi.org/10.1021/nn102326c
https://doi.org/10.1103/PhysRevLett.120.216601
https://doi.org/10.1038/nature09211
https://doi.org/10.1038/nchem.1819
https://doi.org/10.1021/nn5028642
https://doi.org/10.1038/nature17151
https://doi.org/10.1103/PhysRevLett.116.195501
https://doi.org/10.1038/ncomms9098
https://doi.org/10.1038/s41586-018-0376-8
https://doi.org/10.1038/s41586-018-0375-9


TOPOLOGICAL DOMAIN WALLS IN GRAPHENE … PHYSICAL REVIEW B 108, 045401 (2023)

[38] T. Kitao, M. W. A. MacLean, K. Nakata, M. Takayanagi,
M. Nagaoka, and T. Uemura, J. Am. Chem. Soc. 142, 5509
(2020).

[39] M. Kolmer, A.-K. Steiner, I. Izydorczyk, W. Ko, M. Engelund,
M. Szymonski, A.-P. Li, and K. Amsharov, Science 369, 571
(2020).

[40] K. A. Ritter and J. W. Lyding, Nat. Mater. 8, 235 (2009).
[41] C. Tao, L. Jiao, O. V. Yazyev, Y.-C. Chen, J. Feng, X. Zhang,

R. B. Capaz, J. M. Tour, A. Zettl, S. G. Louie et al., Nat. Phys.
7, 616 (2011).

[42] R. E. Blackwell, F. Zhao, E. Brooks, J. Zhu, I. Piskun, S. Wang,
A. Delgado, Y.-L. Lee, S. G. Louie, and F. R. Fischer, Nature
(London) 600, 647 (2021).

[43] R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976).
[44] L.-J. Lang, X. Cai, and S. Chen, Phys. Rev. Lett. 108, 220401

(2012).
[45] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg,

Phys. Rev. Lett. 109, 106402 (2012).
[46] Y. E. Kraus and O. Zilberberg, Phys. Rev. Lett. 109, 116404

(2012).
[47] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[48] S. Kivelson and O. L. Chapman, Phys. Rev. B 28, 7236

(1983).

[49] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-
Particle Systems (Dover, New York, 1971).

[50] D. J. Thouless, The Quantum Mechanics of Many-Body Systems
(Academic, New York, 1961).

[51] T. Kita, Statistical Mechanics of Superconductivity (Springer,
Tokyo, 2015).

[52] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Phys. Rev. Lett. 49, 405 (1982).

[53] D. J. Thouless, Phys. Rev. B 27, 6083 (1983).
[54] M. Fujimoto, H. Koschke, and M. Koshino, Phys. Rev. B 101,

041112(R) (2020).
[55] Y. Zhang, Y. Gao, and D. Xiao, Phys. Rev. B 101, 041410(R)

(2020).
[56] Y. Su and S.-Z. Lin, Phys. Rev. B 101, 041113(R) (2020).
[57] V. V. Deshpande and M. Bockrath, Nat. Phys. 4, 314 (2008),

0710.0683.
[58] H. Yoshioka, J. Phys. Soc. Jpn. 72, 2145 (2003).
[59] T. Hikihara, X. Hu, H.-H. Lin, and C.-Y. Mou, Phys. Rev. B 68,

035432 (2003).
[60] G. Karakonstantakis, L. Liu, R. Thomale, and S. A. Kivelson,

Phys. Rev. B 88, 224512 (2013).
[61] M. Sato, Y. Tanaka, K. Yada, and T. Yokoyama, Phys. Rev. B

83, 224511 (2011).

045401-13

https://doi.org/10.1021/jacs.0c00467
https://doi.org/10.1126/science.abb8880
https://doi.org/10.1038/nmat2378
https://doi.org/10.1038/nphys1991
https://doi.org/10.1038/s41586-021-04201-y
https://doi.org/10.1103/PhysRevD.13.3398
https://doi.org/10.1103/PhysRevLett.108.220401
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1103/PhysRevLett.109.116404
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevB.28.7236
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1103/PhysRevB.101.041112
https://doi.org/10.1103/PhysRevB.101.041410
https://doi.org/10.1103/PhysRevB.101.041113
https://doi.org/10.1038/nphys895
http://0710.0683
https://doi.org/10.1143/JPSJ.72.2145
https://doi.org/10.1103/PhysRevB.68.035432
https://doi.org/10.1103/PhysRevB.88.224512
https://doi.org/10.1103/PhysRevB.83.224511

