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Analytic calculation of the vison gap in the Kitaev spin liquid
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Although the ground-state energy of the Kitaev spin liquid can be calculated exactly, the associated vison
gap energy has to date only been calculated numerically from finite size diagonalization. Here we show that the
phase shift for scattering Majorana fermions off a single bond flip can be calculated analytically, leading to a
closed-form expression for the vison gap energy � = 0.2633J . Generalizations of our approach can be applied
to Kitaev spin liquids on more complex lattices such as the three-dimensional hyperoctagonal lattice.
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I. INTRODUCTION

Kitaev spin liquids (KSL) are a class of exactly solv-
able quantum spin liquids that exhibit spin fractionalization,
anyonic excitations, and long-range entanglement [1–5]. The
fractionalization of spins into Majorana fermions is accom-
panied by the formation of emergent Z2 gauge fields, giving
rise to Z2 vortex excitations or “visons.” These excitations are
gapped and the energy cost associated with creating two vi-
sons on adjacent plaquettes is called the vison gap �v (Fig. 1).
Proposals for the practical realization of Kitaev spin liquids
in quantum materials, including α-RuCl3 [5–14] and iridates
[11,15,16], have renewed interest in the thermodynamics of
Kitaev spin liquid [17–24]. The extension of these ideas to
Yao-Lee spin liquid [25,26] and its application to Kondo
models [27,28] motivate the development of an analytical
approach to calculate the vison gap �v .

The vison gap in KSLs has to date been determined by
numerical diagonalization of finite size systems [1,3]. Here
we present a Green’s function approach for the analytical
computation of the vison gap �v from the scattering phase
shift associated with a Z2 bond flip. Our work builds on
theoretical developments in the field of Kitaev spin liquids
which relate to the interplay between Majorana fermions and
visons [1,19,29–37]. Using exact calculations, we find the
vison gap energy of �v = 0.263313(6)J for the Kitaev spin
liquid on honeycomb lattice in the gapless phase, extending
the accuracy of previous calculations [1,3]. Our calculations
reveal the formation of Majorana resonances in the density of
states which accompany the formation of two adjacent visons.
Our approach can be simply generalized to more complex
lattices and are immediately generalizable to Yao-Lee spin
liquids.

II. VISON GAP IN THE KITAEV HONEYCOMB MODEL

The Kitaev honeycomb lattice model [1] is described by
the Hamiltonian

HK =
∑
〈i j〉

Jαi j σ
αi j

i σ
αi j

j , (1)

where the Heisenberg spins �σi = (σ x
i , σ

y
i , σ z

i ) at site i interact
with their nearest neighbors via an Ising coupling between the
αi j = x, y, z spin components, along the corresponding bond
directions 〈i j〉, with strength Jαi j , as shown in Fig. 1. An exact
solution of the Kitaev model [1] is found by representing
the spins as products of Majorana fermions, σα

j = 2ic jbα
j ,

which satisfy canonical anticommutation algebras, {ci, bα
j } =

0, {bα
i , bβ

j } = δi jδ
α,β [taking the convention that c2

j = (bα
j )2 =

1/2]. The system is projected into the physical subspace by
selecting D j ≡ −4ic jbx

jb
y
jb

z
j = 1 at each site, allowing the

Hamiltonian (1) to be rewritten as Z2 gauge theory

HKSL = 2
∑
〈i j〉

Jαi j ûi j (icic j ), (2)

where the gauge fields ûi j = 2ib
αi j

i b
αi j

j = ±1 on bond i j
commute with the Hamiltonian, [ûi j, HK ] = 0. The plaquette
operators Wp

Wp =
∏

〈i, j〉∈p

ui j (i ∈ A, j ∈ B), (3)

formed from the product of gauge fields ûi j around the hexag-
onal loop p ( plaquette), are gauge invariant and also commute
with the Hamiltonian [Wp, HK ] = 0 and constraint operators
[Wp,D j] = 0, giving rise to a set of static constants of motion
which take values Wp = ±1. Each eigenstate is characterized
by the configurations of {Wp}; Lieb’s theorem [38] specifies
that the ground state configuration is flux free, i.e., Wp = 1
for all hexagons p. In what follows we will choose the gauge
ûi j = 1 when i ∈ A and j ∈ B sublattice, assigning

H0 = HKSL[ui j → 1]. (4)

Rewriting H0 in momentum space, we obtain

H0 = 1

2

∑
k∈BZ

ψ
†
k (�γk · �τ )ψk, (5)

where

ψk = 1√
Nc

∑
j

(
c j,A

c j,B

)
e−ik·R j (6)
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FIG. 1. (a) Kitaev honeycomb lattice model, where the Ising spin
couplings along the x, y, and z directions are labeled by blue, green,
and red bonds, respectively, with primitive lattice vectors �a1 and �a2.
(b) A bond reversal at the origin creates a vison pair, costing an
energy �v . The string connecting the adjacent visons is indicated
in light blue.

describes a Majorana in momentum space, where Nc is the
number of unit cells and R j is the location of the unit cell
and �γk = [Re(γk ),−Im(γk )] is expressed in terms of the form
factor

γk = 2i
(
Jz + Jxeik1 + Jyeik2

)
,

k = k1

2π
b1 + k2

2π
b2, k1, k2 ∈ [0, 2π ]. (7)

Here we have employed a reciprocal lattice basis b1, b2 to
span the momentum k ∈ BZ, which transforms to a rhombus
shaped Brillouin zone in the reciprocal lattice (see Fig. 2).
The Majorana excitation spectrum of the Kitaev spin liquid
is given by the eigenvalues of H0, εk = ±|γk|.

We create two adjacent visons by flipping the gauge field
in the unit cell at origin to û(0,A)(0,B) = −1 as shown in Fig. 1,
resulting in the following Hamiltonian:

HKSL+2v = H0 + V̂ , (8)

where

V̂ = −4Jz(ic0,Ac0,B) (9)

acts as a scattering term for Majoranas in the bulk. In this
way, the vison gap calculation is formulated as a scattering
problem.

For this case, the Hamiltonian is given by

HKSL+2v = 1

2

∑
k∈BZ

ψ
†
k (�γk · �τ )ψk + 1

2
cT

0 (V τ2)c0, (10)

c0 =
(

c0,A

c0,B

)
= 1√

Nc

∑
k∈BZ

ψk, (11)

describes a Majorana fermion at the origin, and V = 4Jz.

FIG. 2. Rearranged first Brillouin zone (BZ) constructed in the
reciprocal lattice vector basis spanned by b1 and b2.

We now set up the scattering problem in terms of Green’s
functions. The Green’s function of the unscattered Majoranas
is G0 = G0(iωn, k)δk,k′ , where

G0(iωn, k) = [iωn − �γk · �τ ]−1. (12)

In the presence of the bond flip at the origin, the Green’s func-
tion of the scattered Majoranas is given by G = (G−1

0 − V̂ )−1,
where V̂k,k′ = (V τ2)/Nc is the scattering matrix. The total free
energy of the noninteracting ground state in the presence of
the scattering is given by the standard formula

βF = − 1
2 Tr[ln(−G−1)] = − 1

2 Tr ln[−G−1
0 + V̂ ], (13)

where Tr denotes the full trace over Matsubara frequencies,
momenta, and sublattice degrees of freedom. The change in
free energy is then given by

β�F = −1

2
Tr[ln(1 − V̂ G0)] = 1

2

∞∑
r=1

1

r
Tr[(V̂ G0)r]. (14)

We now carry out the trace over the Matsubara frequencies
and momenta, so that

�F = 1

2β

∑
iωn

∞∑
r=1

1

r
tr

[(
V τ2

Nc

∑
k

G0(iωn, k)

)r]
, (15)

where tr[ ] denotes the residual trace over sublattice degrees
of freedom. Now, we can incorporate the summations over
momentum by introducing the local Green’s function

g(z) = 1

Nc

∑
k∈BZ

G0(z, k), (16)

so that

�F = 1

2β

∑
iωn

∞∑
r=1

1

r
tr{[V τ2g(iωn)]r}

= − 1

2β

∑
iωn

tr{ln[1 − V τ2g(iωn)]}, (17)

where we have reassembled the Taylor series as a logarithm.
We shall illustrate our method for the isotropic case Jx =

Jy = Jz = J , setting K = 2J and V = 4J . In this case, γk =
iK (1 + eik1 + eik2 ). If we divide γk = i[γc(k) + iγs(k)] into
its even and odd components

γc(k) = K (1 + cos k1 + cos k2),

γs(k) = K (sin k1 + sin k2), (18)

then g(iωn) can be rewritten as

g(z) = 1

Nc

∑
k∈BZ

z − [γc(k)τ2 + γs(k)τ1]

z2 − |γk|2 . (19)

The odd component γs(k) vanishes under momentum summa-
tion so that

1 − V̂ g(z) = 1 − V

Nc

∑
k∈BZ

zτ2 − γc(k)

z2 − |γk|2

= 1 − V [τ2g0(z) − I2g2(z)], (20)
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FIG. 3. Showing real and imaginary parts of (a) g0(ω − iδ) and
(b) g2(ω − iδ) as defined in Eqs. (21), (27), and (28).

where

g0(z) ≡ 1

Nc

∑
k∈BZ

z

z2 − |γk|2 ,

g2(z) ≡ 1

Nc

∑
k∈BZ

γc(k)

z2 − |γk|2 . (21)

Carrying out the trace in the free energy we then obtain

�F = −T

2
Tr[ln(1 − V̂ G0)]

= −T

2

∑
iωn

ln{[1 + V g2(iωn)]2 − [V g0(iωn)]2}. (22)

The Matsubara summation can then be carried out as an
counterclockwise contour integral around the imaginary axis
weighted by Fermi function, f (z) = [eβz + 1]−1. Deforming
the contour to run clockwise around the real axis we obtain

�F =
ˆ ∞

−∞

dω

2π

(
1

2
− f (ω)

)
δv (ω), (23)

where

δv (ω) = Im ln
[
[1 + 2Kg2(z)]2 − [2Kg0(z)]2

]
z=ω−iδ (24)

is identified as the scattering phase shift, and g0(z)|z−ω−iδ and
g2(z)|z−ω−iδ are the components of the local Green’s function
g(z)|z=ω−iδ (see Fig. 3). Note that δv (ω) = −δv (−ω) is an
antisymmetric function of frequency. At zero temperature the
vison gap is then

�v = K
ˆ ∞

0

dx

2π
Im ln

[
[1 + 2g2(z)]2 − [2g0(z)]2

]
z=x−iδ,

(25)

where we have rescaled the frequency in units of K, setting
z = ω/K . In the reciprocal basis

g0(z) =
ˆ 2π

0

dk1

2π

ˆ 2π

0

dk2

2π

z

z2 − |γk|2 ,

g2(z) =
ˆ 2π

0

dk1

2π

ˆ 2π

0

dk2

2π

γc(k)

z2 − |γk|2 ,

(26)

where we have set K = 1 in γ (k), i.e., γk = 1 + eik1 + eik2

and γc = cos(k1) + cos(k2). The interior integral over k2 can
be carried out as a complex contour integral over w = eik2

around the unit circle (Appendix A), giving

g0(z) =
ˆ 2π

0

dk

2π

z

[z2 − (3 + 2c)]
√

1 − 8(c+1)
[z2−(3+2c)]2

, (27)

g2(z) =
ˆ 2π

0

dk

2π

2c + 1

[z2 − (3 + 2c)]
√

1 − 8(c+1)
[z2−(3+2c)]2

, (28)

where c ≡ cos(k). These integrals were evaluated numerically
to obtain the phase shift δv (ω) (Fig. 4). The phase shift was
interpolated over a discrete set of N points and the integral
(25) was carried out numerically on the interpolated phase
shift. By extrapolating the limit 1/N → 0, we find the vison
gap energy to be �v = 0.1311656(3) K = 0.263313(6) J for
the isotropic case Jz = Jy = Jz = J .

This analytically based calculation improves on the earlier
result obtained via numerical diagonalization of finite size
systems [1], i.e., �v ≈ 0.267 J. Its main virtue however, is
that the method can be easily generalized, and we gain insights
from the calculated scattering phase shifts.

From the calculated phase shift, we can calculate the
change in density of states (DOS) (see Appendix B)

�ρ(ω) = 1

π

dδv

dω
(29)

[Fig. 4(c)] associated with a bond flip, which is seen to contain
a resonance centered around ε0 ≈ ±0.07 K. This resonance
can be examined in detail by expanding g0(z) and g2(z) for
small z:

g0(ω−iδ) = ω√
3π

ln

(
3

|ω|
)

+ i
|ω|√

3
,

g2(ω−iδ) = −2

3
− ω2

3
√

3π

[
ln

(
3

|ω|
)

+ iπ sgn ω

]
,

(30)

which can be used to evaluate scattering phase shift δv (ω)
(24) and the resonant DOS change �ρ(ω) (29) analytically.
The position of the resonance is determined by the integration
over the entire band but its width is determined by the density
of states at low energies. Since the DOS vanishes inside the
spectral gap, the resonance will become sharp in the gapped
topological phase when its center lies beneath the gap edge
(see Fig. 5). The sharp peak in the gapped state signifies the
binding of Majorana fermions to the visons formed by the Z2

bond flip at origin.

III. DISCUSSION

In this work we have presented an analytical method for
determination of the vison gap by treating the flipping of
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FIG. 4. (a) Scattering phase shift δv (ω) associated with the creation of two adjacent visons, as a function of frequency ω in units of K.
(b) Scattering phase shift δv (ω) on an expanded scale, showing inflection point at origin. (c) Resonance in the scattering density of states
around ε0 = ±0.07 K in the density of state change �ρ(ω) due to the bond flip potential, as a function of frequency ω in units of K. This
resonance will become sharp in the gapped topological state, when the resonance drops below the gap edge, forming a sharp, in-gap excitation
of the vison pair.

the Z2 gauge field as a scattering potential for the Majorana
fermions. In this way, we have been able to analytically extend
the numerical treatment by Kitaev for the isotropic model on
honeycomb lattice [1] to obtain an analytic result for the vison
gap energy �v .

A key part of our approach is the calculation of the
Majorana phase shift for scattering off the bond-flipped con-
figuration. One of the interesting observations is that the
scattering contains a Majorana resonance, located at an en-
ergy ε0 ≈ ±0.07 K. Since this resonance is formed from
scattering throughout the entire Brillouin zone, its location
is robust. Thus in those cases where the excitation spec-
trum acquires a gap, e.g., through time-reversal symmetry
breaking [1,39], this resonance transforms into a sharp in-gap
excitation.

While it is possible to extend our method to analytically
calculate the energy associated with the injection of an anyon
into the torus, by flipping x − x bonds along a1 direction (see
Fig. 6), a much simpler derivation of the anyon energy in the
KSL can be made by taking two copies of the KSL,

HKSL,1 = 2
∑
〈i j〉

Jαi j ûi j (ic1ic1 j ),

HKSL,2 = 2
∑
〈i j〉

Jαi j ûi j (ic2ic2 j ),
(31)

forming a complex fermion Hamiltonian Hc =
HKSL,1 + HKSL,2 = 2

∑
〈i j〉 Jαi j ûi j (ic

†
i c j + H.c), where ci ≡

(c1i + ic2i )/
√

2 is a complex fermion. The ground state

FIG. 5. Schematic illustration of the resonance in the density of
states for the gapless Kitaev spin liquid. The resonance becomes
sharp when a gap opens in the bulk density of states, forming a
fermionic excitation of the vison pair.

excitation energy of Hc corresponding to the gauge
configuration where one reverses x − x bonds along the
a1 direction is twice the anyon energy for HKSL. For Hc the
line of reverse bonds around the torus can then be absorbed by
a unitary transformation that redistributes the odd boundary
condition into an effective vector potential that shifts all
the momenta k = (k1, k2) → (k1 + π

L , k2) equivalent to
introducing a half magnetic flux with vector potential
Ax = π

L . Treating the response to the vector potential in an
analogous fashion to a superconductor, the putative energy
cost of an anyon would be

�E =
ˆ

d2x
ρs

4
A2

x = ρs
π2

4
, (32)

where ρs is the superfluid stiffness associated with the ground
state, Ax = π/L is the vector potential, and the factor of
4 derives from halving the energy of the complex fermion
system. However, since the complex fermion Hamiltonian Hc

preserves the global U (1) symmetry, its superfluid stiffness ρs

vanishes, so it costs no energy to create anyons in the gapless
state. From this line of reasoning, we can see that the ground
state of the Kitaev spin liquid has a fourfold degeneracy and
is topologically ordered.

The method can also be applied to calculate the energy of
visons separated by finite distance by treating the bond flips

FIG. 6. Hexagonal lattice of Kitaev spin liquid is embedded on
a torus by application of the periodic boundary condition. An anyon
forms within the torus by flipping the bonds along a noncontractable
loop that encircles the torus.
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between the two visons as a diffraction problem; however,
due to the complex nature of the problem, it is left for future
investigation.

Finally, we note that our method also admits various gen-
eralizations. For example, it can be extended to anisotropic
couplings, i.e., Jx �= Jy �= Jz, as well as to higher dimensions,
such as the three-dimensional hyperoctagonal lattice. More-
over, our method can be applied to study the impact of spinor
order formation as a consequence of hybridization between
conduction electrons and Majorana spinons in the CPT model
for a Kondo lattice coupled to a Yao-Lee spin liquid [27,28].
This allows us to study the stability of the Yao-Lee spin
liquid against spinor order formation, which is the subject of
a forthcoming article by the authors.
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APPENDIX A: ANALYTIC CALCULATION OF GREEN’S
FUNCTION IN HONEYCOMB LATTICE

Here we show how to simplify the integrals

g0(z) =
ˆ 2π

0

dk1

2π

ˆ 2π

0

dk2

2π

z

z2 − |γk|2 ,

g2(z) =
ˆ 2π

0

dk1

2π

ˆ 2π

0

dk2

2π

γc(k)

z2 − |γk|2 ,

(A1)

where γc(k) = 1 + cos(k1) + cos(k2), using a contour inte-
gral. We begin by noting that the integrals over k1 and k2 can
be carried out in either order, allowing us to pull the cosines
in γc(k) out of the inner integral, so that

g0(z) =
ˆ 2π

0

dk1

2π
zI0(z, k1),

(A2)

g2(z) =
ˆ 2π

0

dk1

2π
(1 + 2 cos k1)I0(z, k1),

where

I0(z, k) =
ˆ 2π

0

dk2

2π

1

z2 − |γk|2 . (A3)

Writing s = eik1 and w = eik2 , we can rewrite I0 as a counter-
clockwise integral around the unit circle |w| = 1,

I0(z, k) ≡ I0(z, s) =
‰

|w|=1

dw

2π iw

1

z2 − |γ (s,w)|2 . (A4)

Rewriting the denominator as a quadratic function of w,

z2 − |γ (s,w)|2 = z2 − (1 + s + w)

(
1 + 1

s
+ 1

w

)

= − (1 + s)

sw
(w2 + wb + s), (A5)

where

b = 1 + 3s + s2 − sz2

(1 + s)
. (A6)

We can thus write the integral in the form

I0(z, s) = − s

1 + s

‰
dw

2π i

1

(w − w+)(w − w−)
, (A7)

where

w± = −b

2
±

√(
b

2

)2

− s (A8)

are the poles of the integrand.
Now, since w+w− = s = eik1 , it follows that |w+w−| = 1,

so that only one of these poles lies inside the contour. [In
general, this may depend on the way we treat the branch cuts
inside the square root of (A8). However, we do not actually
need to know which pole it is, as we will fix the sign and
the branch cuts in the final expression by demanding that the
asymptotic behavior of I0 ∼ 1/z2 is analytic at large z.] Let us
assume that the pole closest to the origin is at w = w−; then
we obtain

I0(z, s) = s

1 + s

1

w+ − w−
= s

1 + s

1√
b2 − 4s

. (A9)

Now, expanding the denominator, we have

(1 + s)
√

b2 − 4s

=
√

(1 + 3s + s2 − sz2)2 − 4s(1 + s)2

= s
√

(3 + 2 cos k1 − z2)2 − 8(cos k + 1)

= s[z2 − (3 + 2 cos k1)]

√
1 − 8(cos k + 1)

[z2 − (3 + 2 cos k1)]2
,

(A10)

where we have factorized the final expression to guarantee
that, at large z, I0(z, s) ∼ 1/z2 is analytic. Combining the
above results gives us the following expressions for g0(z) and
g2(z):

g0(z) =
ˆ 2π

0

dk

2π

z

[z2 − (3 + 2c)]
√

1 − 8(c+1)
[z2−(3+2c)]2

,

g2(z) =
ˆ 2π

0

dk

2π

2c + 1

[z2 − (3 + 2c)]
√

1 − 8(c+1)
[z2−(3+2c)]2

,

(A11)

where c ≡ cos(k), which are the expressions given in (27) and
(28).

APPENDIX B: DENSITY OF SCATTERING STATES
AROUND A VISON

In this Appendix we discuss the interpretation of the scat-
tering phase shift in a Majorana scattering problem. For
conventional particles, the scattering phase shift is defined in
terms of the S matrix, S = e2iδ , associated with the scattering
of a partial wave state: what is the appropriate generalization
to Majorana excitations? We can answer this question by
considering the scattering Hamiltonian. In our problem, the
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scattering Hamiltonian is given by (10), which we rewrite in
momentum space as

KSL+2v = 1

2

∑
k∈BZ

ψ
†
k (�γk · �τ )ψk + 1

2

∑
k,k′∈BZ

ψ
†
k′ (V τ2)ψk.

(B1)
Here the ψk, which are the Fourier transform of the real-
space Majorana fermions, are complex “Dirac” fermions;
their underlying Majorana character is enforced by the con-
dition ψ−kα = ψ

†
kα , so that holes formed in one half of the

Brillouin zone are equivalent to particles in the other half.
This guarantees that the density of states ρ(E ) = ρ(−E ) is
particle-hole symmetric. The factor of 1/2 in the Hamiltonian
avoids overcounting.

An independent set of one-particle excitations can be
formed in two ways.

(1) By using all of momentum space, but restricting the
excitations exclusively to positive energy, particle excitations;
i.e., one-particle eigenstates are

|k〉 =
∑

α

ukαψ
†
kα|GS〉 (k ∈ BZ, α ∈ A, B), (B2)

where ukαψ
†
kα creates a positive energy eigenstate at momen-

tum k. This allows us to discuss the phase shift of scattered,
conventional fermions. The density of states is then NI (E ) =
ρ(E ) and the free energy is given by an integration over
positive energy excitations

F = −T
ˆ ∞

0
dE ln(1 + e−βE )ρ(E ). (B3)

(2) Alternatively, restricting k to one half of the Bril-
louin zone while considering both particles and holes formed
within this half subspace. In this case, the density of states is
NII (E ) = 1

2ρ(E ) and the free energy is written

F = −T

2

ˆ ∞

−∞
dE ln(1 + e−βE )ρ(E )

= −T

2

ˆ ∞

−∞
dE ln[2 cosh(βE/2)]ρ(E ), (B4)

where ρ(E ) = ρ(−E ).

Method (1) is more appropriate for discussing the scat-
tering, while (2) is more aligned with the Green’s function
approach we have adopted.

To calculate the change in density of states due to the
scattering, we note that the change in free energy calculated
in (B5),

�F =
ˆ ∞

−∞

dω

2π

(
1

2
− f (ω)

)
δv (ω), (B5)

can be integrated by parts to obtain

�F = −T

2

ˆ ∞

0
dE ln

[
2 cosh

βE

2

](
1

π

∂δ(E )

∂E

)
. (B6)

Comparing this with (B3), we see that the change in density
of states due to scattering is

δρ(E ) = 1

π

∂δ(E )

∂E
. (B7)

We note that this result can also be obtained by observing
that the scattering shifts the energy levels Eλ of the continuum
downwards by an amount equal to

E ′
λ = Eλ − �

δ(Eλ)

π
, (B8)

where � is the energy spacing of the continuum. The energy
spacing is then modified by the scattering to

�′ = E ′
λ+1 − E ′

λ = � − �

π
[δ(Eλ + �) − δ(Eλ)]

= �

[
1 − �

π

∂δ

∂E

]
. (B9)

If the original density of states is 1
�

= ρ(E ), the modified
density of states is then

ρ(E ) + δρ(E ) = 1

�′ = 1

�

[
1 − �

π

∂δ

∂E

]−1

= ρ(E ) + 1

π

∂δ(E )

∂E
, (B10)

so that the change in the density of states is given by

�ρ(E ) = 1

π

∂δ(E )

∂E
. (B11)
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