PHYSICAL REVIEW B 108, 045150 (2023)

Interplay between lattice gauge theory and subsystem codes
Yoshihito Kuno®! and Ikuo Ichinose ©2
'Graduate School of Engineering Science, Akita University, Akita 010-8502, Japan
2Department of Applied Physics, Nagoya Institute of Technology, Nagoya, 466-8555, Japan

® (Received 18 April 2023; revised 25 May 2023; accepted 18 July 2023; published 31 July 2023)

It is now widely recognized that the toric code is a pure gauge-theory model governed by a pro-
jective Hamiltonian with topological orders. In this paper, we extend the interplay between quantum
information system and gauge-theory model from the viewpoint of subsystem code, which is suitable for
gauge systems including matter fields. As an example, we show that Z, lattice gauge-Higgs model in
(241)-dimensions with specific open boundary conditions is nothing but a kind of subsystem code. In
the system, Gauss-law constraints are stabilizers, and order parameters identifying Higgs and confinement
phases exist and they are nothing but logical operators in subsystem codes residing on the boundaries. Mixed
anomaly of them dictates the existence of boundary-zero modes, which is a direct consequence of symmetry-
protected topological order in Higgs and confinement phases. After identifying phase diagram, subsystem codes
are embedded in the Higgs and confinement phases. As our main findings, we give an explicit description
of the code (encoded qubit) in the Higgs and confinement phases, which clarifies duality between Higgs and
confinement phases. The degenerate structure of subsystem code in the Higgs and confinement phases remains
even in very high-energy levels, which is analogous to notion of strong-zero modes observed in some interesting
condensed-matter systems. Numerical methods are used to corroborate analytically-obtained results and the
obtained spectrum structure supports the analytical description of various subsystem codes in the gauge theory

phases.
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I. INTRODUCTION

Lattice gauge theory (LGT) [1] was invented to de-
scribes physical phenomena of elementary particle physics
and succeeded in explaining quark-confinement phenomenon
in strong interactions [2]. The application of the LGT is rich
from condensed matter [3,4] to quantum information [5-7].
In particular, some of quantum phases emergent in LGT are
closely related with quantum memory [5,8-10]. Their fault
tolerance is explained by the notion of topological order
[11,12] in condensed-matter physics. Description of local-
gauge symmetry in the LGT is also related to the notion of
stabilizer in quantum information [13]. Gauss’ law of the LGT
giving a strong constraint on the Hilbert space can be regarded
as stabilizer condition in quantum information theory [7]. It
is also known that some states constrained by Gauss’ laws in
LGT models acquire ability of quantum-error correction [5,8].
This is done by restoring a distorted state back to the original
one by using the Gauss-law constraint. (In this sense, deep
understanding of LGT has the potential to lead us into some
interdisciplinary discoveries.)

Recently, the lattice gauge-Higgs model [14] has been
revisited in some studies [15,16] from a viewpoint of
condensed-matter physics. It was suggested that Higgs phase
can be regarded as a symmetry-protected topological phase
(SPT phase) [17,18], and in (2+1) dimensions [(2+1)-D]
with cylinder boundary conditions, the Higgs and confine-
ment regimes are distinguishable by observing operators on
boundaries [15]. This observation is connected to concept
of one-form symmetry inherent in gauge theory [19], which
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clarifies the origin of 't Hooft loop as well as Wilson loop.
In the aspect of quantum information science, Ref. [20] gave
us a hint to notice that lattice gauge-Higgs models with open
boundaries can be a subsystem code [21], that is, degenerate
eigenstates of the lattice gauge-Higgs model behave as en-
coded qubits. This suggested an important fact that not only
the ground state but also almost all higher-energy states in the
model correspond to qubits in the subsystem code, and they
can be stable in time evolution with long periods.

It is now widely recognized that the toric code is a pure
gauge-theory model governed by a projective Hamiltonian
with topological orders. In this paper, we shall extend the
interplay between quantum information system and gauge-
theory model, in which the gauge degrees of freedom couple
with matter fields, and therefore, Hamiltonian is not projective,
i.e., all terms in the Hamiltonian do not commute with each
other. There, the notion of subsystem code plays an important
role (see Fig. 1). As a specific example of the above pro-
posal, we take a further step towards detailed understanding
of (2+1)-D lattice Z, gauge-Higgs models by following the
previous studies [15,20]. To this end, we propose an extended
version of the model with additional degrees of freedom
of magnetic charge (flux), and also employ certain specific
boundary conditions. Although by a gauge fixing, the model
reduces to the ordinary one, we can introduce suitable order
parameters to clarify physical properties of the gauge-Higgs
model.

In the previous study [20], a novel subsystem code was
constructed. This paper raises interesting unresolved ques-
tions: (I) How the degenerate states of the subsystem code

©2023 American Physical Society
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FIG. 1. Schematic of (gauge model)-(information code) relation-
ship proposed in the present paper: (a) Toric code and (b) Subsystem
code. The toric code is a projective pure gauge system, Hamiltonian
of which is composed of stabilizers commutative with each other. On
the contrary, for ordinary gauge systems including matter degrees of
freedom, all terms of Hamiltonian do not commute with each other.
For such a system, suitable quantum information notion is supplied
by subsystem codes with gauge operators, logical operators, and
stabilizers.

are understood in gauge-theory and SPT phase point of view?
(IT) How “wavefunction” of the states for the subsystem code
in each gauge-theory phase looks like? It is expected that
the wavefunction clarifies physical meaning of SPT phase
in gauge theory. (IIl) It is desired to obtain wavefunctions
corresponding to multiple qubits, and high-energy states in the
subsystem code, as they are expected to be closely related to
strong-zero modes discovered in Refs. [22,23].

In the following, we shall answer the above questions.
To this end, we first clarify the relationship between the
subsystem codes and the gauge-Higgs model. In particu-
lar, we explain that the logical operators of the subsystem
codes are nothing but order parameters of the gauge-Higgs
model, which are supplied by the employed open bound-
ary conditions and play a central role in the present study.
The spontaneous symmetry breaking (SSB) observed by the
order parameters (SSB of charge and magnetic flux conserva-
tion symmetries) clarifies phase diagram of the gauge-Higgs
model. In this paper, the explicit analytical descriptions of the
degenerate encoded qubits in Higgs and confinement regimes
are given. These descriptions elucidate an exact duality be-
tween Higgs and confinement phases, and clarify physical
properties of Higgs and confinement phases from the view-
point of SSB. Duality in the present formalism reveals that
the confinement phase is an SPT phase as the Higgs phase. Be-
yond single-encoded qubit, we shall give an explicit analytical
description of general multiply-encoded qubits in Higgs and
confinement regimes to show the utility of the correspondence
between order parameters of the gauge theory and logical
operator in quantum code. This is one of main findings in this
paper, corroborated by numerical studies.

We further focus on not only the ground-state multiplet but
also on excited states in the system. As predicted by the recent
paper [20], the degenerate spectrum structure of encoded qubit
of subsystem code would be maintained in excited states. We
shall verify this prediction exploiting the knowledge of the
corresponding gauge theory. In particular, we find that the
degenerate encoded qubits in Higgs and confinement regimes
tend to survive in the entire spectrum, which is reminiscent of
the strong-zero mode discussed recently [22,23]. To corrobo-
rate the analytical description for single- and doubly-encoded
qubits, we numerically investigate the degeneracy of encoded
qubits as subsystem code in the entire energy spectrum of
Higgs and confinement regimes. These results indicate that
the subsystem codes with gauge-theory structure are generally
robust up to high-energy regimes.

Before going into details of the study on the model, in
order to capture the entire picture of the present proposal,
we show schematically the relationship between the gauge-
Higgs model and subsystem codes in Fig. 1. We expect that
this scheme is applicable for wide range of lattice gauge
models including matter fields, and is an extension of (toric
code)-(gauge model) correspondence. The toric code is a pure
Z, lattice-gauge model in (2 4 1)-D, and its Hamiltonian is
composed of stabilizers, all of which are commutative with
each other. This kind of system is sometimes called projective
Hamiltonian system. Figure 1(a) displays this fact. Contrary
to the toric code, the gauge-Higgs model is not a projective
system, i.e., all terms in the Hamiltonian do not commute
with each other [see Hgym in Eq. (1)]. For this case, a
suitable notion in quantum information science is subsystem
codes, which are composed of gauge operators, logical opera-
tors, and stabilizers [21] [see Fig. 1(b)]. Hamiltonian of the
gauge-Higgs model consists of the gauge operators instead
of stabilizers, whereas Gauss-law constraints play the role
of stabilizers and the logical operators are order parameters.
Details of them will be explained in the main text.

The rest of this paper is organized as follows. In Sec. II, we
explain the target LGT model. We introduce Hamiltonian of
(24+1)-D lattice Z, extended gauge-Higgs model and explain
the specific boundary conditions employed in this paper. We
discuss symmetries and properties of the model, and then,
derive an effective Hamiltonian by disentangling local-gauge
degrees of freedom, which is an extension of the toric code
with perturbations. Section III exhibits dramatic findings in
this paper. Firstly, we explain notion of subsystem code (if
the reader wants to know the essence of subsystem code in
detail, see Refs. [20,21]), and then give detailed discussion on
various properties concerning to gauge-theory ground state of
the model. In particular, physical motivation for introducing
the open boundary and resultant SSB of the global charge
symmetry are discussed. Secondly, we give the analytical
description of the encoded qubit of subsystem code in Higgs
and confinement regimes, and further discuss its extension to
multiply-encoded qubit. Thirdly, in addition to the ground-
state properties, we discuss degeneracy structure of excited
states. In Sec. IV, we show the results of the numerical cal-
culations, which corroborate analytical arguments given in
Sec. III. Detailed discussions on the numerical results and
phase transition criticality are given. Section IV is devoted to
discussion and conclusion.
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Even though we use terminologies of quantum informa-
tion, we hope that this article is readable for condensed matter,
quantum information, and high-energy particle physicists.

II. MODEL

In this paper, we shall study one of the LGT models,
the gauge-Higgs model in two spatial dimensions. Accessi-
ble review of the LGT is Ref. [1], and in particular for the
gauge-Higgs mode, review is available in Ref. [4]. As we
explained in introduction, this gauge model is a good example
for exemplifying the subsystem-code formalism of the LGT.

We shall study a (2+1)-D Z, extended gauge-Higgs model,
Hamiltonian of which is given by

HGHM_ZhX +y 5,

(p.p)

+ Zh Zy+ >S5 2007y Ly (1)

(v,v")

Here, we impose the following double gauge-invariant condi-
tions, Gauss’ laws, for the physical subspace:

Gl = 1Y), Byly) = 1¥), (©))

where

Gy =X, [[ ol =X.G..

Ly€v

B, =27, [ oi =28, 3)
Ly€p

and £, € v stands for links emanating from vertex (site) v, and
£, € p for links composing plaquette (box) p. The Z,-electric
matter is defined on each vertex v, (X,, Z,), and its magnetic
dual (X,, Z,,) on each dual vertex p (i.e., plaquette of the orig-
inal lattice), where X, (Z,) stands for the Pauli matrix o7 (o),
and similarly for X,(Z,) (see Fig. 2). On the other hand, the
22 gauge field is defined on links and denoted by (o}, 0}),

o, denote a gauge variable on link connecting neighboring
vertices v and v’, and 0, , denote a gauge variable on link
connecting neighboring dual vertices p and p’. The gauge field
o} is related to the electric field E, as o} = e’”E“ and o/ to the

vector potential A, as o; = e and eigenvalues are {0, 1}
for both the operators. The electric field and vector potential
are conjugate with each other, and operation of o; produces
electric flux on link £.

There are two differences between the system given by
Hguwm [Eq. (1)] and the ordinary Z, gauge-Higgs LGT:

(i) Dual matter field couples with the gauge field and the
coupling term, X0, X, is added to the Hamiltonian besides
the ordinary Z, electrlc matter-gauge coupling. This Z, de-
grees of freedom residing on each plaquette p, (X, Z,), corre-
sponds to “particle” carrying magnetic flux (magnetic charge),
and its hopping induces fluctuation of the gauge field and,
therefore, confinement of electric charges [9]. The ordinary
electric term as well as the magnetic-plaquette term in the
Hamiltonian are replaced with dynamical variables (X, Z,),
even though similar dynamics to the ordinary one emerges
from (X,, Zp).

¢ link (£) Gy
bulk
@ vertex (V) Gy (bulky (smooth boundary)
® dual vertex (p)
matter gauge
coulplng
. 0 0
dual matter gauge B, (bulk) By
coulping (rough boundary)
Xpo,
° 0 o

FIG. 2. Schematic figure of lattice with rough and smooth
boundaries. The green dashed box represents the top rough boundary
and the orange dashed box represents the left smooth boundary, on
which logical operators are defined.

(II) By the presence of the magnetic-charge degrees of
freedom, an additional local-gauge symmetry emerges such
as

X, = X,V,, o, ,— Vo,

.y p.r Vp” Vp’ Vp/ € ZZa (4)

and we impose additional Gauss-law constraint on the phys-
ical state, Egs. (2) and (3). One may wonder that the system
(1) reduces to the ordinary gauge-Higgs model by “integrat-
ing” out the magnetic charge degrees of freedom via, e.g.,
employing unitary gauge of the second local-gauge symmetry
in Eq. (4). In fact as we show shortly, disentangling of electric
and magnetic particles generates the ordinary Hamiltonian
of the gauge-Higgs model in unitary gauge. However, with
specific open boundary conditions, which we shall employ,
there emerges a small but important difference between the
gauge-Higgs model (1) and the ordinary one.

The reason why we employ the above Hamiltonian (1),
which exhibits the electric-magnetic duality manifestly, as
a starting model will become clear later on. The model of
Eq. (1) is different from the conventional toric code [5], in
such a way that the model of Eq. (1) is not composed of
stabilizers, and therefore, is not solvable, while the toric code
is projective and solvable since all terms in the Hamiltonian
are commutative with each other, i.e., stabilizers (see Fig. 1).

Here, we also note that the above Hamiltonian was recently
proposed for describing subsystem quantum code producing
fault-tolerant qubit [20], although the explicit form of Hgym
in Eq. (1) was not shown. There, each term of the Hamiltonian
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(1) is categorized as “gauge” operator in the subsystem-code
literature [21]. (It is often remarked that the terminology
“gauge” is rather confusing as it has nothing to do with gauge
symmetry in LGT. See later discussion.)

We introduce a square lattice shown in Fig. 2, with specific
boundaries named rough and smooth boundaries. For both
boundaries, the form of G, and B, are explicitly shown, both
of which are composed of three links with a vertex and a
plaquette, respectively. Some of the electric-matter-gauge and
magnetic-matter-gauge terms in the Hamiltonian, Hgyy in
Eq. (1), are missing on the boundaries. That is, the electric
(magnetic) hopping on the rough (smooth) boundary does not
exist. We note that the exact electric-magnetic duality holds in
the system.

The model with the above open boundary conditions has
four important symmetries, generators of which are given by

P=1_[Xv, Szzl_[Z, 5)
v )4

w, =[]0 H, =[]0 (6)

ley ley

P is the parity of the total electric charge, corresponding to
the global spin flip on each vertex, and similarly, Sz is the
parity of the total magnetic flux per plaquette. The boundary
hopping terms are forbidden by the P and S; symmetries. P
and Sz are global topological symmetries, whereas W, and H,
are one-form symmetry, which has been extensively studied
recently [19,24]. Although the J* g and J?  terms in the
Hamiltonian Hgpvm [Eq. (1)] exphc1tly break the one-form
symmetries, it was shown that the higher-form symmetry is
generally robust and give nontrivial effect on dynamics of
the system. In the (2 + 1)-D system, H, can be regarded as
't Hooft loop (string) dual to Wilson loop (string) W,. In
particular, the path y in the one-form symmetry W, (H,) is
arbitrary. It is easily verified that by using the Gauss’ laws
in Eq. (3), P (Sz) is expressed as a 't Hooft (Wilson) “loop”
residing on the top and bottom rough (left and right smooth)
boundaries (see Fig. 2), which we call boundary-one-form
operators hereafter. This fact plays an important role in later
discussion on phase diagram of the gauge-Higgs model.

In the context of the present model Hguwm, the decomposed
Hilbert space of Hgywm can be regarded as subsystem code
[21], and its basic discussion is reviewed in [20]. The Hilbert
space of the system Hgyy are characterized by gauge, stabi-
lizer, and bare logical operators. The Hilbert space is operated
by logical encoded qubit and gauge qubit [20]. The struc-
ture of subsystem code may give an efficient error correction
route as discussed by proposing simple examples [25]. The
stabilizer of the subsystem code is given by the projectors
{Gy, By, P, S.}, “gauge” operators are those commute with the
projectors, corresponding to each term of Hgyy, and logical
operators {X, Z} are shown later in Sec. III. It should be noted
that all eigenstates of Hguw is labeled by G, = B, = +1 due
to the condition of Eq. (2) while P, S, = £1 for eigenstates.
This situation is different from some conventional stabilizer
model such as toric code [5,7] and cluster model [26-28], etc.,
where eigenvalue of every stabilizers takes £1 depending on
eigenstates.

Here, to capture the physical properties of Hgpyv more
clearly, we consider the following unitary transformations
(sometimes called circuit unitary transformation):

U,=H (1_[ H(CZ)U,5>H, (7)

v fev

[111<2),. |H, ®)

p tep

where H is the Hadamard transformation on each link and
(CZ),,; is a controlled Z gate for the site i and link j. Applying
the above transformation to Hgmum, we obtain the following
effective disentangled model:

U,UpHoum(U,U,)" = Hre,

HTC_ZhG + Y Jio

{¢rough

+ZhB+ZJ“ )

£¢smooth

The above circuit disentanglement corresponds to gauge
fixing with unitary gauge, in which degrees of freedom cor-
responding to local gauge transformation are eliminated [29].
We remark that the specific form of the J° and J* terms
originates from the starting Hamiltonian Hgy in Eq. (1).

The model Hpc is nothing but an extended system of
toric code [5] including local perturbations (J* and J* terms)
and with rough and smooth boundaries. Hyc with periodic
boundary conditions and also Hyc having the full J* and J*
terms under the standard open boundary conditions have been
studied in previous works from the viewpoint of quantum
information.

III. GAUGE-THEORY PHASE DIAGRAM
AND SUBSYSTEM QUANTUM CODE

The model of Hgym and Hyc has three distinguishable
gauge-theory phases, i.e., Higgs, confinement, and deconfine-
ment (toric code/topological) phases under the specific type
of present open boundary conditions. In particular, recent
study exhibited that the Higgs phase is an SPT phase protected
by the symmetries P and W,,, and can be distinguished from
the confinement phase by employing open boundaries [15],
contrary to the previous common belief [14]. Furthermore,
even in the presence of explicit breaking of the one-form
symmetry W,, the SPT phase survives as long as the gap is
open. This is an important contribution for understanding the
gauge model complementing the seminar and influential study
of gauge-Higgs model [14].

In this paper, we go a step further and obtain a concrete
form of boundary states in Higgs and confinement phases,
which play an essential role in understanding the gauge-theory
phase diagram and properties of the subsystem code proposed
in [20].

Degeneracy of quantum states in the system with suitable
open boundary conditions for subsystem code is governed
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by the encoded qubit [21]. Logical operators for the code
embedded in the Hamiltonian Hyc are given by (see Fig. 2)

X= J] o z= ][] oi (10)

Letop rough Leleft smooth

It is easily verified that they anticommute with each other
{X,Z} =0 since single link is shared by each rough
and smooth boundaries, and also both of them commute
with the Hamiltonians, [Hrc, X] = [Hre, Z] = [Houm, X1 =
[Hgum, Z] = 0. Note that the operators 7 and X are invariant
under the disentangling transformation U, U,. Thus, these op-
erators act as logical operators in the both models Hgyy and
Hrc, as pointed out in [20].

We can introduce counterpart of X and Z residing on the
bottom-rough and right-smooth boundaries, respectively, de-
fined such as

X* = 1_[ o},

Lebottom rough

z7= ] o an

Leright smooth

As we explained in the above, Gauss’ laws in Eq. (3) relate the
global symmetry operators P and Sz with the above boundary
operators as follows:

Sy =P =XX* S,=277* (12)

where we have introduced the notation Sy, and the above
relation eloquently tells us emergence of the symmetry frac-
tionalization [17].

As Sy and S7; commute with each other and also with
the Hamiltonian, the full space of state can be divided into
subspaces with eigenvalue of (Sx, Sz) = (£1, =1). However,
Sx and/or Sz can be SSB, and in that case, X (Z) and X*(Z*)
are independent operators. On the other hand as X (X*) and
Z(Z*) anticommute with each other, gapless modes emerge
in the vicinity of boundary. It is also possible that one of
the symmetries generated by X or Z is spontaneously broken
by the condensation of the other as they also play a role of
order parameter. Pattern of the SSB clarifies physical picture
of gauge-theory phase, which has been masked by the local-
gauge symmetry so far.

In the following, we discuss the gauge-theory phases by
showing explicit form of boundary states for each phase of the
gauge-Higgs model, which has not been given so far, and then
we shall verify the analytical observation by using numerical
methods, exact diagonalization (ED), where we employ useful
numerical package [30,31].

A. Gauge-theory phases: Spontaneous symmetry
breaking and confinement

In this subsection, we shall take a look at phase diagram
of the present gauge model, Hyc and Hgpym. As we men-
tioned in the above, the phase diagram of Hrc with periodic
boundary conditions was investigated and it was clarified that
there are three “phases”, deconfined-topological, Higgs, and
confinement phases. The seminal work in Ref. [14] showed
that the Higgs and confinement phases are connected without
thermodynamic singularities, that is, they are adiabatically
connected. However, in the model in a semi-infinite cylinder

geometry, the Higgs and confinement phases are distinct in
the behavior of the boundary excitation [15]. In what fol-
lows, we mainly focus on physical properties in the vicinity
of the boundaries, as they are essentially related to the SPT
and also subsystem code. In addition, we shall show that
the investigation of states near boundaries clarifies the SSB
of the charge symmetry, mechanism of quark confinement,
and duality between them. This is a reason why we employ
specific boundary conditions.

In what follows, we mostly focus on the model Hrc, and
carry out numerical calculation for Hyc in Sec. IV since the
model is simple and, nevertheless, keeps physical essence of
Hcum.

We first consider the Higgs regime for large negative
Ji such as —J; > |[Jj|, |y, |hp|. In this regime, link vari-
ables in the bulk are ordered as (o) ~ 1, and this phase is
regarded sometimes trivial. However, this long-range order
(LRO) in the bulk indicates (Z) # 0, as the three-link pla-
quette terms on the rough boundary shown in Fig. 2 generate
ferromagnetic interactions between o*’s on dangling links.
The fractionalized-symmetry operator X operates on edge
states nontrivially in that state. In fact, the existence of the
LRO in the 1D rough boundary is numerically verified as
we show later on (see Fig. 7 below). Therefore, states on
the rough boundaries are approximately given as | 11 -+ 1)
or | }| --- ). The operator X (X*) interchanges these states,
[t -ty «<— [ 1] -+ 1). On the top and bottom bound-
aries, the above two states can be taken independently, and
therefore, the ground state is expected to be fourfold de-
generate. Here, we should remark that the gauge operators
o, creates (flips in Z, case) electric flux on link ¢, and
therefore, its nonvanishing expectation value on the boundary
means strong fluctuations of electric field and the SSB of the
charge symmetry.

Before going to show detailed numerics, we briefly verify
this expectation for J; = —4, where the system for numeri-
cal calculation is shown in Fig. 3(a). The results are shown
in Figs. 4(a) and 4(b), and we observe fourfold degeneracy
in ground states. Also even for a small but finite value of
J; = —0.5, the fourfold degeneracy maintains. As effects of
the one-form symmetry W, are robust, it protects the bulk
LRO as long as the state is in the Higgs phase.

The above result gives very important observation, i.e., the
charge symmetry P = Sx is expected to exhibit SSB in the
thermodynamic limit. In ordinary systems of gauge theory
with periodic boundary conditions, condensation of charged
operators is masked by the requirement of the local-gauge
invariance. Order parameters, which are expected to signal the
SSB of the charge symmetry, are nonlocal and charge-neutral
objects such as (¢, exp(i fr Audxﬂ)q&; ) with a charged matter
field ¢, vector potential A,,, and line I" connecting ¢, and ¢j,
[32]. In the present case, however, the symmetry operator Sy
is nothing but the charge operator P by Gauss’ laws, and the
SSB of Sy, (Sx) = (P) = 0, strictly indicates the SSB of the
global charge.

In order to avoid confusion and misunderstanding,
here we emphasize that the specific boundary conditions
do not induce the SSB but triggers the boundary SSB, which
distinguishes Higgs and confinement phases. A suitable order
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FIG. 3. (a) Single-encoded qubit system. The system has two
rough and smooth boundaries. (b) Doubly-encoded qubits system.
The system has three rough and smooth boundaries. (¢) N-encoded
qubits system. The system has N + 1 rough and smooth boundaries.

parameter and its conjugate, Z and X, are supplied by the
boundary conditions, and they clearly describe the boundary
SSB [33]. Monte Carlo simulation of the system Hgpy with
the rough-smooth boundary conditions is interesting and de-
sired to see if bulk or 1D critical behavior emerges in the
specific heat, etc. This is a future problem to be worked
without difficulties.

Similar argument can be applied to the confinement of
charged particles because of the electric-magnetic duality.
For —J} > |J§|, |y, |hy|, the LRO of o emerges with finite
expectation value of order parameter (X) # 0 on the smooth
boundaries indicating the SSB of the Z symmetry, (Z) =
0, in the thermodynamic limit. This means the emergence
of condensation of magnetic charge (magnetic flux), which
causes strong fluctuations of the gauge field o/, and charge
confinement. Numerical calculations in Figs. 4(c) and 4(d)
clearly show the fourfold degeneracy of the ground state in
confinement regime, hence supporting the above considera-
tion for both Higgs and confinement phases. Existence of the
one-form symmetry W, (H, ) makes this state robust against
the J;(J;) terms in the Hamiltonian. The above qualitative
picture of the Higgs mechanism and quark confinement is not
new, but the present model explicitly shows these mechanisms
without any obscurity.

In the following subsections, we shall consider the model
in a finite system from the viewpoint of subsystem quantum
code and logical qubit. We shall derive the analytical descrip-
tion of the encoded qubit states, and introduce notion of strong
zero modes, which are generated by (X, Z) and (X*, Z*), and
play an important role in the present paper.

(a) Higgs (b)  Higgs
AAAAAA AAAAAA
—51- —527
m w
_52' _53_
AAAA AAAA
0 5 0 5
L L
(c) Confinement _— (d) ConﬁnementAA
—49 AAAA _50- AAAA
w w
_50 i
AAAA —51 4444
0 5 0 5
{ 4

FIG. 4. [(a), (b)] Low-lying energy spectra for the deep Higgs
phase. (a) J; =0 (W,-symmetry exact), (b) J; = —0.5 (explicit
breaking of W, symmetry). For both cases, h, = —1, h, = —1,
Ji = —4. [(c), (d)] Low-lying energy spectra for the deep confine-
ment phase. (c) J; = 0 (H, -symmetry exact), (d) J; = —0.5 (explicit
breaking of H, symmetry). For both cases, h, = —1, h, = —1,
J; = —4. The setup of the system for calculation is shown in
Fig. 3(a), in which the total number of link is 18, and (L., L,) =
(2,4).

B. Higgs phase

In this subsection, we consider the deep Higgs regime
such as J§ — —large, h, = —1, h, = —1, and |J}| < |J§].
The bulk LRO o} ~ 1 induces an effective Hamiltonian of
the boundary spins similar to the transverse field Ising model
(TFIM) as mentioned in [15].

For both top and bottom rough boundaries, the P symmetry
is spontaneously broken in the Higgs phase. Then on the
edges, cat states emerge in a finite system, and therefore, the
boundary states are given by

1
|+) 1) = E[I Mre) £ 1 Hre)l, (13)
where T(B) stands for the top (bottom) rough boundary,
| Mrwy and | )1y are all spin up and down states on
dangling links on each rough boundary, | }) =| 1™ --- 1)
and | {}) =||{ --- ). The boundary states |£)m) is Z;
cat states, the presence of which is justified by SSB of P
symmetry on the top and bottom boundaries

In the Higgs phase, each edge of the system induces
twofold degeneracy, thus, we expect the ground state of the
Higgs phase is fourfold degenerate. The four degenerate states
for the whole system are given as follows in the deep Higgs
limit:

IG1) = |+)1|—)s ® [bulk),
|G2) = |-)rl+)s ® |bulk),
|G3) = [+)1]+)8 ® |bulk),
|G4) = |=)r|—)s ® [bulk), (14)
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where |bulk) represents the bulk states not including links
on rough boundaries. The above explicit form of the
fourfold degenerate ground state for Hrc is useful for in-
vestigation by numerical methods given later on. Actually,
we identify two pairs in a topologically-symmetric sector.
That is, for the sector (P, Sz) = (—1, +1), the pair of the
ground state is {|G1l), |G2)} since P|G1(2)) = (—1)|G1(2))
and Sz|G1(2)) = (4+1)|G1(2)). This pair is an encoded
qubit satisfying Z|G1(2)) = |G2(1)), X|G1) = (+1)|G1) and
X|G2) = (—1)|G2). Note that making the boundary cat state
is an essential ingredient to get a qubit controlled by the
logical operators (X, Z).

The other pair {|G3),|G4)} in the fourfold degenerate
ground state is another encoded qubit. This pair belongs to
the sector (P, Sz) = (+1, +1) since P|G3(4)) = (+1)|G3(4))
and S7|G3(4)) = (4+1)|G3(4)). They also satisfy Z|G3(4)) =
|G4(3)), X|G3) = (+1)|G3), and X |G4) = (—1)|G4).

Due to the robustness of the one-form symmetry, the bulk
LRO survives even in the presence of its explicit breaking
terms in the Hamiltonian. As a result, the above-encoded
qubit with cat-state properties is preserved intact. We shall
demonstrate this observation by numerical methods later on.

C. Confinement phase

We next consider the deep confinement limit, J; —
—large, h, = —1, h, = —1, and |J;| < |J7|. The bulk LRO
o} ~ 1 induces an effective Hamiltonian for the smooth-
boundary spins similar to TFIM.

For both left and right smooth boundaries, the Sz symmetry
is spontaneously broken in the confinement phase. Then on
the smooth boundaries, the boundary states are given by

1

|£0)LR) = ﬁ“ =hw £ <hwl (15)
where the subscript L(R) stands for the left (right) smooth
boundary, | =)Lr) and | =)L) are all positive x and neg-
ative x spin states on each smooth boundary, respectively,
ie, | =)=|—>— --—>)and | &) = | <<« --- «<). The
boundary states |+,)1r) are Z,-cat states composed of | =)
and | <), the emergence of which is induced by SSB of Sz
symmetry at the left and right boundaries.

We expect that the ground-state structure is analog to that
of the Higgs phase. That is, each edge of the system induces
twofold degeneracy and therefore, the ground state is fourfold
degenerate. Furthermore, the fourfold degenerate states for the
whole system are given by

ICT) = [+x)Ll—x)r ® |bulk),
IC2) = [—y)L|+x)r @ [bulk),
IC3) = [+x)Ll+x)r @ |bulk),
|C4) = |=x)L|—x)r ® [bulk). (16)

The above explicit form of the fourfold degenerate ground
state for Hrc in the confinement limit is useful for later inves-
tigation by the numerical methods. Here, we should mention
that the ground states in Eqs. (14) and (16) exhibit a typical
form of the subsystem code considered in Ref. [20].

The four states in Eq. (16) again behave as two pairs
of qubit. For the sector (P,Sz)= (+1, —1), the relevant

pair of the ground state is {|C1), |C2)} since P|C1(2)) =
(+DIC1(2)) and Sz|C1(2)) = (—1)|C1(2)). These paired
states form an encoded qubit, that is, X|C1(2)) = |C2(1)),
Z|C1) = +1|C1), and Z|C2) = —1|C2). Similarly, the other
paired states {|C3), |C4)} also form an encoded qubit in the
sector (P, Sz) = (+1, +1). The logical operators are similarly
given by Z and X.

Here, we should note that the states in Eq. (16) are exactly
dual to those of the Higgs phase in Eq. (14) under the in-
terchange o) <= o; for all links. However, sometimes this
duality is broken explicitly by the geometry of the lattice if
L, # L,, where L, is the number of links in the horizontal
(vertical) direction, as the rectangular lattice used in our nu-
merical studies (see Fig. 3),

We remark that the wavefunctions in Egs. (14) and (16)
have a standard form of the subsystem code such as |y )|y")
[20], where |y ) is the state of the logical qubit and |¢') is
that of the gauge qubit. In the Higgs and confinement regimes,
the states |1.) can be explicitly obtained in a compact form,
whereas it cannot in the deconfinement regime. This is also
the case for more general cases of multiply-encoded qubits
and higher-energy qubits, which we discuss in the subsequent
subsections. Therefore, on constructing subsystem codes in
the present model, the Higgs and confinement regimes are
better than the deconfinement regime. The practical represen-
tation of the wavefunctions obtained in the above is useful for
investigating stability and error corrections of the subsystem
codes and also may give an insight into the design of quantum
memories robust to decoherence, which are future problems,
although we will briefly mention the fault tolerance of the
present subsystem codes to thermal noise [34].

D. Multiply-encoded qubits

By manipulating the shape of the boundary, multiply-
encoded qubit can be constructed [20]. For example, a
doubly-encoded qubit subsystem code can be put on three
rough and smooth boundaries as shown in Fig. 3(b). In the
Higgs and confinement phases, we can explicitly describe
the state of these qubits using ideas of the gauge theory. In
this subsection, we mostly focus on the deep Higgs regime
J; — —large, since duality between Higgs and confinement
phases exists even in this multiply-encoded qubits system.

Doubly-encoded qubits. As we mentioned in the above, we
employ the system displayed in Fig. 3(b). The ground state of
Hrc for the Higgs and confinement phase is eightfold degener-
ate. Here, these states are decomposed into two distinct (P, S7)
sectors. Each sector includes fourfold degenerate eigenstates.

In the deep Higgs phase, we find that one set of fourfold
degenerate ground states are given as

[021) = |[+)r1l+)2]+) 3 @ [bulk),
|02;) = [+)r1]=)r2]l—)r3 ® |bulk),
|023) = |=)r1l+)r2|—)r3 ® [bulk),
[024) = |=)r1l=)r2l+)r3 ® |bulk), a7

where r, (£ = 1,2, 3) represents three rough boundaries in
Fig. 3(b) and |bulk) represents the bulk state without including
boundary links. Then, for these four states, two sets of logical

045150-7



YOSHIHITO KUNO AND IKUO ICHINOSE

PHYSICAL REVIEW B 108, 045150 (2023)

operators exist [20], which are given by

X :l_[akz, Xzzna,f,

kesl kes2
Zl = l_[ O';:l, Zz = Zl 1_[ O‘::l. (18)
merl mer2

These operators act on the above fourfold degenerate ground

states suitably, and the states work as a doubly-encoded qubit.
The other fourfold degenerate ground states also work as a

doubly-encoded qubit, and they are explicitly given as

|Q25> = |+ rl|+>r2|_ 3 & Iblﬂk),

I+) )
1026) = |[+)r1l=)r2l+)r3 ® [bulk),
1027) = |=)r1l+)r2l+)r3 @ [bulk),
1028) = |=)r1l=)r2l=)s3 ® [bulk). 19)

The operators of Eq. (18) again act on the above states as the
logical operators.

In the deep confinement phase, the states dual for the above
degenerate ground states are also regarded as doubly-encoded
qubits, and there the logical operators are interchanged with
each other, X, «—— Z, (£ = 1, 2).

General N-encoded qubits. General N-encoded qubits can
be designed in the system with many rough and smooth
boundaries [20]. One of lattices for that system is displayed
in Fig. 3(c), where to implement N-encoded qubits, N + 1
rough and smooth boundaries are needed and their locations
must be alternate. As in the previous cases, we can give an
explicit analytical description of the N-encoded qubit states
with the boundary SSB in the deep Higgs and confinement
phases. For the system Hyc, we expect that the ground state is
(2 x 2V)-fold degenerate in the deep Higgs phase. Then, the
first set of 2V-degenerate ground states of N-encoded qubits
are given by

N
21,22, -+ 12N} = [@ |z@>}|zN+1>m ® [bulk),  (20)

=1
where z; = &, |z4) = |£),,, r¢ relabels the ryth rough bound-
ary as shown in Fig. 3(c) and

v = (— 1R, 1)

The label z, (¢ = 1,2, - -+, N) denotes up or down state of the
£-encoded qubits. The above set of N qubits is embedded in

(P, Sz = +1) sector, where P = [1—[11\/ Zelzvg1 = Py.

The second set of 2V-degenerate ground states of N-
encoded qubits in ground-state multiplet are similarly given
by Eq. (20) with replacing as

vt = 2nen = (VRGN ()
The 2V-degenerate ground states are embedded in the sector
(P, Sz) = (—Py, +1).

For these N-encoded qubits, the logical operators are given

as [20]

Xo=[]oi Z.= ]_[Zm (23)
m=1

ker,

where n denotes the number of encoded qubit taking n =
1,2,---,N, r, is nth rough boundary shown in Fig. 3(c),
n=1,2,---,N,and

78 = ]_[ oy (24)

qEsm

Here s,, is mth smooth boundary shown in Fig. 3(c), m =
1,2,---,N.

As in the previous cases, the dual of the above qubits states
are obtained straightforwardly to get N-qubit states in the deep
confinement phase. Also, the dual of the logical operators of
Eq. (23) act as logical operators on the dual states.

E. Excited states and single-encoded qubits in Higgs
and confinement phases

The previous paper [20] suggested that the encoded qubit
can be embedded in arbitrary excited states, as natural proper-
ties of the subsystem code [21]. In this subsection, we study an
explicit analytical description of the encoded qubits in excited
states. These properties of excited states are closely related
to the strong zero mode [22,23], which has been discussed in
various contexts.

As shown in the previous section, the states of the qubit
in both deep Higgs and confinement phase are given via the
bulk-boundary factorised form such as

|Q) = |boundary) ® |bulk}), (25)

where the bulk is a simple product state and the boundary
is a cat state. Here, we assume that the excitation energy
of the bulk AEyy is much larger than that of the bound-
ary AE,, AEw > AEp, which is satisfied for |J2‘(Z)| >
|hyl, 1Apl, |J§(x)|. Then, low-energy excited states of the en-
coded qubit are constructed only by the boundary excitation
in |boundary). For example, in the deep Higgs phase, the
boundary states are cat states, and therefore, the excited states
are constructed upon the cat state residing on one of the rough
boundaries [35], which are explicitly given by

1P
V2

where jo is a link at one end of a rough boundary, ¢, is
the number of the link of one rough boundary, and 0 < k <
£, — 1. The state [{1}x{}}e,—k—1)j, 1S a product state com-
posed of k up-spins and (£, — k — 1) down-spins, in which
location of the domain wall is arbitrary. The low-energy
excited states without bulk excitation can be obtained by re-
placing the cat state |£) in states of Eq. (14) with the state
leX ) in Eq. (26). As an example, excited encoded qubit states
constructed from the states |G1)-|G4) in Eq. (14) are given by

k
|€i)

| 1o ® HTheld Ye.—k—1)jos (26)

1G1¢") = |¢})rlet )p @ |bulk),
|G2¢") = |e* )7le! )p ® |bulk),
1G3¢") = |¢})rlel)p ® |bulk),
|G4e") = |e* )7le! )p ® |bulk). 27)

Here, pairs ({|G1ery, |G2€F))) and ({|G3eF), |G4er))) are
single-encoded qubits embedded into excited states in the
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deep Higgs phase. By this manipulation, various types of de-
generate eigenstates of encoded qubit can be constructed, and
also by using duality, the low-energy excited states construct-
ing an encoded qubit are obtained for the deep confinement
phase.

Furthermore, general higher-excited states are to be de-
scribed in the following way. In the case in which pure bulk
excitations emerge in a plaquette or at a vertex not-touching
the boundaries, the excited states can be written as a prod-
uct state composed of cat states on the boundaries and bulk
excited states. As a whole, we expect that most of the states
having properties of encoded qubit are to be described in the
Higgs and confinement phases.

F. Entangled encoded qubit states in Hggy

In the previous subsections, we showed the explicit form of
the logical encoded qubit states for the disentangled Hamilto-
nian Hrc. In general, the encoded qubit state denoted by |Orc)
can be transformed into the encoded qubit state in the original
(2+1)-D Z, extended gauge-Higgs model, Hgm, denoted by

|Ocum) as
|Qcum) = (U,U,)"|Q1c) = U,U,|0rc), (28)

since undoing the disentangling is manipulated by using
Gauss-law constraints, and states are uniquely determined
up to the local-gauge symmetries. Under this transforma-
tion, the boundary state and bulk state in the state |Qrc)
become moderately entangled. In particular, we expect that
the Higgs phase regime, the encoded qubit state |Qgum)
in the Higgs ground-state multiplet can be short-range en-
tangled state since the state is expected to be an SPT
(2D cluster state) [15,16], also due to duality, the confine-
ment is the same. For example, spin operators in dangling
links of the rough boundaries in Hrc correspond to gauge-
invariant operators in Hgyy via GZ — aé)ZU. This means,

e.g., |[+rc = \%(H-, +)oum + |—, —)oum), where nota-
tions are self-evident. In such a way, short-range entanglement
emerges between the gauge field and matter fields.

IV. NUMERICAL STUDY FOR SMALL SYSTEMS

In this section, we investigate the ground-state properties
of the disentangle Hamiltonian in detail by numerical meth-
ods. In particular, to identify the degeneracy of the encoded
qubits of the subsystem code, we add the potential Vpo =
v1P + 1,57 to the Hamiltonian Hyc, and then, the system is
described by Hrc + Vpor.

A. Subsystem code of single-encoded qubit
in low-energy spectrum

We diagonalize the Hamiltonian Hyc + Vo by employing
Quspin package [30,31] and calculate low-energy spectrum
up to 20-30th state from the ground state. In what follows,
we set h, = h, = —1 and focus on both the deep Higgs and
confinement phases. The lattice structure is shown in Fig. 3(a),
where each rough and smooth boundaries have three and four
vertical links, respectively, and the total number of links is
eighteen, i.e., (Ly, Ly) = (2, 4).

I —. —
_51 4
v
—51- aAsassaaaA
o (P,S;) = (+1,+1) 3 =521 ‘?‘/SZJ =(+1,H1)
—53 Ad )
(P,9:) = (=1,+1) (P,S:) = (-1,+1)
0 10 0 10
(©) ! (d) !
48 Ml _49- o
“ b
—49 AAMAAAL 24
- “ - =501 “
w w
=01 @, )
\(P,Sz) =(+1)+1) =511 \(P,Sz) = (+1,+1)
1 ) = (+1]-  (PSs)=(+Y -1
—-51 \’é‘f\?“/ (P,IS )= (+1{-1) A)‘/
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L L

FIG. 5. Signature of doubly-encoded qubit. [(a),(b)] Low-lying
energy spectra for the deep Higgs phase. (a) J; = 0 (W, -symmetry
exact), (b) J; = —0.5 (explicit breaking of W, symmetry). For both
cases, h, = —1, h, = —1, J; = —4, vy = 0.5, v, = 0. The first and
the second pair energies are splitted ~2v;. [(c),(d)] Low-lying energy
spectra for the deep confinement phase. (¢) J; = 0 (H,-symmetry
exact), (d) J; = —0.5 (explicit breaking of H, symmetry). For both
cases, h, = —1, h, = —1,J; = —4, v; =0, v, = 0.5. The first pair
and the second pair energies split with a gap ~2v,.

Deep Higgs phase. We first study the deep Higgs regime
and set the parameters as J{ = —4 and (v, v2) = (0.5, 0).
The obtained spectrum for the W, -symmetric case J; = 0 is
shown in Fig. 5(a). We observe that the four states in the de-
generate ground-state multiplet for (vy, v2) = (0, 0) split into
two pairs, each of which is nothing but single-encoded qubits
in the sector (P, Sz) = (—1, +1) and (+1, +1), respectively.
The above result agrees with the analytical study in the pre-
vious section, in particular, the emergent sectors. We observe
that the higher-energy states belong to a degenerate multiplet
with more than two even-number states. This degeneracy of
the energy spectrum is stable against the explicit breaking of
the W,, symmetry by the J; term in the Hamiltonian, as the
results for J; = —0.5 in Fig. 5(b) indicate that the ground state
and first excited pairs are single-encoded qubits in the sector
(P,Sz) = (—1,+1)and (+1, 4+1), respectively. Also for finite
values of J;, the higher-excited states tend to be twofold
degenerate, i.e., the splitting into two pairs is enhanced by the
J term.

Deep confinement phase. We turn to the deep confine-
ment regime, and put J; = —4 and set (v, v;) = (0, 0.5) to
examine duality between Higgs and confinement regimes.
The spectrum for the H,-symmetric case J; =0 is shown
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FIG. 6. Signature of doubly-encoded qubits: Low-lying energy
spectra for the deep Higgs phase. (a) J; = 0 (W-symmetry exact),
(b) J; = —0.5 (explicit breaking of W, symmetry) For both cases,
hy =—1,h, =—1,Jf = —4,v; = 0.5, v, = 0. The first and second
four-pair energies are splitted ~2v;. (c) and (d): Low-lying energy
spectra for the deep confinement phase. (¢) J; = 0 (H,-symmetry
exact), (d) J§ = —0.5 (explicit breaking of H,, symmetry) For both
cases, h, = —1, h, = =1, Jf = —4, vy =0, v, = 0.5. The first and
second four-pair energies split with a gap ~2v,.

in Fig. 5(c). We again observe that the fourfold degenerate
ground-state multiplet for (v, v;) = (0, 0) splits into two
pairs, each of which is a single-encoded qubit in the sector
(P,Sz) = (41, —1) and (41, 4+1), respectively. The above
result agrees with the analytical observation in the previous
section. The low-energy degenerate structure is stable against
the explicit breaking of H,, symmetry by finite values of J as
shown in Fig. 5(d). The spectrum is almost the same as that of
the deep Higgs regime connected by duality, with a small but
finite discrepancy coming from L, # L,.

B. Subsystem code of doubly-encoded qubit

We next numerically observe doubly-encoded qubits ex-
isting in the system shown in Fig. 3(b), in which the total
number of link is eighteen. We employ a similar procedure,
i.e., diagonalize the Hamiltonian Hrc + Vot to calculate the
low-energy spectrum.

Deep Higgs phase. We set the parameters in the deep Higgs
phase, J; = —4 and also (v, v2) = (0.5,0). The spectrum
for W, -symmetric case J; =0 is shown in Fig. 6(a). We
observe a fourfold degenerate ground-state multiplet in the
sector (P, Sz) = (—1, +1), which are nothing but two en-
coded qubits, and the first excited fourfold degenerate states

J b) 1. 1
@ 1.00 famaars (6) 1.00 famaaas,
0.751 0.751
0.50 1 0.50 1
z + CZ
0.25{ 7 % 0.251 ’
cy G
0.00 1/ , 0.00 4 :
0.0 2.5 0.0 2.5
6J 6J

FIG. 7. Correlation functions C; and C¢ on boundaries for single-
encoded qubit system (a) and doubly-encoded qubit system (b). We
set (vi, vy) = (0.5, 0) and (0,0.5) for the calculations, C; and Cj.

in the sector (P, Sz) = (41, +1). The two fourfold degenerate
states are predicted by the analytical study in the previous
section.

Similarly to the single-encoded qubit system, this low-
energy degenerate structure is stable against the explicit
breakdown of W, symmetry by finite J; in the Hamilto-
nian. The result for the case with J; = —0.5 is displayed in
Fig. 6(b). We observe that the ground-state and first-excited
fourfold degenerate multiplets are intact for finite J;, and
belong to the sector (P, Sz) = (—1,+1) and (41, +1), re-
spectively. Also, for finite J;, the higher-excited states tend
to be fourfold degenerate, i.e., the fourfold degeneracy is
enhanced.

Deep confinement phase. We turn to the deep confinement
regime, where J; = —4 and (v, v2) = (0, 0.5). The spectrum
for the H,,-symmetric case J; = 0 is shown in Fig. 6(c). We
again observe the fourfold degenerate ground-state multiplet
in the sector (P, Sz) = (+1, —1) as in the deep Higgs regime.
These are two-encoded qubit states. The first-excited fourfold
degenerate states belong to the (P, Sz) = (41, +1) sector.
These results are in agreement with the analytical observa-
tion in the previous section. This degeneracy structure at low
energies is intact for finite J§ as shown in Fig. 6(d). Again for
the doubly-encoded qubit system, the spectrum is almost the
same as that of the deep Higgs regime by duality.

C. Higgs-confinement phase transition

We numerically observe boundary correlation functions
to observe the Sx(Sz)-SSB phase transition. For the single-
encoded qubit shown in Fig. 3(a), the correlation functions
are given by G} = (oj03) and G} = (o o75). The labels of the
1~ink are shown in Fig. 3(a). We calculate C{ and Cj for the
Z = +1 sector of the twofold degenerate ground state, where
J§ and J are parameterized as J; = —4 +6J and J; = —4J
with varying &J.

Figure 7(a) exhibits the behavior of the correlations, where
we set (vy, v2) = (0.5, 0) and (0,0.5). We can observe a phase-
transition-like behavior even in the small system. In the deep
Higgs phase (small 6J) C has a large finite value, while
in the deep confinement phase (large §J) G is finite. This
numerical result implies the emergence of the SSB of P(Sx)
or Sz symmetry in the thermodynamic limit.
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Similar behavior is observed in the doubly-encoded qubit
system shown in Fig. 3(b). We define the correlation function
as C§ = (o503) and G} = (ojois), where the labels of the
lir~1k are shown in Fig. 3(b), and calculate C{ and C; for the
(Z1,7Z,) = (+1, +1) sector of the fourfold degenerate ground
state. We plot the result in Fig. 7(b) to confirm the emergence
of the SSB of P(Sx) or Sz symmetry.

From the all data shown in Fig. 7, we conclude that
the SSB phase transition on the boundary occurs at J; ~
J¢. This result indicates that the criticality of the present
system coincides with that of the effective TFIM emerging
on the boundary. However, we must be careful in concluding
the existence of the phase transition because the system size
is very small. More elaborated numerical approaches such
as quantum Monte-Carlo simulation (employed to a similar
model [36]) or DMRG are desired as a future work.

D. Autocorrelator

We numerically observed the degenerate energy spectra
for both the Higgs and confinement phases. The degeneracy
coming from the nature of encoded qubits survives to highly-
excited eigenstates. This behavior of the system seems to
indicate the emergence of a strong-zero mode, which was first
proposed in [22,23].

We shall numerically verify the existence of the strong-
zero mode by observing the whole energy spectrum of the
present model by following the previous numerical study [35].
In that paper, to examine the strong-zero mode, autocorrelator
measuring the coherence of logical operators was investigated
in detail. We employ the same methods and calculate the
autocorrelator of the logical operator in the present model,
which is given by [35]

Cou(0) = (Y5 X (X (0)[9)
=D [(WslX [y) P B, (29)
4

where X (1) = ¢! FrctVo) X o=it (retVoo) (we have set i = 1),
and |vy) is £-th eigenstates of Hyc + Voo, and Ey is £-th
energy for the ascending order.

We study the single-encoded qubit system as shown in the
inset in Fig. 8 and first focus on the deep Higgs phase, where
the logical operator X is defined by Eq. (10). In order to ex-
tract Z = +1 encoded state, we add a very small potential v,Z
with v, = 107°. The numerically obtained time evolution is
shown in Fig. 8(a), where we pick up three eigenstates, i.e., the
ground state with (P, Sz, Z)=(—1,+1, +1)labeled as s = 0,
a middle excited state Z = +1, s = 4000 and a highly-excited
state Z = +1, s = 8000.

We observe that C;, (t) keeps perfect coherence for a long
period in all eigenstates. This result indicates that the degener-
acy originating from the nature of encoded qubit is observed
in the whole energy spectrum, implying the existence of the
strong-zero mode. In addition, in the very late-time behavior
of C;,(t), a tiny decay is observed as shown in the inset
panel in Fig. 8(a). This behavior is similar to the decay of
the autocorrelator in the TFIM investigated in [35]. However,
the decay is very small, thus, we expect that the coherence
of the autocorrelator in our model is almost perfect for very

o e 0 e 9
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1.0 (999900000000000000400 | | () 00000000000000000000
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FIG. 8. Autocorrelator of the swap logical operator X. (a) The
case in the deep Higgs phase without W, symmetry, h, = —1, h, =
=1, i =-4,J; =-0.5, vy =0.5, v, = 0. The upper figure dis-
plays the system of numerical simulation, where the total number
of link is 13. (b) The case in the vicinity of confinement and Higgs
phase transition, h, = —1,h, = —1,J; = =2,J; = —1.9,v; = 0.5,
v, = 0. The right inset panels for (a) and (b) show the detailed
behavior for late-time evolution of the autocorrelator.

long times. This result strongly supports the expectation that
the degenerate structure of encoded qubit is maintained in the
whole energy spectrum of the model.

We further show the calculations of the autocorrelator
in the vicinity of the confinement-Higgs phase transition in
Fig. 8(b), where the parameters are set as h, = —1, h, = —1,
Ji=-2,J; =-1.9, v =0.5, v = 0. We consider eigen-
states with s = 0, 4000, and 8000 as in the previous case in
Fig. 8(a). Even though the system is in the critical regime,
the autocorrelator exhibits the same behavior with that in
deep Higgs regime. Therefore, the numerics indicates that
the encoded qubit degeneracy in the whole energy spectrum
persists for the entire gauge-theoretical phase diagram.

V. DISCUSSION AND CONCLUSIONS

In this paper, we propose the subsystem-code formalism
of generic LGTs. In order to exemplify the proposal, we
studied the interplay between (24-1)-D lattice Z, extended
gauge-Higgs model and subsystem code beyond the recent
studies [15,20].

We gave the explicit analytical description of the encoded
qubit state of this subsystem code. The state description gives
dramatic and useful understanding of gauge-theory phases,
Higgs and confinement phases. The analytically-obtained
states exhibit the boundary SSB, which is robust for the ex-
plicit breaking of the W, or H,, symmetry in the Hamiltonian
since these symmetries are one-form symmetry. Our paper
clearly shows the existence of genuine order parameters for
the SSB of the global charge symmetry as well as charge
confinement.

We remark that the previous study [20] does not give ex-
plicit form of the states of the subsystem code, nor discuss
the connection between gauge theory and SPT state. The
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accomplishment of this paper is to elucidate the strong rela-
tionship between the degeneracy and structure of the ground
states in the gauge-Higgs model with the origin of encoded
qubits in subsystem code. We gave some concrete analytical
descriptions for not only single- but also multiply-encoded
qubit in both Higgs and confinement regimes. We also con-
structed highly-excited eigenstates of the encoded qubits in
both Higgs and confinement regimes. We numerically verified
the above observations and investigated the spectra and state
structure of the model rather in detail. Even though system
size is small, we obtained satisfactory results for the degener-
acy of encoded qubits in both Higgs and confinement regimes.
All the numerical results are in good agreement with the an-
alytical observations and also theoretical consideration on the
(241)-D lattice Z, extended gauge-Higgs model.

Furthermore, by observing the autocorrelation numerically,
we found that it indicates the existence of the strong-zero
mode in the Higgs regime as analytical study predicts. The
numerical results strongly support the existence of the de-
generate structure of the subsystem code up to high-energy
regime as predicted by [20], and indicate that the subsystem
code is robust even at finite temperatures.

Finally, the present formalism of lattice gauge-Higgs
model clarifies that the confinement phase is an SPT phase
as the Higgs phase. SPT string order parameter is given by
(Xp0*o* 0" Xy) # 0.

As future interesting topics, we point out the followings:

(1) Most of the studies on gauge-theoretical systems for
constructing qubits including the toric code and subsys-
tem stabilizer code focus on the topological phase, which
is nothing but the deconfinement phase of the LGT. The
Higgs-confinement phase in the two-dimensional systems un-
der ordinary boundary conditions is sometimes regarded as
a trivial phase with only gapful excitations [37-39]. In the
present paper, however, we showed that an explicit description
of the boundary states is possible and it plays a very important
role in clarifying structure of the encoded qubits. From this
point of view, the explicit description of the boundary states in
deconfinement phase is desired to study the detailed structure
of encoded qubits in the present model, although it might be
rather complicated.

(2) We are interested in effects of disorder. If a kind of
disorders is introduced on rough or smooth boundary, the SSB
in Higgs and confinement regimes might survive up to highly-
excited states even in the gauge-Higgs model. In fact, this
conjecture has been investigated from the viewpoint of many-
body localization [40—42]. Concrete numerical verification

for that in certain one-dimensional models has been reported
in recent studies [43—46]. The confirmation of the conjecture
for the LGT studied here is a future problem.

(3) We also expect that the encoded qubit state discussed
in this paper can be produced by a measurement-only circuit
[47-50], where sequential projective random measurements
of each terms in Hgyy are applied [51]. The numerical verifi-
cation of it can be an important future direction of study

(4) Application of the present formalism to higher-
dimensional models and other various types of stabilizer
code Hamiltonians related to quantum memory [52] is an
interesting subject. Our observation seems to indicate that a
finite-temperature phase transition of SSB of charge symme-
try as well as confinement belong to the universality class of
the corresponding quantum spin model in one-lower dimen-
sions. Another interesting issue to be clarified is meaning of
the strong-zero modes from the viewpoint of the gauge-Higgs
model, which are expected to exist even at (very) finite tem-
perature. Monte Carlo simulation is useful for these studies
[53,54].

(5) Finally, we comment on the experimental realization
and related modification of the model of Hgum [Eq. (1)]
focusing on the gauge-invariant conditions. We are consid-
ering quantum simulation of the present models by using,
e.g., ultracold atomic gasses, ion straps, etc. It is a hard task
for real experiment to strictly implement the gauge-invariant
condition of Eq. (2). However, a promising method was pro-
posed recently: it employs concept of local pseudogenerators
(LPGs) and adds an energy penalty term of the LPGs to
the model Hgum [55,56] instead of directly enforcing the
Gauss’ law [Eq. (2)]. The energy penalty term of the LPGs
can be suitable for experimental realization of the Gauss’
law by its simple form, and it effectively generates the target
sector of the constraint of Eq. (2). We expect that in such
experimentally-suitable Hamiltonian modified from Hgywm, it
is possible to construct the subsystem codes presented in
this paper although the toric code model Hrc [Eq. (9)] as a
gauge-fixing model does not appear and the exact solutions
of the subsystem code in the modified system would be more
complicated than those derived in this paper. However, phys-
ical properties of the resultant states are essentially the same
with the original ones. Detailed investigation of this topic is
interesting and a constructive future direction of study.
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