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Spin relaxation of conduction electrons in coupled quantum wells
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The spin of the conduction-band electrons in a quantum well constitutes a promising two-level system for
realizing a quantum bit in the solid state. One of the important parameters in the spin dynamics is their relaxation
time. It is desired to develop models and semiconductor structures in order to control it. There are several reported
examples of spin lifetime control in quantum wells. Double quantum wells in a semiconductor heterostructure
allow the modulation of the relaxation time. By changing the relative thicknesses of the wells in the double
quantum well system, the wave function for the lowest-energy level of the conduction band can be distributed
symmetrically or asymmetrically with respect to the coupling barrier between the quantum wells to control the
Dresselhaus and Rashba components of the spin-orbit coupling and, consequently, the relaxation time. To detect
and characterize this effect, circularly polarized photoluminescence was used at low temperatures (19 K). The
results reported in the present paper suggest that this coupled double quantum well system enables the design
of structures that allows for the control of the relaxation time and the performance of the electron spin as a
quantum bit.
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I. INTRODUCTION

Spin dynamics and its related phenomena in semiconduc-
tors have attracted a lot of attention in recent years due to their
potential applications in devices [1–4] and quantum comput-
ing [1,2]. The manipulation of the spin of free carriers is of
fundamental importance in the development of the spintronics
field [2].

The spin-orbit coupling (SOC) of carriers plays an im-
portant role in the spin dynamics and, in particular, in the
spin relaxation time. SOC induces a spin-dependent energy
splitting of the bands due to an effective magnetic field
that depends on the quasimomentum k of the carriers. Two
mechanisms that induce spin splitting are considered, the
Dresselhaus and the Rashba effects [5]. For intrinsic semi-
conductors without inversion symmetry, such as zinc-blende
crystals (Td symmetry), the spin splitting is associated with
the Dresselhaus effect [6,7]. If the symmetry is reduced from
Td to C2v , additionally to the Dresselhaus effect, a Rashba
effect contributes to the spin splitting. This occurs if an elec-
tric field is applied perpendicularly to the (001) surface or
for asymmetric quantum wells (QWs) [8–11]. In the later
case, the asymmetry can be obtained with barriers of different
heights [10,11] with different chemical compositions [12] or
by triangular barriers [8], for instance.

Double quantum well (DQW) systems constitute an ex-
cellent platform to study interactions between confined
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energy-level transport and spin dynamics [13]. These struc-
tures consist of two coupled QWs separated by a thin barrier.
By changing the relative thicknesses of the QWs, it is possible
to modulate the asymmetry of the system [14] and, thus, to
modify the spin dynamics by changing the relative strength of
the Dresselhaus and Rashba contributions to the SOC [15].

To study the spin dynamics in DQWs, we have used
polarization-resolved photoluminescence (PL) spectroscopy
excited with left-(σ−) or right-(σ+) circularly polarized laser
beams. Figure 1 compares a simplified energy diagram for the
conduction and valence bands of a QW or a DQW system
[16]. Due to quantum confinement, heavy- and light-hole
levels lift their degeneracy. Under this condition, by excit-
ing with σ+ polarization [Fig. 1(a)] with an energy larger
than the energy between conduction and light holes bands,
the transitions −3/2 → −1/2 and −1/2 → +1/2 are excited
with intensities I ∝ 3/4 and I ∝ 1/4, respectively [16]. The
PL spectrum comprises, in general, components with σ+ and
σ− polarization [Fig. 1(b)]. It is important to note that holes
were considered completely depolarized before recombina-
tion [17]. The degree of circular polarization of the PL is
defined as P = (Iσ+ − Iσ−

)/(Iσ+ + Iσ−
) and has a maximum

value of Po = 0.5 [16].
Taking into account the electron spin-relaxation time τs and

the recombination lifetime τ , the degree of circular polariza-
tion of the PL can be written as [18]

P = Po/(1 + τ/τs), (1)

where τ and τs are the recombination and spin lifetimes,
respectively. In the limits τs � τ and τs � τ , P tends to zero
and Po, respectively. We demonstrate in the present paper,
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FIG. 1. Energy band diagrams of a QW. (a) The circularly polar-
ized laser (indicated by σ+ in the figure) is absorbed with strengths
of 3/4 and 1/4 for the electron-heavy hole (HH) |3/2 − 3/2〉
and electron-light hole (LH) |3/2 − 1/2〉 transitions, respectively.
(b) The PL spectrum comprises σ+ and σ− components. The polar-
ization degree of the PL reach the maximum value of Po = 0.5 for
the electron-HH transition (see the text for details).

that τs can be controlled in a DQW systems by changing the
relative thicknesses of the QWs and determining P by means
of PL measurements.

II. EXPERIMENTAL RESULTS

The experiments were performed on (001)-oriented
GaAs QWs with the following layer structure:
GaAs(10 nm)/Al0.15Ga0.85As(300 nm)/QW1(d)/Al0.15Ga0.85

As(2.0 nm)/QW2(11.9 nm)/Al0.15 Ga0.85As(300 nm)/n −
Al0.15 Ga0.85As(600 nm)/GaAs substrate. Three samples
with the following thicknesses for QW1 were measured: (a)
d = 11.9 nm (42 ML), where ML represents monolayer, (b)
d = 13.8 nm (49 ML), and (c) d = 23.7 nm (84 ML). The
structure of the first sample is symmetric, and the others are
asymmetric.

PL experiments were carried out under excitation by a
semiconductor laser with a wavelength of λ = 787 nm and
a power density of I = 0.8 mW/mm2. By using a λ/4 plate
and a liquid-crystal half-wave variable retarder in tandem, the
polarization of the laser can be switched between left- and
right-circular polarizations. The laser is incident normal to the
surface of the sample and focused within a spot size of 500 µm
of diameter. The PL is directed to a linear polarizer prism to
select the left- and right-circular polarizations by rotating the
prism. The sample is chilled at cryogenic temperatures (19 K)
by means of a low-vibration helium closed-cycle cryocooler.
The PL signal is collected and detected by using an imaging
spectrometer with a resolution of 0.025 nm equipped with a
thermoelectric-cooled camera as the detector. The systematic
polarization errors of our PL system was estimated by measur-
ing the degree of circular polarization P , for the reflectance

(in the range from 800 to 830 nm) for a flat mirror and for
the sample at room temperature. Assuming that in a perfect
system P = 1 in both cases, we estimate from the experiments
an error of approximately ±0.002 in our P measurements.

Figure 2 shows PL spectra for QW1 thicknesses of (a)
d = 11.9 nm, (b) d = 13.8 nm, and (c) d = 23.7 nm. In this
case, the excitation laser is σ+ circularly polarized. The blue
and the red PL spectra, correspond to the σ+ (cross-) and σ−
(co-) circular polarized with respect to the excitation polar-
ization, respectively. For the heavy-hole transitions (HH in
Fig. 2) the PL intensity of the σ− polarization is stronger
than of the σ+, whereas, for the light-hole transitions (LH
in Fig. 2) this relation is the opposite. This behavior is ex-
pected considering that heavy-hole transitions −1/2 → −3/2
and +1/2 → +3/2 produce PL with polarization σ− and σ+,
respectively, whereas, for the light-hole transitions −1/2 →
+1/2 and +1/2 → −1/2 produce PL with polarizations σ+
and σ−, respectively. Thus, the degree of circular polarization
has opposite signs for the HH and LH transitions.

Considering the HH transitions, for the symmetric DQW
[spectrum (a)] the degree of circular polarization is very small
P = 0.004 ± 0.002, whereas, for the asymmetric spectra (b)
and (c) P = 0.32 ± 0.002 and P = 0.055 ± 0.002, respec-
tively. By using Eq. (1), the spin-relaxation time can be
estimated for each sample and is given by (a) τs = τ/(165 ±
83), (b) τs = τ/(0.56 ± 0.01), and (c) τs = τ/(8.0 ± 0.3).
The maximum values of P are obtained for sample (b). This
can be understood on the basis of the relative values of the
Dresselhaus and Rashba contributions to the SOC as we will
discuss in the next paragraphs. Additional evidence for the
physical origin of P and τs in sample (b) is obtained by mea-
suring the P dependence on temperature. Figure 3 shows this
dependence for a laser excitation wavelength of λ = 787 nm.
Above 150 K the PL noise/signal ratio increases so much, and
it is not possible to measure PL. As is expected, P drops when
the temperature increases.

III. SPIN RELAXATION MECHANISMS

In intrinsic two-dimensional systems, the spin relaxation
of the electrons in the conduction band is dominated by the
Dyakonov-Perel mechanism [18,19]. The spin-relaxation rate
is given by [18,19]

1

τs
= 〈� · �〉τp, (2)

where � is the spin precession vector around the effective
magnetic field induced by the SOC, τs and τp are the spin-
and momentum relaxation times, respectively.

The Hamiltonian associated with the spin-orbit interaction
is given by [8]

HSO = h̄

2
σ · �, (3)

where σ is the vector of Pauli matrices and � is the preces-
sion frequency vector. The magnitude and direction of the
precession vector depends on the electron quasimomentum
k. In a (001) DQW, two mechanisms induce an in-plane
magnetic field and, consequently, the precession of the spin
vector: the bulk inversion asymmetry (BIA) and the structure
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FIG. 2. PL spectra measured by exciting the sample with left circularly polarized light for (a) symmetric DQW and (b) and (c) asymmetric
DQW structures. Black and red spectra correspond to left and right circularly polarized components of the PL, respectively. In the case of
(a) the relaxation mechanism of the spin is dominated by the Dresselhaus effect whereas, for (b) and (c) both effects, Dresselhaus and Rashba,
have important contributions to the relaxation of the electron spin. Arrows indicate the peaks corresponding to heavy- and light-hole transitions.

inversion asymmetry (SIA). The BIA component is caused by
the intrinsic lack of inversion symmetry of the GaAs crystal
(Dresselhaus effect). The SIA (Rashba effect) can be induced
by barrier asymmetries or electric fields.

The asymmetry and the built-in electric field in the DQW
structures are, in general, important to establish the relative
strengths of the Dresselhaus and the Rashba effects. The con-
tribution to the Rashba effect of the built-in electric field in our
structure has been estimated by comparing the PL spectra for
the asymmetric structure of Fig. 2(c) with an Al0.15 Ga0.85As
(600 nm) lower barrier of n and p types [15]. It was found that
the effect of the built-in electric field is much smaller than the
effect induced by the asymmetry of the DQW structure. For
the n-type lower barrier of our DQW structures, a value of

0 50 100 150
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0.30

P

Sample (b)

FIG. 3. Temperature dependence of the spin-polarization P for
the laser excitation wavelength of λ = 787 nm. Note that the polar-
ization drops with increasing temperature.

E ≈ 10 kV/cm is estimated leading to a Rashba coefficient
of α ≈ 0.4 × 10−4 eV nm [20]. However, when the laser in
the PL setup illuminates the sample, α is reduced since the
built-in electric field is quenched by the photoexcited carrier
density.

From the discussion of the last paragraph, we will consider
as the major contribution to the SIA component the one as-
sociated with the break of the translation symmetry of the
potential within the DQW structure. The precession vector in
the DQW system can then be written as [8,19,22]

� = �BIA + �SIA,

= β

h̄
(−kx, ky, 0) + α

h̄
(ky,−kx, 0), (4)

where [11]

β = γ
〈
k2

z

〉
,

α(z) =
4∑

i=1

ViL − ViR

V0
Pδ(z − zi). (5)

In Eqs. (5), γ is the Dresselhaus coupling parameter, 〈k2
z 〉 is

the squared operator (−i ∂
∂z ) averaged over the conduction-

band wave function, P is the interface parameter between the
materials on the left (L) and right (R) sides (Al,Ga)As/GaAs
interface, ViL − ViR is the band offset of the ith interface, V0

is the band offset of (Al,Ga)As and GaAs. The δ(z − zi ) term
indicates that the SIA is localized at the ith interface [11].

The effective SIA component of the DQW structure (more
specifically, the value of α in Eqs. (4), can be obtained
by averaging α(z) through the DQW. This leads to α ∝
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FIG. 4. Probability density (|
|2,upper diagrams) for DQWs consisting of a d = 11.9-nm-thick QW coupled to a second QW of thickness:
(a) d = 11.9 nm, (b) d = 13.8 nm, and (c) d = 23.7 nm. Below each DQW, we show the corresponding � · � diagram in the k space. The
used values of α and β coefficients are indicated in each case. The black arrows indicate the orientation of �.∑4

i=1 |ψ (zi)|2, i.e., α becomes proportional to the square
magnitude of the electron wave function evaluated at the ith
interface [11].

In polar coordinates (k, φ), the precession vector’s square
magnitude can, thus, be written as [8]

� · � = k2

h̄2 (α2 + β2 − 4αβ sin φ cos φ). (6)

According to Eq. (2), the spin-relaxation time τs, depends
on the product of the Larmor frequency and the momen-
tum relaxation time, i.e., large values of 〈� · �〉τp leads to
short values of τs. Thus, the spin will not relax for values of
〈� · �〉τp shorter than some limit. To estimate this limiting
value, we can say that for the symmetric sample, this limit
has been exceeded [spectrum Fig. 2(a)] and almost all spins
relax. This is not the case for spectra of Figs. 2(b) and 2(c)
where some spins do not relax before recombination leading
to a difference in the PL strength for σ+ and σ− polarizations.
Thus, the optically excited electrons must have felt a smaller
〈� · �〉τp value in the conduction band.

IV. PERSISTENT SPIN HELIX WAVES

The condition α = β leads to the formation of the he-
lical spin-density waves, the called persistent spin helix
(PSH) [20–22]. In this case, � becomes oriented either only

along [110] or the [1̄1̄0] directions. In the PSH mode, the
spin orientation between collisions remains coherent and the
Dyakonov-Perel mechanism is completely suppressed. Along
the PSH wave, the z-axis projection of the spin oscillates and
the spin orientation can be detected via time and spatially
resolved techniques [20,22].

Two spin decay rates are relevant for the spin lifetime τs.
Namely, T −1

SO produced in the diffusive limit (Dyakonov-Perel
regime) and T −1

PSH corresponding to the longest-lived PSH
mode. The decay rates are given by [20,23]

1

TSO
≈ 8Ds

m∗2

h̄4

(
β2

3 + α2 + β2
)
,

1

TPSH
≈ 2Ds

m∗2

h̄4

[
3β2

3 + (α − β )2
]
, (7)

where m∗ is the effective mass of the conduction-band elec-
trons, β3 is the cubic Dresselhaus coefficient, and Ds is the
spin-diffusion coefficient. The relevant times for the experi-
ments are between TSO and TPSH [20,23]. Just after laser exci-
tation (and before the PSH formation in the case of α ≈ β),
the spin-relaxation time is associated with TSO (Dyakonov-
Perel regime). After this time and if the PSH is formed, the
spin-relaxation time approaches TPSH . Considering, in gen-
eral, that TPSH � TSO, thus, the formation of the PSH leads
to an increase in the spin lifetime.
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〈 
  〉

FIG. 5. Spin dynamics obtained by using Monte Carlo simu-
lations for 1000 particles. The simulations correspond to: (black)
symmetric DQW (d = 11.9 nm), (red) slightly asymmetric DQW
(d = 13.8 nm), and (green) asymmetric DQW (d = 23.7 nm). The
average value of 〈Sz(t )〉 depends strongly on d . The simulations
show that the formation of the PSH plays and important role in the
relaxation time of the spin. In the simulation, we have used the value
Ds = (38 ± 1.5) µm2/ns [20].

As is shown in Eqs. (7), the decay rates are dependent
on Ds and β3 α and β parameters. In a DQW system, Ds is
strongly dependent on the electron density induced by dop-
ing or by photon absorption [20,23]. Values for Ds in the
range of 60–380 cm2/s for electron densities in the range
of 1.0–5.0 × 1011 cm−2 have been reported in the literature
[20,23]. In the case of our samples, we take the values of
Ds = (38 ± 1.5) µm2/ns and β3 = 0.7 × 10−4 eV nm [20].

We estimate the values for α and β coefficients for each
sample as follows: the coefficients β are obtained by using
Eq. (5), the value of γ = 17 meV nm3 [11] and the factor
〈k2

z 〉 obtained from the probability density shown for each
sample in Fig. 4. For the symmetric sample (d = 11.9 nm)
no Rashba effect is expected and, thus, α = 0. Considering
that for the slightly asymmetric DQW (d = 13.8 nm) both
mechanisms (Dresselhaus and Rashba) have important contri-
bution, we assume α ≈ β. These values of α fix the amplitude
of the thickness-dependence equation of α [Eq. (5)]. With
this equation and the value of d = 23.7 nm, we estimate
α ≈ 2.0 × 10−4 eV/nm for the asymmetric DQW.

Figure 4 indicates for each sample the values for α and
β obtained from the experiments (as it will be detailed). By
using these values a plot of � · � [Eq. (6)] in k space is
shown in Fig. 4. For sample (a), � · � is isotropic. Arrows
in Fig. 4(a) show the angular distribution of � in the k space.
Note, that the arrows are oriented in all directions. For sample
(b), α and β become approximately equal, leading to the
formation of a PSH and a maximum spin-relaxation time and
a maximum anisotropy of the precession vector [Fig. 4(b)].
In this case, arrows are oriented only along [110] and [1̄10].
When d increases more [Fig. 4(c)] the difference between α

and β increases reducing the anisotropy and the relaxation
time.

V. SPIN DYNAMICS AND MONTECARLO SIMULATIONS

The electrons within the QW perform a two-dimensional
random walk. During the free flight between collisions, the
electron’s spin presses at the Larmor frequency and after each
collision the spin changes its axis of precession. In this way,
after n collisions, the spin relaxes (Dyakonov-Perel mecha-
nism). In the case of the PSH mode, the field � has a single
direction and the spin relaxation reaches its minimum value
[24]. In this mode, the cross-correlation terms 〈
xky〉 and
〈
ykx〉 lead to the PSH mode and the increase in the spin
lifetime [24].

Consider the formation of a PSH with a wave vector par-
allel to y′ = [1̄10]. Near the condition for the PSH formation
(α ≈ β and β3 ≈ 0), the evolution of the spin is given by the
diffusion equation [24],

〈Sz,n+1〉 − 〈Sz,n〉
τp

= τp
〈
v2

y′
〉[1

2

∂2〈Sz,n〉
∂y′2 − m∗2

2h̄4 (α + β )2〈Sz,n〉

− m∗

h̄2 (α + β )
∂〈Sy′,n〉

∂y′

]
, (8)

where 〈Sz,n〉 is the projection of the spin along z after the
n-electron collision event, and 〈Sy′,n〉 is the projection of the
spin along y′ after the n electron collision event. The timescale
is given by t = nτp. The first derivative term in Eq. (8) cor-
responds to the cross correlation associated with the PSH
formation. This term is fundamental to establish the average
spin decay time. Namely, it increases the time decay of 〈Sz〉.
In the time continuum limit (parameter n continuum), the gen-
eral solutions of Eq. (8) have the form: 〈Sz〉 ∝ e−ωt+iq′y′

, and
〈Sy′ 〉 ∝ ie−ωt+iq′y′

where ω and q′ are the PSH frequency and
wave number, respectively. By using these solutions Eq. (8)
can be written as

d〈Sz〉
dt

≈ − τp
〈
v2

y′
〉[1

2
q′2 + m∗2

2h̄4 (α + β )2

]
〈Sz〉

+ τp
〈
v2

y′
〉[m∗

h̄2 (α + β )q′
]
〈Sz〉. (9)

It is clear, that the first (negative) and the second (positive)
terms on the right side of Eq. (9), increases and decreases
|d〈Sz〉/dt |, respectively. In the limit where the PSH conditions
are completely fulfilled (α = β and β3 = 0) the solution leads
to ω = 0 and q′ = 2m∗β/h̄2. That is, the average spin projec-
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FIG. 6. α and β coefficients as function of d calculated by using
Eq. (5) and the probability density for each DQW structure. The
crosses are the values for α estimated experimentally (see the text
for details).

tion 〈Sz〉 becomes time independent. Otherwise, far from the
PSH condition, the Dyakonov-Perel mechanism relaxes the
spin. These physical mechanisms lead to the relaxation times
given by Eqs. (7).

By considering the angular distribution for |�|τp, and
the spin-diffusion mechanisms described by Eq. (9), a
Monte Carlo simulation was performed to study the spin
dynamics [24,25]. The values for β were deduced from
Eqs. (5), whereas, the values for α were adjusted around
the values obtained from Eqs. (5). The simulations were
performed assuming that the spin is initially oriented along
the [001] direction. Then, 1000 electrons diffuse isotrop-
ically along the [100] and [010] directions, performing a
two-dimensional random walk. For each direction, the free
path for the nth collision, was determined statistically by using
a Gaussian distribution normalized to the mean free path. In
the simulation, the mean momentum relaxation time was esti-
mated by using the relation τp = 2Ds/〈v2〉 [23], where 〈v2〉
is the average electron velocity determined from a thermal
distribution [25].

Figure 5 shows the spatially averaged spin 〈Sz(t )〉 ob-
tained for the symmetric (black dots), slightly asymmetric
(red dots), and asymmetric (green dots) DQWs. Note the
huge difference in the decay time of 〈Sz(t )〉. The lifetime for
the electrons in the conduction band in a QW system is in the
range from 0.350 to 1.0 ns [26,27]. Assuming a mean lifetime
approximately equal to 0.80 ns, the mean value of 〈Sz(t )〉 is
approximately equal to 0.02, 0.52 and 0.3 for the symmet-
ric, slightly asymmetric and asymmetric DQWs, respectively.
These values are in good agreement with the spin-polarization
values of 0.008 ± 0.004, 0.64 ± 0.004, and 0.11 ± 0.004 es-
timated experimentally using P/Po.

VI. GENERAL QW THICKNESS

To capture the general behavior of the α and β coefficients,
we have simulated both of them on a function of the QW
thickness d . The probability density of the electrons in the
conduction band was calculated in function of d , which de-
termines �, 〈k2

z 〉 and |ψ (zi)|2. The amplitude of simulated
α was scaled to fit the experimental values obtained for
samples (a)–(c). Figure 6 shows the simulation results. β is
always a decreasing function of d , whereas, α has a maxi-
mum and then decreases. We indicate with vertical arrows the
values corresponding to our DQWs. Note that the condition
α ≈ β is closely reached in sample (b) with d = 14 nm as ex-
pected. The experimental values are indicated by the crosses.
The simulation gives additional evidence for the experimental
values of α obtained experimentally and its evolution with d .

VII. CONCLUSIONS

To summarize, we have shown that the spin-relaxation time
of electrons in the conduction band can be modulated in a
DQW system. By changing the relative thicknesses of the
QWs, the Larmor frequency becomes anisotropic leading to
an anisotropic spin-relaxation time and the formation of PSH.
To describe the spin dynamics, the Dresselhaus and Rashba
effects were considered. For symmetric QWs, the Dresselhaus
effect is the dominant one, whereas, for the anisotropic DQW
system, the Rashba effect becomes also important. We found
that the relaxation time reaches a maximum value for a DQW
system with relative thicknesses of approximately 1.17 where
the spin helix condition is reached with α = β.
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