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Band-engineered bilayer Haldane model: Evidence of multiple topological phase transitions
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We have studied the evolution of the topological properties of a band-engineered, AB-stacked bilayer
honeycomb structure in the presence of a Haldane flux. Without a Haldane flux, band engineering makes the
band touching points (the so-called Dirac points) move towards each other and eventually merge into one at
an intermediate M point in the Brillouin zone. Here the dispersion is linear along one direction and quadratic
along the other. In the presence of a Haldane flux, the system acquires topological properties, and finite Chern
numbers can be associated with the pairs of the conduction and the valence bands. The valence band closer
to the Fermi level (EF ) possesses Chern numbers equal to ±2 and ±1, while the one further away from EF

corresponds to Chern numbers ±1. The conduction bands are associated with similar properties, except their
signs are reversed. The Chern lobes shrink in the band-engineered model, and we find evidence of multiple
topological phase transitions, where the Chern numbers discontinuously jump from ±2 to ∓2, ±1 to ∓1, ±1 to
0 to ±2, and ±2 to ±1. These transitions are supported by the presence or absence of the chiral edge modes in
a nanoribbon bilayer geometry and the vanishing of the plateau in the anomalous Hall conductivity. Different
phases are further computed for different hopping amplitudes across the layers, which shows shrinking of the
Chern lobes for large interlayer tunneling.

DOI: 10.1103/PhysRevB.108.045307

I. INTRODUCTION

The Haldane model is a toy model, where it was shown
that one can achieve quantum Hall effect even in the absence
of an external magnetic field in a two-dimensional honeycomb
lattice [1]. To achieve such a scenario, the time-reversal sym-
metry (TRS) of the system needs to be broken, which can
be done via chiral, complex next-nearest-neighbor hopping
amplitudes. The spectral bands of such a system possess a
nonzero topological invariant known as the Chern number.

The Haldane model is a single-layer system; however,
layered Dirac systems are interesting to study owing to the
quadratic band dispersion, along with a spectral gap (pro-
portional to the interlayer tunneling amplitude) at the Dirac
points. These features are in contrast with its monolayer coun-
terpart. In recent years there have been studies of the Haldane
model in coupled two-dimensional systems, for example, the
bilayer materials [2–5], Moiré lattices [6–10], etc. In parallel,
there are studies on the band engineering in various systems,
such as, single-layer graphene [11], spin Hall insulators [12],
and a dice lattice [13]. Such a band engineering has been
incorporated via the introduction of an anisotropy among the
nearest-neighbor (NN) hoppings. Such hopping anisotropies
have been included between the neighboring sites lying along
a particular direction (say, t1), while keeping the rest NN hop-
pings as t in a honeycomb lattice. If the value of t1 is varied,
the band extrema from the two Dirac points move closer to
each other, and they finally merge with a vanishing band gap at
the M point in the Brillouin zone (BZ) for a particular value of
t1, namely, t1 = 2t , which is called the semi-Dirac limit. Dur-
ing the process, the topological properties of the system also
vanish at the gap-closing hopping amplitude t1 = 2t . It should
be noted that the band structure of the system in absence of
the complex next-NN (NNN) hopping (Haldane flux) shows

semi-Dirac dispersion, that is, linear along the kx direction
and quadratic along the ky direction. Experimentally, the semi-
Dirac dispersion has been observed in many materials, such
as multilayered structures of TiO2/VO2 [14,15], monolayer
phosphorene in the presence of doping and pressure [16,17],
BEDT − TTF2I3 organic salts under pressure [18,19], black
phosphorus doped with potassium atoms by means of in situ
deposition [20], etc. One can also achieve the semi-Dirac
dispersion by applying a uniaxial strain to a system which
will change the bond length lying along a particular direction
that is parallel to the applied strain direction. Therefore, the
hopping energies along those directions are modified, while
the hopping along the other directions remains unaltered.
Such a method has been employed in a monolayer honey-
comb structure, such as Si2O, which yields a semi-Dirac
dispersion [21].

However, the effect of band engineering in a multilayered
system, such as a bilayer graphene, has never been studied.
Needless to mention, bilayers possess a richer phase diagram
comprised of a larger parameter space. The topological prop-
erties of such an engineered system are interesting, since the
existence of the edge modes and the quantized Hall conduc-
tivity have never been studied. A more interesting issue is that
owing to larger numbers of bands being present in the band
structure of a bilayer system, higher values of Chern numbers
are realized. A higher Chern number implies higher value
of the anomalous Hall conductivity, together with a larger
number of chiral edge modes present in a semi-infinite system.

Higher Chern numbers are in general interesting and can
be realized in a host of systems, such as in the Dirac [22]
and semi-Dirac [23] systems in the presence of longer range
hopping, multiorbital triangular lattices [24], star lattices or
decorated honeycomb lattices [25], honeycomb lattices in the
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presence of spin-orbit coupling [26,27], ultracold gases in
triangular lattices [28,29], etc. Further, topological insulators
doped with magnetic materials [30], Cr-doped thin laminar
sheets of Bi2(Se, Te)3 [31], also demonstrate higher values
of the Chern numbers. Further, MnBi2Te4 at high tempera-
ture [32,33], multilayered structures of doped (with magnetic
materials) and undoped topological insulators arranged alter-
natively [34], and classical systems such as sonic crystals
prepared using acoustic components [35] show nontrivial
phases with higher Chern numbers.

In this work we focus on a bilayer graphene with broken
TRS, that is, a coupled bilayer Haldane model. The stacking
of the two layers is assumed in such a way that the B sub-
lattice of the upper layer lies exactly above the A sublattice
of the lower layer. Such stacking is known as AB stacking
or the Bernal stacking. We shall see that the Chern numbers
associated with various bands reveal interesting properties.
For example, some of the bands possess both Chern num-
bers ±2 and ±1, while the rests are associated with Chern
numbers ±1. Such a scenario needs to be assessed for a
band-engineered system. Specifically, we wish to address the
ramifications of the band deformation caused via asymmetric
hopping amplitudes on the topological properties and ascer-
tain whether such deformation induces a topological phase
transition. In our bilayer model, the band engineering is incor-
porated via asymmetric NN hopping amplitudes in each of the
layers, while the tunneling amplitude across the layers is left
unaltered.

Our subsequent discussions have been arranged as follows.
Section II introduces the tight-binding Hamiltonian of a bi-
layer graphene. Section III discusses the band structure of the
system with the interlayer coupling (t⊥) and the anisotropic
NN hopping amplitudes (t1) as parameters. Section IV deals
with the phase diagrams that are obtained by computing the
Chern numbers associated with the bands. In Sec. V the
presence (or absence) of the chiral edge modes in a ribbon
geometry are presented. Next, the numerical computations of
the anomalous Hall conductivity are shown in Sec. VI. Finally,
a brief summary of the results are included in the concluding
section (Sec. VII).

II. THE HAMILTONIAN

A tight-binding Hamiltonian of a bilayer honeycomb lat-
tice can be written as follows:

H =
∑
p∈l,u

⎡
⎣∑

〈i j〉
ti jc

p†
i cp

j + t2
∑
〈〈im〉〉

eiφim
p cp†

i cp
m + H.c.

⎤
⎦

+
⎡
⎣t⊥

∑
〈q,r〉⊥

cl†
q cu

r + H.c.

⎤
⎦, (1)

where cp†
i (cp

i ) is the creation (annihilation) operator corre-
sponding to site i, which belongs to the layer p. Here p = l, u
represent the lower and the upper layers, respectively. The
first term on the right-hand side denotes the NN hopping
with the amplitude ti j being either t1 when i and j sites lie
along the δ1 = a0(0, 1) direction, or t when they lie along the
δ2 = a0(

√
3/2,−1/2) and δ3 = a0(

√
3/2,−1/2) directions,

(a)

(b)

FIG. 1. A bilayer graphene is shown in (a) with the interlayer
coupling t⊥ between the B sublattice of the upper layer and the A
sublattice of the lower layer. In both layers, the A and B sublattices
are denoted by the red and blue filled circles. In (b), the other planar
hoppings are shown. To properly see each sublattice in each layer,
we have denoted the A and B sublattices in the lower layer with the
circles in red and blue, respectively. The subscripts l and u in Al,u and
Bl,u refer to the lower and upper layer, respectively. All the bondings
and NNN hoppings in the lower layers are shown by the dashed lines
and dashed arrows, respectively. The NN hopping strength along the
δ1 direction (shown via the yellow arrow) is t1, while it is t along
the δ2,3 directions (δi are defined in text). The NNN hopping is t2eiφ

(t2e−iφ) for the clockwise (counterclockwise) direction.

as shown in Fig. 1. The second term represents the complex
NNN hopping with the amplitude t2 and a phase φim

l,p. We
have labeled the Haldane flux corresponding to the lower and
upper layers as φim

l and φim
u , respectively. If an electron hops in

the counterclockwise direction, φim
l,p assumes a positive sign,

while for the clockwise direction it acquires negative sign.
The third term is the hopping between the two layers with
the coupling strength t⊥. It should be kept in mind that the
interlayer hopping is between the B sublattice on layer u (r ∈
Bu) and the A sublattice on layer l (q ∈ Al ) (AB or Bernal
stacking). In our calculations we have varied t1 in both the
layers from a value t to 2t (semi-Dirac) and even considered
t1 > 2t .

Now we Fourier transform the Hamiltonian and write them
in the four sublattice basis, namely, {Al , Bl , Au, Bu}, in the
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following way:

H (k) =

⎛
⎜⎜⎜⎜⎝

h+
z (k, φl ) hxy(k, t1) 0 t⊥

h∗
xy(k, t1) h−

z (k, φl ) 0 0

0 0 h+
z (k, φu) hxy(k, t1)

t⊥ 0 h∗
xy(k, t1) h−

z (k, φu)

⎞
⎟⎟⎟⎟⎠,

(2)

where h±
z are defined as h+

z (k, φp) = h0(k, φp) ± hz(k, φp).
The element hxy(k, t1) has the following form: hxy(k, t1) =
hx(k, t1) − ihy(k, t1). The expressions for the his can be writ-
ten as

h0(k, φp) = 2t2 cos φp

{
2 cos

√
3kx

2
cos

3ky

2
+ cos

√
3kx

}
,

(3)

hz(k, φp) = −2t2 sin φp

{
2 sin

√
3kx

2
cos

3ky

2
− sin

√
3kx

}
,

(4)

hx(k, t1) =
{

t1 cos ky + 2t cos
ky

2
cos

√
3kx

2

}
, (5)

and

hy(k, t1) =
{

−t1 sin ky + 2t sin
ky

2
cos

√
3kx

2

}
. (6)

Throughout our work, the amplitude of the NNN hopping
t2 is kept fixed at 0.1t , and two different values of the in-
terlayer hopping strength are chosen, namely, t⊥ = 0.5t and
t⊥ = 0.1t [36]. The values of φl and φu are taken such that
φl = φu = π/2. Now, for φu = φl , we obtain the following
dispersion relation:

Ec
± =

⎡
⎣h0 +

√
t2
⊥
2

+ |hxy|2 + h2
z ± t⊥

2

√
t2
⊥ + 4h2

xy

⎤
⎦, (7)

E v
± =

⎡
⎣h0 −

√
t2
⊥
2

+ |hxy|2 + h2
z ± t⊥

2

√
t2
⊥ + 4h2

xy

⎤
⎦, (8)

where Ec
± denote the two conduction bands and E v

± are the
two valence bands for a bilayer.

III. SPECTRAL PROPERTIES

In this section we discuss how the spectral properties
evolve as we interpolate between the Dirac and the semi-Dirac
limits. We show the band structure for two different values
of t⊥. The first one is for t⊥ = 0.5t , as shown in Fig. 2. As
can be seen, there are four bands which we have labeled as
follows. The upper conduction band is labeled as band c1,
while the lower conduction band is band c2. Similarly, the
lower and the upper valence bands are labeled as band v1
and band v2, respectively. When t2 = 0 (no Haldane flux),
band c2 and band v2 touch each other at the Fermi level

FIG. 2. The band structure in absence of t2 (t2 = 0) is shown
along the kx axis (at kya0 = 2π/3) for (a) t1 = t , (b) t1 = 1.5t ,
(c) t1 = 2t , and (d) t1 = 2.2t . Similarly, the dispersions in the pres-
ence of t2 (t2 = 0.1t ) are depicted for (e) t1 = t , (f) t1 = 1.5t , (g)
t1 = 1.8t , (h) t1 = 2t , and (i) t1 = 2.2t . The values of the other
parameters are t⊥ = 0.5t and φl = φu = π/2.

at the K and K′ points [see Figs. 2(a)–2(d)]. These points
are referred to as the Dirac points. Further, with the increase
in the value of t1, we deviate from the Dirac limit, and the
band touching points move close to each other, which finally
merge at t1 = 2t . Beyond this value, that is, for t1 > 2t , a
gap opens up at the M point. Now, if we switch on t2 [see
Figs. 2(e)–2(i)], the spectral gap remains open for t � t1 <

2t and t1 > 2t , while the gap vanishes exactly at the semi-
Dirac limit, namely, t1 = 2t . The gap-closing scenario of the
bilayer graphene is thus similar to the case of single-layer
graphene, where the energy gap between the conduction and
valence band vanishes at the semi-Dirac limit, that is, at
t1 = 2t [11].

Further, we have presented band structure in Fig. 3 for
a smaller value of t⊥, namely, t⊥ = 0.1t . It is obvious from
Eqs. (7) and (8) that the separation among the conduction
bands (band c1 and band c2) and that among the valence
bands (band v1 and band v2) decreases with decrease in t⊥.
Moreover, the low energy dispersions of band c2 and band
v2 about the band touching points have a linear behavior
which was quadratic for t⊥ = 0.5t . Thus the massive electrons
become progressively massless as we lower the value of t⊥.
Further, with the decrease in t⊥, the spectral gap between band
c2 and band v2 increases. For example, when t⊥ = 0.1t the
band gap is �Eg 
 1.0390t and 0.3124t for t1 = t and 1.8t,
respectively, while for t⊥ = 0.5t , �Eg 
 1.0335t and 0.1406t
for t1 = t and 1.8t , respectively. Thus the difference in energy
is more noticeable as we move towards the semi-Dirac limit,
that is, at large values of t1.
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FIG. 3. The band structure for t2 = 0 is shown along the kx axis
(at kya0 = 2π/3) for (a) t1 = t , (b) t1 = 1.5t , (c) t1 = 2t , and (d) t1 =
2.2t . The spectra for a nonzero t2 (t2 = 0.1t ) are depicted for (e)
t1 = t , (f) t1 = 1.5t , (g) t1 = 1.8t , (h) t1 = 2t , and (i) t1 = 2.2t . The
values of t⊥, φl , and φu are fixed at 0.1t , π/2, and π/2, respectively.

IV. CHERN NUMBER AND PHASE DIAGRAM

In this section we calculate the Chern number as a function
of the Haldane flux of the two layers. Owing to the broken
TRS, the bands possess nonzero Chern numbers, which can
be calculated by integrating the Berry curvature over the BZ
[37,38]:

C = 1

2π

∫∫
BZ

�(kx, ky)dkxdky, (9)

where �(kx, ky) is the z component of the Berry curvature
[39], which is obtained from the following relation:

�(kx, ky) = −2iIm

[〈
∂ψ (kx, ky)

∂kx

∣∣∣∣∂ψ (kx, ky)

∂ky

〉]
, (10)

where ψ (kx, ky) is the periodic part of the Bloch wave cor-
responding to the Hamiltonian defined in Eq. (2), and Im
denotes the imaginary part. Hence we calculate the Chern
numbers as a function of the fluxes φl and φu correspond-
ing to band v1 for various values of t1, as shown in Fig. 4.
Here the value of t⊥ is chosen to be 0.5t . We have denoted
the Chern insulating regions by two colors. The regions in
red denote the C = +1 phase, while the blue ones denote
C = −1 phases. The trivial phases with C = 0 are shown by
the white regions. It is evident from Fig. 4(a) that the areas of
the Chern insulating regions are maximum for t1 = t (Dirac
case). An engineering of the band structure, that is, with the
increase in the value of t1, the area of the topological regions
(called the Chern lobes) gradually shrink. We have shown
the phase diagram till a certain value, namely, t1 = 1.9t (see
Fig. 4(d)), beyond which the topological regions can hardly

FIG. 4. The phase diagrams corresponding to the lowest occu-
pied band, that is, band v1, is presented for t⊥ = 0.5t . The white
regions denote the trivial phase with Chern number as zero, while
the colored regions indicate the nontrivial phase with the nonzero
Chern numbers. The nonzero values are indicated at the top of the
figure.

be seen. When t1 becomes equal to 2t , the Chern number
(C) vanishes completely for all values of φl and φu owing to
a gapless scenario between band c2 and band v2. Although
band v1 remains separated from band v2, the Chern number
still vanishes. For t1 > 2t , a gap opens up; however, the Chern
numbers continue to be zero, and thus the gap is trivial.

Further, we have presented the phase diagrams correspond-
ing to band v2 (the one closer to the Fermi level) in Fig. 5.
As can be seen, additional phases with higher Chern number
(C = ±2) appear. We have denoted the C = +2 and C = −2
phase with cyan and green colors, respectively. The red and
blue colors continue to denote C = +1 and C = −1 phases,
respectively. Thus, both C = ±2 and C = ±1 phases occur at
different parameter values in the same phase diagram. Further,
the topological regions shrink with the increase in t1 and fi-
nally vanish at t1 = 2t , where the gap between band v2 and c2
vanishes. For t1 > 2t , the gap reopens, but the Chern number
remains zero for all values of φl and φu. The phase diagrams
for bands c1 and c2 are identical in shape to those of bands v1
and v2, respectively, except the Chern numbers have opposite
signs.

We present the Berry curvature (�) plots corresponding to
bands v1 and v2 in Fig. 6. As can be seen, the values for �

are highly concentrated around the band extrema points. Since
with the inclusion of an anisotropic hopping (t < t1 � 2t) the
two band extrema move close to each other, we observe the
migration of the regions with finite and large values of �

towards each other in the plots [seen via the distortion of the
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FIG. 5. The phase diagrams corresponding to band v2 are pre-
sented for t⊥ = 0.5t . The white regions denote the trivial phases
with zero Chern number, while the colored regions indicate the
nontrivial phase with the nonzero Chern numbers. Again, the values
are indicated at the top of the figure.

honeycomb structure in Figs. 6(b)–6(d) and Figs. 6(f)–6(h)]. It
should be noted that the Chern number for band v2 is −2 for
t1 < 2t , while that corresponding to band v1 is zero at π/2
Haldane flux, that is, φl = φu = π/2. However, we always
get nonzero values for the Berry curvature for all values of t1
corresponding to both band v1 [Figs. 6(a)–6(d)] and band v2
[Figs. 6(e)–6(h)], since the time-reversal symmetry remains
broken all throughout. Moreover, the Berry curvature plots
show evidence of sign reversal for t1 > 2t , namely, t1 = 2.2t ,
as shown in Fig. 6(h). Thus, in certain situations, a finite Berry
curvature may lead to zero Chern number.

To probe further into the gap-closing scenario associated
with different phase transitions occurring in the phase di-
agrams, the band structures are presented in Fig. 8 for a
particular value of t1 and t⊥, namely, t1 = t and t⊥ = 0.5t . The
values of φl and φu are such that they lie along the four lines,
namely, L1, L2, L3, and L4 in the phase diagrams depicted in
Fig. 7, and are denoted by ηi (i = 1, . . . , 6), γ j ( j = 1, . . . , 9),
and χs (s = 1, 2, 3). Along L1, a topological phase transition
occurs between C = +2 and C = −2 corresponding to band
v2, while the transition between C = +1 and C = −1 occurs
along L2 for both band v2 and band v1. These results have
to be understood in conjunction with the corresponding band
structures as shown in Figs. 8(a)–8(c) and 8(d)–8(f), respec-
tively. The band structures corresponding to η1 and η3 points
are identical, and the Chern numbers corresponding to band
v2 are +2 and −2, respectively [Fig. 7(a)]. At η2, bands v2
and c2 touch each other at both the Dirac points [Fig. 8(b)],
and hence there is a phase transition at η2. However, band v1

FIG. 6. The Berry curvatures are depicted for t1 = t in (a) and
(e), t1 = 1.5t in (b) and (f), t1 = 1.8t in (c) and (g), and t1 = 2.2t in
(d) and (h). [(a)–(d)] correspond to the Berry curvature of band v1,
while [(e)–(h)] correspond to those of band v2. The values of other
parameters are as follows: φl = φu = π/2, t⊥ = 0.5t , and t2 = 0.1t .

remains isolated from band v2 at these η points, and the Chern
numbers are zero along L1, as evident from its phase diagram
[Fig. 7(c)]. Further, the band structures corresponding to η4

and η6 have similar features; however, in this case C has values
of +1 and −1, respectively, corresponding to band v2, while
for band v1, C has the same magnitude but of opposite signs.
At the phase transition occurring at η5, bands v2 and v1 touch
each other at the K point in the BZ [Fig. 8(e)], and hence for
both bands a topological phase transition takes place at this
point.

Further, along L3, again multiple phase transitions occur
[see Figs. 7(b) and 7(d)], and the corresponding dispersions
are shown in Figs. 8(g)–8(o). At γ1, bands v2 and v1 show
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FIG. 7. The phase diagrams corresponding to band v2 are shown
in (a) and (b), and those for band v1 are presented in (c) and (d). In
(a) and (c), the η points are used and shown along the L1 and L2 lines,
whereas the γ and χ points are marked along the L3 and L4 lines in
both (b) and (d). Along those lines multiple phase transitions occur.
For example, along L3, the Chern number corresponding to band v2
has values +1, 0, +2, 0, and +1 at the points γ1, γ3, γ5, γ7, and γ9,
respectively. The phase transitions take place at γ2, γ4, γ6, and γ8,
where band v2 touches either band v1 or band c2. The values of t⊥
and t1 are taken as 0.5t and t , respectively.

C = +1 and C = −1, respectively, which drops to zero at γ2,
and hence the gap between those bands closes at the K point,
as shown in Fig. 8(h). At γ3 the gap reopens, but the Chern
numbers corresponding to these bands remain zero. The gap
between bands v2 and c2 vanishes at γ4, where again a phase
transition takes place, since along the line connecting γ4 and
γ6, the Chern number has a value +2. The band structure
at an intermediate point, namely, γ5, is shown in Fig. 8(k).
Similarly, phase transitions take place at γ6 and γ8, where the
gaps vanish at the K′ point. At γ7 and γ9, C assumes values of
zero and +1, respectively, corresponding to band v2. It should
be noted that band v1 shows vanishing of the Chern number
between γ2 and γ8 segments [see Fig. 7(d)] and hence it never
touches band v2, which results in the absence of any phase
transition.

We now show the phase transitions between the C = −2
and C = −1 phase along L4. The corresponding band struc-
tures are shown in Figs. 8(p)–8(r). At χ2, band v2 and band v1
remain isolated from each other; however, they possess Chern
numbers C = −2 and C = 0, respectively. At χ1 and χ3, these
two bands touch each other at the K′ and K points in the BZ,
respectively, where topological phase transitions take place.
Beyond χ1 and χ3, the gap reopens and both bands possess
nontrivial phases with C = −1.

Further, along the φu = −φl line, a semimetallic phase
exists for all the bands. In the vicinity of φu = φl , only the
phase diagrams of band v1 show trivial regions with C = 0;
however, those for band v2 demonstrate nontrivial phases
either with C = +2 or C = −2.

Moreover, in order to see the effects of t⊥ on the topologi-
cal phases, we have shown the phase diagrams corresponding
to bands v1 and v2 in Figs. 9(a)–9(d) and 9(e)–9(h), respec-
tively. It is evident that the areas of Chern insulating regions
are enhanced corresponding to lower values of t⊥. Also, the
shapes of the topological regions are different from those
for the t⊥ = 0.5t case. Further, the areas of C = ±2 regions
in the phase diagram corresponding to band v2 are mostly
spanned by the C = ±1 regions. However, the feature that
remains unaltered is the trivial phase along φu = ±φl lines for
band v1 and the φu = φl line for band v2. For both t⊥ = 0.5t
and t⊥ = 0.1t , the Chern insulating regions gradually shrink
with the increase in the value of t1 and finally vanish at the
semi-Dirac limit, namely, t1 = 2t .

V. EDGE STATES

To show the existence (and their vanishing) of the edge
modes, in this section we show the band structure of the sys-
tem for semi-infinite nanoribbon. The ribbon has a finite width
along the y direction, while it is infinite along the x direction
[40,41]. Further, we label the sites along the y direction as
Al

1, Bl
1, Al

2, Bl
2,.... Al

N , Bl
N , Au

1, Bu
1, Au

2, Bu
2,.... Au

N , Bu
N . Since

the periodicity along the x direction remains preserved, we
can Fourier transform the operators along that direction. This
results in set of four coupled equations as shown below:

Ekau
k,n = [

t{1 + e(−1)nik}bu
k,n + t1bu

k,n−1

]
− 2t2

[
cos(k + φ)au

k,n + e(−1)n ik
2

× cos

(
k

2
− φ

){
au

k,n−1 + au
k,n+1

}]
, (11)

Ekbu
k,n = [

t
{
1 + e(−1)n+1ik

}
au

k,n + t1au
k,n+1

]
− 2t2

[
e(−1)n+1 ik

2 × cos

(
k

2
+ φ

){
au

k,n−1 + au
k,n+1

}

+ cos(k − φ)bu
k,n

]
+ t⊥[ξ1e−ik + ξ2]al

n, (12)

Ekal
k,n = [

t
{
1 + e(−1)nik

}
bl

k,n + t1bl
k,n−1

]
− 2t2

[
e(−1)n ik

2 × cos

(
k

2
− φ

){
al

k,n−1 + al
k,n+1

}
,

× cos(k + φ)al
k,n +

]
+ t⊥[ξ1eik + ξ2]bu

n (13)

Ekbl
k,n = [

t
{
1 + e(−1)n+1ik

}
al

k,n + t1al
k,n+1

]
− 2t2

[
cos(k − φ)bl

k,n + e(−1)n+1 ik
2

× cos

(
k

2
+ φ

){
al

k,n−1 + al
k,n+1

}]
, (14)
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FIG. 8. The band structures corresponding to the points η1 − η6 [shown in Figs. 7(a) and 7(c)] are depicted in [(a)–(f)]. The spectra for the
points γ1 − γ9 [shown in Figs. 7(b) and 7(d)] are shown in [(g)–(o)], and for the points χ1 − χ3 are presented in [(p)–(r)]. The values of t1 and
t⊥ for all the band structures are kept fixed at t and 0.5t , respectively.

where al,u
k,n and bl,u

k,n are the amplitudes of the wave functions
corresponding to the sublattices A and B, respectively. The
superscripts l and u refer to lower and upper layers, respec-
tively. Here k = √

3kxa0 is the dimensionless momentum and
n denotes the site index, which assumes integer values in the
range [1 : N], with N being the total number of unit cells along
the y direction. We chose N as 128, which gives the width to

FIG. 9. The phase diagrams corresponding to band v1 are shown
in [(a)–(d)], while those for band v2 are shown in [(e)–(h)]. The
value of t⊥ is kept fixed at 0.1t . The values of t1 are such that t1 = t
in (a) and (e), t1 = 1.5t in (b) and (f), t1 = 1.8t in (c) and (g), and
t1 = 1.9t in (d) and (h). The white regions denote trivial phases with
zero Chern numbers, while the colored regions indicate the nontrivial
phases with the nonzero Chern numbers. The values are indicated at
the top of the figure.

be 79
√

3a0. In Eqs. (12) and (13), ξ1 and ξ2 denote quantities
that depend on the site index n via ξ1 = [1 − (−1)n]/2 and
ξ2 = [1 + (−1)n]/2, respectively.

By solving Eqs. (11)–(14), we obtain the band structure of
the nanoribbon for various values of t1 as presented in Fig. 10.
It can be noticed that a pair of edge modes from the valence
bands (band v2) traverse the Fermi level EF (shown via the
red dashed line) and merge with the conduction bands (band
c2), and another pair crosses the Fermi level in the opposite di-
rection. Such crossing of the edge modes leads to a quantized
Hall conductivity should the Fermi level lie in the bulk gap.
EF intersects the edge modes [see Figs. 10(a) and 10(b)] at
four points (marked by the green dots) whose corresponding
edge currents are shown by the green arrows in the yellow
panels located at the top right corner of the plots. The yellow
panels represent a part of the semi-infinite ribbon. Since the
velocity of electrons is proportional to the slope of the band
structure, that is, ∂E/∂k, there exists a pair of edge currents
at each edge that moves in the same direction. However, such
pairs of currents propagate in opposite directions at the two
edges of the ribbon. Hence, these modes are called chiral edge
modes.

It should be noted that because of a pair of chiral edge
modes, we should obtain the Hall conductivity quantized with
a plateau at 2e2/h, with the factor “2” arising due to doubling
of the number of chiral edge modes [42]. Such chiral edge
modes exist as long as the value of t1 remains less than
2t . Since the bulk gap vanishes at t1 = 2t [see Fig. 10(c)],
the edge current vanishes. For t1 > 2t , the edge modes get
detached from the bulk bands as shown in Fig. 10(d) for
t1 = 2.2t , thereby resulting in a zero edge current. These
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(a) (b)

(c) (d)

FIG. 10. The edge state spectra are shown for (a) t1 = t , (b) t1 =
1.5t , (c) t1 = 2t , and (d) t1 = 2.2t . The green shaded regions repre-
sent the bulk gap in (a), (b), and (d) [no bulk gap in (c)]. The Fermi
levels (EF ) are denoted by the red dashed lines, which are shown to
be present in the bulk gap. EF intersects the edge modes at the points
denoted by the green dots as shown in (a) and (b). For these, the edge
currents are shown by the green arrows in the yellow panels located at
the top right corner, which represent parts of the semi-infinite ribbon.

results are consistent with the corresponding Chern numbers
obtained in the phase diagram. For example, we observe
the nonzero edge currents for t1 < 2t , and the corresponding
Chern number is found to be C = |2|. For t1 > 2t , the Chern
numbers vanish, and so do the edge currents. The figures pre-
sented here are for t⊥ = 0.5t . For t⊥ = 0.1t , we observe sim-
ilar features in the spectrum, except that the bulk gaps are re-
duced. We have skipped the discussion of the latter for brevity.

VI. HALL CONDUCTIVITY

In this section we calculate the anomalous Hall conduc-
tivity as function of the Fermi energy EF . The prerequisite is
the computation of the Berry curvature using Eq. (10), and
hence use the following formula to calculate the anomalous
Hall conductivity (σxy) [43,44], namely,

σxy = σ0

2π

∑
λ

∫
dkxdky

(2π )2
f
(
Eλ

kx,ky

)
�(kx, ky), (15)

where f (Eλ
kx,ky

) = [1 + exp {(Eλ
kx,ky

− EF )/KBT }]−1 is the

Fermi-Dirac distribution function at an energy Eλ
kx,ky

. Here EF

refers to the Fermi energy and T is the absolute temperature.
The energy is denoted by Eλ

kx,ky
with λ being the band index.

The constant term σ0 is equal to e2/h, which sets the scale for
σxy. Now, we compute σxy numerically as a function of EF at

(a)

(b)

FIG. 11. The anomalous Hall conductivities are shown as a func-
tion of EF for various values of t1 in (a) and (b) for t⊥ = 0.5t and
t⊥ = 0.1t , respectively. The plateau width decreases as t1 deviates
from t .

zero temperature (T = 0) for various values of t1 as shown in
Fig. 11.

As can be seen from Fig. 11(a) that when the Fermi energy
EF lies in the bulk gap, σxy becomes quantized at a value 2σ0.
The width of the plateau is equal to the width of the bulk gap in
the dispersion spectrum of Fig. 2. As soon as EF intersects the
bands (either both the conduction or both the valence bands),
σxy starts to decrease since the integral is performed over the
occupied states. This also results in diminishing of the plateau
width with increase in the value of t1. This happens because
the energy gap between the band c2 and band v2 shrinks.
The plateau and the Hall conductivity vanish completely at
t1 = 2t , where the spectrum becomes gapless. For the hopping
asymmetry engineered beyond the semi-Dirac limit, that is,
t1 > 2t , the bands become gapped again; however, the Hall
conductivity remains zero. These results are consistent with
their corresponding information coming from the Chern num-
bers. The Hall plateaus are observed as long as the system
remains a Chern insulator, that is, for t1 < 2t . Further, the
factor 2 in (2σ0) denotes the value of Chern number (and also
the edge modes), which vanishes for t1 > 2t .

We have also presented the Hall conductivity for a smaller
value of t⊥, namely, t⊥ = 0.1t in Fig. 11(b). In this case
the plateau widths corresponding to different values of t1 are
larger as compared to that for the t⊥ = 0.5t case, since the
corresponding band gaps are enhanced as shown in Fig. 3.
However, similar to the previous case, the plateau width
decreases with the increase of t1, which finally vanishes at
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t1 = 2t and beyond. Thus a topological phase transition takes
place across the gap closing point at the semi-Dirac limit,
namely, t1 = 2t .

VII. CONCLUSION

We have investigated the topological properties for a band-
engineered bilayer Haldane. By tuning one of the three NN
hopping amplitudes, the band extrema, which were located
at the K and K′ points for the Dirac case, migrate towards
each other and finally merge at an intermediate M point
in the BZ in the semi-Dirac limit, that is, at t1 = 2t . We
have calculated the Chern numbers for various values of t1
and plotted them in the φu − φl plane, which demonstrates
that the higher Chern numbers (C = ±2) are associated only
with band v2. However, the Chern numbers corresponding to
both bands vanish, that is, there are topological phase transi-
tions where the Chern numbers discontinuously change from

C = ±2 to C = 0 and C = ±1 to C = 0, across the semi-
Dirac point t1 = 2t . Also, there are multiple phase transitions
in the phase diagram, such as, +2 → −2, +1 → −1, ±2 →
±1, and ±2 → 0 → 1. These phase transitions are confirmed
by the opening and closing of the energy gaps (semimetallic
phase) in the dispersion spectrum. Further, we have also com-
puted the band structure of a nanoribbon, where we observe a
pair of chiral edge modes along the edges of the ribbon exist
as long as t1 remains less than 2t . Also, for the anomalous
Hall conductivity, the width of the quantized plateau at 2σ0

gradually decreases with increase in t1, which finally van-
ishes at t1 = 2t . Thus, a bilayer Haldane model, similar to
its monolayer analog, exhibits a topological phase transition
at the semi-Dirac point. However, here we have larger Chern
number values and doubling of the edge modes at the edges
of the bilayer nanoribbon. Further, the phase transitions are
supported by the vanishing Chern number, chiral edge modes,
and the anomalous Hall conductivity.
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