PHYSICAL REVIEW B 108, 045148 (2023)

Collective modes in the charge density wave state of K, 3Mo0QO;: Role of long-range
Coulomb interactions revisited

Max O. Hansen,! Yash Palan®,! Viktor Hahn®,' Mark D. Thomson ®,% Konstantin Warawa,? Hartmut G. Roskos ®,2
Jure Demsar ®,® Falko Pientka,' Oleksandr Tsyplyatyev,' and Peter Kopietz'
Vnstitut fiir Theoretische Physik, Universitdit Frankfurt, Max-von-Laue Strasse 1, 60438 Frankfurt, Germany
2Physikalisches Institut, Universitdt Frankfurt, Max-von-Laue Strasse 1, 60438 Frankfurt, Germany
3Institut fiir Physik, Universitit Mainz, Staudingerweg 7, 55128 Mainz, Germany

® (Received 15 March 2023; revised 14 July 2023; accepted 17 July 2023; published 28 July 2023)

We re-examine the effect of long-range Coulomb interactions on the collective amplitude and phase modes in
the incommensurate charge-density-wave ground state of quasi-one-dimensional conductors.Using an effective
action approach we show that the longitudinal acoustic phonon protects the gapless linear dispersion of the
lowest phase mode in the presence of long-range Coulomb interactions. Moreover, in Gaussian approximation,
amplitude fluctuations are not affected by long-range Coulomb interactions. We also calculate the collective
mode dispersions at finite temperatures and compare our results with the measured energies of amplitude and
phase modes in K;3Mo00;. With the exception of the lowest phase mode, the temperature dependence of the
measured mode energies can be quantitatively described within a multiphonon Frohlich model for generic
electron-phonon interactions neglecting long-range Coulomb interactions.
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I. INTRODUCTION

The charge-density-wave (CDW) state in quasi-one-
dimensional conductors such as Kjy3MoO;3 (“blue bronze”)
received a lot of attention in the 1970s and 1980s both
theoretically [1-5] and experimentally [6—10]. At a critical
temperature 7., CDW materials exhibit a phase transition
from a metallic to a semiconducting state with a gap A
for electronic excitations with momenta close to the Fermi
momentum kr. The CDW state can be associated with a
Peierls distortion, where phonons with momentum close to
q = 2kp condense and, thus, generate an additional periodic
potential for the electrons. The CDW gap A is proportional to
the macroscopic phonon displacement with momentum g =
2k . In this work, we consider only incommensurate charge-
density waves where 2k lies (up to a reciprocal lattice vector)
inside the first Brillouin zone. The CDW order parameter
is then complex so that its fluctuations can be decomposed
into phase and amplitude fluctuations. The amplitude mode is
the analog of the Higgs mode in high-energy physics, while
the phase mode (phason) is the Goldstone mode associated
with the spontaneous breaking of the U (1) symmetry of the
complex CDW order parameter. The phase mode is therefore
expected to be gapless.

Recent progress in time resolved optical and THz spec-
troscopy [11-17] has triggered renewed interest in the dynam-
ics of collective modes in CDW systems; note in particular
our companion paper [17]. However, a complete theoretical
understanding of their dynamics is still not available. In par-
ticular, microscopic calculations of the damping of phase and
amplitude modes in the CDW state as a function of tempera-
ture cannot be found in the literature. In this work, we address
another relevant question which has not been completely set-
tled: what is the effect of long-range Coulomb interactions
on the spectrum of collective modes in an incommensurate
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CDW? Old publications addressing this problem are par-
tially contradictory [18-20]. In particular, Virosztek and Maki
[20] found that the amplitude modes are not affected by the
Coulomb interaction, while the phase mode splits at finite
temperature into an optical and an acoustic branch; at zero
temperature (7 = 0 K) only the optical branch survives so
that Coulomb interactions destroy gapless phase fluctuations.
In this work, we critically re-examine this result and show
that it is essentially modified when the Coulomb interaction
between the positively charged ions (which was neglected in
Ref. [20]) is taken into account. We find that in the CDW state
the lowest phase mode remains gapless even in the presence
of long-range Coulomb interactions. Our approach shows that
the screening of the Coulomb interaction by acoustic phonons
(which is the Goldstone mode implied by the broken transla-
tional invariance in a crystal) is essential to protect the gapless
nature of the lowest-frequency phase mode.

This paper is organized as follows. In Sec. II we intro-
duce two model Hamiltonians describing incommensurate
charge-density waves in quasi-one-dimensional conductors:
the multiphonon Frohlich Hamiltonian for generic electron-
phonon interactions and its extension including long-range
Coulomb interactions. In Sec. III we recapitulate the mean-
field theory for the CDW state. In the following Sec. IV we
compute the collective modes in the CDW state without long-
range Coulomb interactions using an effective action approach
for the generic Frohlich Hamiltonian within the Gaussian
approximation (which is equivalent to the random-phase ap-
proximation). In Sec. V we derive the dispersions of collective
modes including long-range Coulomb interactions and show
that the lowest-frequency phase mode remains gapless. In
Sec. VI we compare our predictions for the temperature de-
pendence of the collective modes with experimental results for
Ko.3MoO; [14-17]. The concluding Sec. VII gives a summary

©2023 American Physical Society
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of our main results and an outlook. Additional technical de-
tails of the calculations presented in this work are given in
two appendices.

II. MODELS

In this section, we introduce two model Hamiltonians for
the theoretical description of the CDW state in quasi-one-
dimensional conductors such as Ky 3MoO3;.We also point out
some subtleties related to phonon renormalization and the
screening of the Coulomb interactions which play an impor-
tant role in the calculation of the collective modes in the CDW
state.

A. Multiphonon Frohlich model for generic electron-phonon
interactions

The established minimal model describing the CDW
instability in low-dimensional conductors is the Frohlich
Hamiltonian for generic electron-phonon interactions [21]

T +
Hr = Zekc,‘mck(, + Zw‘”bqkb‘l’\

ko qr

1
.
vy D VarChygo ko X 2.1

kogh

where ¢y, annihilates a spin-o electron with momentum k
and energy €, while by, annihilates a phonon of type A,
with momentum ¢ and energy w,,. Note that the sum over
A runs over all types of longitudinal and transverse phonons.
Assuming that the Fermi surface can be approximated by
two parallel flat sheets (see, for example, the experiments
[22]) at £kr = tkre,, where e, is a unit vector along the
direction of the chains of atoms or molecules forming the
quasi-one-dimensional material, the dispersion of the low-
energy fermionic excitations can be approximated by €, 4 ~
€k, + vrky, where vr is the Fermi velocity. In the second line
of Eq. (2.1) the volume of the system is denoted by V and the
phonon displacements are represented by the operator

= __—a (2.2)

We assume that the electron-phonon couplings y,, are only
finite for momenta ¢ close to £2ky so that, to the leading
order, long-wavelength phonons with |q| <« kg are not renor-
malized by the interaction. As pointed out a long time ago
in Refs. [23,24] and recently emphasized in Ref. [25], a finite
small-momentum part of the vertex y, in the generic Frohlich
Hamiltonian (2.1) would lead to a lattice instability [21] which
has recently been discussed by several authors [26—34]. In this
work we eliminate possible instabilities competing with the
CDW by assuming that y,, is finite only for the momenta g
close to +2kf.

B. Frohlich-Coulomb model

To take the long-range Coulomb interaction and electron-
phonon scattering with small momentum transfers into
account, we supplement the Frohlich Hamiltonian for generic

electron-phonon interactions (2.1) by the quantized interac-
tion energy between all charge fluctuations [35],

1
Hrc = Hr + —— qup—qpqv
2V 0

(2.3)

where f; is the Fourier transform of the Coulomb interaction.
For a quasi-one-dimensional system of coupled chains with
transverse lattice spacing a this gives [36,37]

5 5 00 e—iq~r
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where the r; sum is over a two-dimensional lattice of chains
and the r; = 0 terms should be properly regularized. In the
long-wavelength limit |g|a; < 1 this reduces to the usual
fy = 4me? /q*. The density operator in Eq. (2.3),

(2.4)

Pg = 05 — Py (2.5)

represents the Fourier components of the total charge density
consisting of the sum of the electronic density

e __ T
Pg = Z CroCk+qo >
ko

2.6)

and the ionic density

ph=—=VV> apXp. 2.7)
A

While the sum over A runs over all types of phonons we set
ag. = 0 when A refers to transverse phonons; in contrast, the
electron-phonon coupling y.4o,»in the Frohlich Hamiltonian
(2.1) is nonzero for both longitudinal and transverse phonons.
The coupling between longitudinal phonons and the fluctua-
tions of the ionic density for small momenta is of the form
[35,38]

ag. = axlql, (2.8)

where the momentum-independent constants «; depend on
the phonon type. In particular, a lattice with a single atom
per unit cell supports only one longitudinal acoustic phonon,
so that in this case, we may omit the flavor label A. The
corresponding coupling ¢, in this case can be written as [35]

S g
o, =2z, —lql,
1=y

where z is the valence of the ions, #; is their density, and M is
their mass. Let us emphasize that the Coulomb interaction in
Eq. (2.3) has three contributions,

1 1 e e 1 i i
b qup—qpq =) ;(;fqp—qpq + ) qup—qpq

q#0 g#0
1 e i
Y Z P—qPg>
q#0

2.9)

(2.10)

where the last term represents the electron-ion interaction with
small momentum transfers,

D fa%iCh g ChoXgr. (2.11)
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For acoustic phonons this is the usual deformation-potential
coupling to electrons with unscreened electron-ion potential
[35,38]. For optical phonons the coupling f,o, o< 1/|q| de-
scribes the polar coupling of electrons to longitudinal optical
phonons [38].

The ion-ion interaction on the right-hand side of Eq. (2.10)
has been omitted in previous investigations of the effect of
Coulomb interactions on the collective modes in CDW sys-
tems [19,20]. We show here that for the calculation of the
dispersions of the collective modes of CDW systems in the
presence of Coulomb interactions, it is crucial to retain also
the ion-ion interaction term in Eq. (2.10). To give an intu-
itive argument for the importance of the ion-ion interaction
one can consider, for simplicity, a lattice supporting only a
single longitudinal acoustic phonon. Then the contribution
from the ion-ion interaction to Eq. (2.10) can be written as

1 P 1
ﬁzf‘l'o—q'oq = EZQ%X—qua (2.12)
970 q#0
where we have used the fact that the combination
foog = QF = 4m(ze)’ni/M (2.13)

can be identified with the square of the ionic plasma fre-
quency. At the first glance, Eq. (2.12) seems to suggest that
long-range Coulomb interactions push the frequency of acous-
tic phonons up to the ionic plasma frequency. In a metal this
is of course incorrect, because the ionic charge is screened
by the electrons so that acoustic phonons have the squared
dispersion ©2/(1 + «2/q*), where « is the Thomas-Fermi
screening wave vector. For ¢ < k we thus recover the linear
dispersion of acoustic phonons with velocity €2;/«, which is
the well-known Bohm-Staver relation [39,40]. From the above
considerations, it should be clear that by simply dropping the
ionic contribution to the Coulomb interaction in Eq. (2.10)
one violates the balance between electronic and ionic charge
fluctuations and therefore cannot properly describe screening
effects. To calculate the effect of Coulomb interactions on the
collective modes in CDW systems it is, therefore, crucial to
retain also the ionic contribution to the Coulomb Hamiltonian
(2.10). In Sec. V we will calculate the energies of amplitude
and phase modes including the effect of Coulomb interactions.
There we find that the ionic part in Eq. (2.10) leads to a new
contribution to the collective modes energies which can have
the same order of magnitude as the result obtained in Ref.
[20] where the purely ionic part in Eq. (2.10) was neglected. It
turns out that this ionic part is crucial to describe the complete
screening of electronic charge fluctuations by the ions, which
in turn protects the gapless nature of the Goldstone mode
associated with the broken U (1) symmetry in the CDW state.

This effect of the ionic part on the formation of Goldstone
(phase) mode can be understood intuitively on the physical
level as follows. The CDW state is formed due to the Peiels
instability, i.e., the electrons and ions form a wave state in
their respective densities at a given momentum with the rel-
ative phase shift of 7 so that the net charge remains zero
everywhere throughout the system, as illustrated by the two
solid lines in Fig. 1. An excitation of the phase type above
this state is a deviation in the phase of the electronic density

phase mode

\
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FIG. 1. Formation of the collective phase mode without the
Coulomb interaction between the ions. The full lines marked “elec-
trons” and “ions” are the profiles of the electronic and the ionic
densities in the CDW state respectively. The dashed line is the elec-
tronic density profile for the phase mode, in which its phase acquires
a shift with respect to the lowest energy state. The plus and minus
charges mark formation of a macroscopic dipole in the system when
the phase mode is excited, see also Chap. 6 of Ref. [41].

profile, see the dashed line in Fig. 1, that produces a macro-
scopic dipole moment, which costs a finite charging energy
since the Coulomb force is long-range and results in a finite
gap in the spectrum of the phase excitations. Turning on the
Coulomb interaction between the ions allows the screening
processes for electrons by the ions. Such a process is also
invoked in the intuitive derivation of the Bohm-Staver relation
[39,40]. Such processes also allow the ionic density profile
to follow the electron one in Fig. 1 resulting in absence of
any macroscopic dipole and eliminating, therefore, the gap
in the spectrum fo the phase mode. In a different context,
the importance of the ion-ion contribution has been noted
previously in Refs. [42,43].

III. MEAN-FIELD THEORY FOR THE CDW

To fix our notation and set the stage for the calculation of
the collective modes, let us briefly recall the usual mean-field
theory for the CDW state in a quasi-one-dimensional metal
[7] within a functional integral approach. Starting point is the
Euclidean action of the Frohlich model for generic electron-
phonon interactions defined in Eq. (2.1),

Srle, ¢, X] = — / Y Gy (K)ekocko
K o
1
+5 f > Dy (@X-oXo
Q

+//ZVqAEK+QaCKUXQk, 3.1
KJQ ol

where the inverse propagators of the electrons and phonons
are

(3.2a)
(3.2b)

Gy (K) = io — e + 1,
Dy (Q) =V + ).

Here the collective label K = (iw, k) represents fermionic
Matsubara frequency iw and momentum k, the label Q =
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FIG. 2. Schematic visualization of the softening of phonons with
wave vector ¢ = 2kp as the temperature T approaches the critical
temperature 7, of the CDW instability. The dashed-blue line denotes
a generic one-dimensional phonon dispersion w, = 2w sin(ga/2),
while the solid lines denote the renormalized phonon dispersion
wy = wy/T — AoI1o(q, 0)/T1,(0, 0) for different temperatures. Here
Ao represents a (constant) dimensionless electron-phonon coupling
and I1y(q, 0) is the static Lindhard function in one dimension in the
normal phase [44]. Because I1(2kf, 0) diverges logarithmically for
T — 0, there is a finite critical temperature T, where @, vanishes.
At lower temperatures a CDW with periodicity Q, = 2kr emerges.

(iv, q) represents bosonic Matsubara frequency iv and mo-
mentum ¢, and the integration symbols are defined by |, K=
BV 2>, and [, = (B X, X0, where B = 1/T is
the inverse temperature.

To investigate the CDW instability within the mean-field
approximation, we replace the phonon displacement field by
its expectation value describing a CDW with ordering wave
vector Q, = 2kp,

Xorn = X, = ﬁvavyo[(sq,Q*XQO*x + S‘IﬁQ*XSQ*A]’

where Q, = 2k is the ordering momentum of the CDW.
A sketch of the softening of the phonon dispersion at wave
vector ¢ = 2kr when the temperature approaches the critical
CDW temperature 7, is shown in Fig. 2. With the notation

(3.3)

A= Z vouXg,. AT = Z V-0.X% . (3.4)
A A
the mean-field action can be written as
Sele,e. X1 = [ Yllew = = i0)coco
(e
+ ACk19.0Cko + A*Ck—0.0Cko ]
3.5)

+BV Y 05, X00,Xg 5
A

This is the action of noninteracting electrons moving in an
additional periodic potential U (r) = Ae'%<" 4+ A*e~2:" The
corresponding eigenstates are Bloch states and the spectrum
consists of infinitely many energy bands Ej,, where k is re-
stricted to the first Brillouin zone and n enumerates the bands.
With Q, = 2kge, the first Brillouin zone is |k,| < kg. Since

we are only interested in the low-energy states we retain only
the lowest two energy bands by restricting the momentum sum
to the regime |k,| < 2kp consisting of the first two Brillouin
zones. After shifting the momentum labels in the anomalous
terms the mean-field action reduces to

K = -

<ek+%*—u—iw A )
X N .
A €0 — M —iw
2

Cc Qi
. ( ) B9 0 XK
-2 A
3.6)

where the momentum integration is restricted to |k,| < kr and
we have introduced the notation K + Q, /2 = (iw, k + 0, /2).
The quadratic form in Eq. (3.6) can be diagonalized with a
canonical transformation to a new set of fermionic fields dg

and dg_,
Ckio\ _ (wx  —u d,‘g, 3.7
CK—QZ—*U B v;ck u; d[;a ’ '
where
A JEy+ & Ep — &
- , = , 3.8
HTTA 28 T 25 (3-8)
€+l T -2
E =8+ A2 G=—"3F"7 — 9

In terms of the new fermion fields the mean-field action (3.6)
can be written as

Seld.d. X = [ Y0 3B - i d,
K

o a==%
PV X GI0)
A
where
EX = +E + Gt TGt 3.11)

2

Note that the original energy dispersion € is split into a con-
duction band E,:’ and a valence band E,~ separated by a gap
2| Al. The corresponding mean-field grand canonical potential
is

Qup = —= Z In[1 + e PE—1]

k,a=+
Y eh XX GD)
A
where
s=25+1=2 (3.13)

is the spin degeneracy. Minimizing Qy with respect XQQ we
obtain the self-consistency conditions

Vék*x s Z o VQ*X’XQO*)J
- RY) BE; —1)
wp Vi T+ 1 28,

Xg, = (3.14)
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Keeping in mind that we consider electronically quasi-one-
dimensional systems we may expand the electronic energy
dispersion to linear order around the Fermi momentum,
eki%* = €ktk, N €k, T Vpky = €p £ vk, so that

Ef —pn==+/(rk)? + A2 =

+Ey. (3.15)

The linearization is valid when the CDW gap |A| is much
smaller than the Fermi energy €p, so that the behavior of
the system is dominated by low-energy excitations around the
Fermi level.

Defining A; = yQ*AXQO*A the self-consistency equa-
tion (3.14) can then be written as

Ay =d, Z AVYR
=
where we have introduced the dimensionless couplings

lYol* s a 1
d = — . I, TRFC_ ) . 4 A~
* W, V ; ePEW 1 2F,

(3.16)

o

_ vo.l® s ™ tanh(BEy/2)

3.17
a)é*)\ \% 2Ek ( )

k

The nonzero solution of the eigenvalue equation (3.16) is of
the form A; = Ad, where the parameter A is determined by
the self-consistency condition

lvol* | s tanh(BEy/2)
P b
A

w Yo k

(3.18)

Note that the couplings d, implicitly depend on A via
E; = +/(vpky)? + |A|2. The self-consistency condition A =
>, Ayx=A),d, is the multiphonon generalization of
the well known mean-field self-consistency condition for
the CDW order parameter [7]. For an electronically one-
dimensional system where Ej is given by Eq. (3.15) the
self-consistency equation (3.18) reduces to

1 /w dE L JTFAP/0? +1
— = —_— = — 1N s
g Jo VEIF|AZ 2 \J/1+|AP/w?—1

(3.19)

where o, is an ultraviolet cutoff [35,38,45] typically taken to
be of the order of the bandwidth [3,6] and we have introduced
the dimensionless electron-phonon coupling

|ygﬂw
go= |y == (3.20)
|:A @91 2
Here
vy = = 5" 28(vpky) = —— (3.21)
3_Vk Fx_nvpai’ '

is the (three-dimensional) density of states at the Fermi energy
(including the spin degeneracy) of an electronically one-
dimensional system with transverse lattice spacing a . The
solution of the self-consistency equation (3.19) is

2w,

T 6:22)

A osl_ i—qyny
0.4 [tanh (W)}“

0.2

0 02 0.4 06 08 1.0
T/T.

FIG. 3. Different expressions for the temperature dependent
CDW gap A(T) in units of Ag = A(T = 0). The red curve is the
prediction of the mean-field gap equation (3.18) for gy ~ 0.82, which
is the sum of the relevant electron-phonon couplings for blue bronze
(see Table I in Appendix B). The blue curve is the square-root
behavior obtained within Ginzburg-Landau theory. Lastly, the gray
curve is an empirical formula fitting the measurements of Ref. [46]
on blue bronze.

For small gy this can be approximated by the usual ex-
ponentially small Bardeen-Cooper-Schrieffer result |A| =
2w.e~ 1/ In the opposite limit of large gy we obtain |A| &
8o, but in this regime our approximations (such as the lin-
earization of the energy dispersion) are not valid so that, in the
rest of this work, we assume go < 1. In Fig. 3 we show a graph
of the temperature dependence of the mean-field gap predicted
by Eq. (3.18) in comparison with two additional curves: the
square root behavior predicted by Ginzburg-Landau theory
and an empirical formula fitting the measurements of Ref. [46]
on blue bronze.

IV. COLLECTIVE MODES FOR THE FROHLICH MODEL

To obtain the spectrum of collective modes within the
Gaussian approximation, we write down the Euclidean action
of our model and integrate over the electrons and the phonon
momenta conjugate to the phonon displacements X,; . Retain-
ing only the two electronic bands in the vicinity of the Fermi
energy the resulting effective phonon action is

1 _
Seff[X] = E /Q Z (U2 + CL);)\)X_Q}\XQ)L —sTrln [GO - A],
A
4.1)
TABLE 1. Summary of the values of the parameters of the
multiphonon Frohlich Hamiltonian for generic electron-phonon in-

teractions (2.1) and the dimensionless coupling constants defined in
Eq. (B1) used for the fit to the experiments.

Mode number 1 2 3

W, [THz] 1.79 2.25 2.64
wa ;. (T =0) [THz] 1.69 2.23 2.56
wp,; (T = 0) [THz] 0.10 2.14 2.41
72 x 10% (fitted) 2.30 0.75 3.74
8o, (fitted) 0.42 0.09 0.31
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where for an electronically one-dimensional system we may
linearize the electronic dispersion close to the two Fermi
points so that the inverse electronic propagator in the normal
state is

-1 iw— Upk 0
[Go' ke = SK*K/( 0 ' o+ vpkx>’ 4.2)

with the prefactor 8k x = BV y8w,«r- Recall that K =
(k,iw) and Q = (g, iv) are collective labels for the momenta
and Matsubara frequencies of the fermions and phonons, re-
spectively. The electron-phonon coupling is described by the

matrix
. 0 Ag_g
[Algx = <A}<(’—K 0 )
“4.3)
where
Ag = Z Y2k +02X2kp +01 - 4.4)

A

Separating the mean-field part of the fluctuating gap as
AQ = A% + VQ, where A% = (SQ'()A = ,BV(SV!()(S,I_QA, we ob-
tain, within the Gaussian approximation,

—sTrln [Ga1 — A] = —sTrln [Gfl — V]
— BQ, + 5TH[G V] + %Tr[GlVGlV]

+0O?), 4.5)

where
B = —sTrlnGy' = —s Y In[1+ e P51, (4.6)
ka

is the electronic contribution to the mean-field grand canon-
ical potential in units of temperature. The inverse electronic
mean-field propagator is given by

_ iw — vpky A
(G ' Ixk = 51<,K'< A*F

%Tr[GlVGlV] = f

and the matrix V contains the fluctuation Vo = Ap — A, of
the CDW order parameter,

0 Vi_x
Ve = () 5F).

Note that this matrix has no diagonal elements because we
have assumed that the electron-phonon vertex y;; in the Froh-
lich Hamiltonian for generic electron-phonon interactions is
only finite for momenta close to £2k. To explicitly separate
the long-wavelength phonon displacements with momenta
|g| < kp from the short-wavelength displacements with mo-
menta close to £2k (see Fig. 2), we set

lg| < kr,

(4.8)

(4.9a)
(4.9b)

Upy = Xox.,
Vor = Xk 100 — 5Q,0X20kF,\, lg| < kr.

Note that by definition Ug, = U_g; but for an incommensu-
rate CDW VQ*A = szkaQ’)L — SQqOX—OZkF,A #* V,Q)L. With this
notation, we write the fluctuations of the gap as

Vo=02p— Ay = Z Vakr+2Von-
a

(4.10)

The self-consistency equations (3.14) guarantee that the
expansion of Ss[X ] does not have a linear term in the fluctu-
ations, so that in Gaussian approximation the effective action
Eq. (4.1) reduces to

Serr[U, V] = BQ1 + BV Z 33X g1 Xk
x

1
+ 3 / Z (lﬂ 4 w;A)U,Q,\UQ,\
Q2

+ /QZ (V2 + a)%kF+q)\.)VQ>k)\.VQA'
A

where we have introduced the following three polarization functions:

N7 (g, iv) = s /

Mg (g, iv) = s/
K

+ %Tr[GNG,V]. @.11)

iw+ vp kx)’ “.7) The trace in the last term can be written as

J
y v, V(@) MY (Q) s
[H:)/V(Q)VQVQ + L=V oV + 2 5 ng_Q], (4.12)
(4]
iw(io + iv) — vik,(ky + qy) 4.132)
) .13a
k [((@)? — (vrk)? — |APII(iw + iv)? — (ve (ke + q2))* — | A7
(a7 (4.13b)
[(iw)? — (vrke)? — [AP][(iw 4 iv)? — (vp (ke + g0))* — [A]2] '
AZ

(4.13¢)

Y (q.iv) = s/
K

Note that in the effective action (4.11) the long-wavelength
phonons with momenta |q| < kr decouple from the phonons
with momenta close to +2kp, i.e., the two types of phonons
do not interact within this approximation.

[(i@)* = (vrke)? = |AP](iw + iv)? — (vp (ke + g2))? = |AP]

(

For simplicity, let us use the gauge freedom to choose
the mean-field order parameter A to be real in order to sim-
plify our calculations. It is then convenient to parametrize the
complex field Vp in terms of two real fields Ap and By by
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setting
1
VQ = E[AQ + iBQ], (4143)
1
Vi =—[A_p —iB_pl. 4.14b)
0= A0 0 (

With this notation

1
%Tr[GlVGIV] =5 / [MI34(@)A_0Ag + TI5P(Q)B_By].
Q

(4.15)

J

where
Mgt (g, iv) = 115V (Q) + 11V (),
N5 (g, iv) = Iy (Q) — 1}V (Q).

For simplicity let us assume that y, g = ¥, and
Wk, +q1 = ;, are independent of the relative momentum g
so that Vo =), ¥.Vps. Both approximations are justified
for A < er where the physics is dominated by excitations
around the Fermi surface. Similarly to Vj, we expand Ap =
ZA )/,\AQ)\ and BQ = Z)\ )/)\BQ,\ so that VQ)L = \/LE[AQ)L +
iBpy]. Our Gaussian effective action (4.11) can then be
written as

(4.16a)
(4.16b)

1 1
SerlU, A, Bl = pQ1 + BV Y @} IXP + 2 / 2 (v +op)U-gilo + 5 / > {8 (0 + o)) + vy TAD)A g Aoy
T 07 0

+ [0 (V7 + @}) + Vi TIEP(Q)1B_g:Box |,

where in the first line we have introduced the abbreviations
X() _ X()
L 2kF’)‘. . . . .
The collective modes in the CDW state can be identified
with the eigenvectors of the matrices M*4(Q) and M2(Q) in
flavor space with matrix elements

M2(Q) = 8 (V + 0}) + vy TIHA(Q),  (4.18a)
ME,(0Q) = 8,0V + @) + 1y TIEE(Q).  (4.18b)

The energy dispersions of the collective modes can be
obtained from the solutions of the equations

detM” (¢, ® + i0) = 0,
detM®(q, w 4+ i0) = 0.

(4.192)
(4.19b)

Introducing the diagonal matrix D with matrix elements

Dy = ‘SAN(VZ + a)i), (4.20)

and the column vector y with components y;, the above ma-
trices M” and M? have the structure

M =D + Ioyy’. 4.21)

Anticipating that for the relevant frequencies detD # 0 we
find that the condition detM = 0O reduces to

@D y) "+ =0. (4.22)

We conclude that the eigenfrequencies of the amplitude
modes can be obtained from the roots of the equation

- —-1

2
Y| 4w +i0) =0, (4.23)
L% YT
while the eigenfrequencies of the phase modes satisfy
- 7-1
2
Yo 52— | +0g.w+i0)=0. (4.24)
| 5w — @ |

Alternatively, these conditions can be obtained from the effec-
tive action Se[A, B] of the average fields A = >, 134, and

v

(4.17)

[
B =", v»B, defined by

e~ SerlAB] /D[U]/D[AA]/D[Bl]e_se“[U’A"B*]

x (S(A = Wh)a(tz -y yABx). (4.25)
A A

Representing the § functions via functional integrals over aux-
iliary fields ¢* and ¢, carrying out the Gaussian integrations
over A; and B, and then over ¢* and ¢®, and dropping an
additive constant we obtain

1 _
Serrl[A, B] = 3 / {[Dy ! Ckp, iv) + TIH*(Q)]A_oAp
0

N (4.26)
+ [Dy ' (2kp, iv) + TI§(Q)]|B_oBo}.
where
- Vi
Do 2k, iv) = . 4.27
0(2k, iv) ;vhrwf (4.27)

We obtain Egs. (4.23) and (4.24) from the condition that the
corresponding Gaussian propagators have poles on the real
frequency axis.

To write the mode-frequency equations (4.23) and (4.24) in
a compact form we note that the generalized polarization func-
tions I154(g, w + i0) and T158(q, w + i0) appearing in these
equations can both be expressed in terms of the following
auxiliary function:

. S 1
F(q’ lU)E N

. (428
2 /K [y — E¢][(Go +iv)* — B¢, ] o

After carrying out the frequency sum and setting ¢ = O this
reduces to

tanh (%)

)=—S 12/
FO-M=2y Xk: E[QE)? + v

(4.29)
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Using the fact that at zero temperature the gap equation (3.18)
implies

1
Vi -
V 2Ek [Z ] =Dy (2kr, 0), (4.30)

we ﬁnd, after analytic continuation to real frequencies, that
Eq. (4.23) reduces to

Dy (2kr, @) — Dy 2k, 0)

= [0 — (vrqx)* — QA IF (g, w). (4.31)

Similarly, we obtain from Eq. (4.24) for the frequencies of the
phase modes

Dy (2kp, w) — Dy (2kp, 0) = [0 — (vrq:)*1F (@, ®).

(4.32)
For simplicity, let us now focus on the zero temperature

limit. For small frequencies and momenta ¢ = g,e, we may
then approximate

2 @ 2 (vrq)?
F(gr o)~ Fo|:1 +3 (2‘2)2 = g(fﬁi)i } 4.33)
with
TN (4.34)

where the density of states vs is defined in Eq. (3.21).
Substituting the expansion (4.33) into the mode-frequency
equation (4.31) for the amplitude modes we obtain

2 2
Dy @kr, @) — Dy 2k, 0) = [“’_ _ (vrgy)

_ 2
3 3 (24) :|Fo

(4.35)

Anticipating that for Kg3MoOj; the solutions of this equation
are only perturbatively shifted from the bare phonon frequen-
cies w;, we may approximate the inverse phonon propagator
in Eq. (4.35) in the regime |w — w;| < |w; — w;+1] by
w? — »?

2
A

Dy 2kp, w) ~ (4.36)
With this approximation, we obtain from Eq. (4.35) the fol-
lowing explicit expression for the squared frequency of the
amplitude mode adiabatically related to the phonon mode A:

w3 ,(qx) = @3, (0) + (Vaqx)’, (4.37)
with
W}, (0) = “’—i[l Vi Bt @y 0) + ”’;2],
’ 1+ V’TF" ; 2wy
(4.38)
Vi = 1 +3@ vE. (4.39)

Next, let us examine Eq. (4.32) for the frequencies of
the phase modes. This equation always has a special low-
energy solution with linear dispersion @ ~ v,|q| for |g.| —
0, which can be identified with the gapless Goldstone mode

implied by the spontaneous breaking of the U(1) symmetry
associated with the CDW order parameter. To see this, we note
that for sufficiently small @ we may expand the left-hand side
of Eq. (4.32) to quadratic order in w,

. , 2
— Dy 2k, 0) ~ —w

[z,
which is sufficient to obtain the dispersion of the lowest-

frequency phase mode for small |g,|. Then Eq. (4.32) reduces
to

>

Dy (2kp, w) (4.40)

P

KIS =
—_

>, L
2 @,
w ﬁ + F()

[z.5]

which implies for the squared frequency of the lowest phase
mode

+ Fy(vrgy)* = 0, (4.41)

@5(qx) = (Vpq:)’. (4.42)
The squared phase velocity can be written as
2 81 o
v: = Vg, (4.43)
T+ "

where we have introduced the dimensionless coupling con-
stant

2 1? 2 1?
o8 LN
(= %] b [E 5]

= (4.44)
2 2
D AV

s1=h

Finally, let us give the dispersions of the amplitude and
phase modes in the special case where the system supports
only a single phonon mode. Then we may omit the sum-
mations over the phonon label A so that our dimensionless
coupling g; reduces to

“’%k
g1 = v, Fo= VL (4.45)
where
2
V3Voky
80="77 (4.46)
Wy

is the single-phonon version of the dimensionless electron-
phonon coupling defined in Eq. (3.20). Our result for the
squared frequency of the amplitude mode in Eq. (4.37) then
reduces to

w3(q) = (4.47)

(UFQX)2
1 + & 30

|:(2A) +
while the phason velocity in Eq. (4.43) can be written as

v, 80
®
- = (4.48)
UI% 8o+ 4A2/a)§k,.-
Note that for Ky 3MoO3 we estimate 2A /woi, ~ 12 atT =0,
so that v; [vp &~ gO“’%k,.-/ (4A?) = gy, in agreement with the
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1.0

2 0.6
UF 0.4

0.2

FIG. 4. Squared phase velocity v; given in Eq. (4.43) in units
of the squared Fermi velocity v as a function of the dimension-
less electron-phonon coupling gy defined in Eq. (4.46). The plot
is for w./wx, =25, where w, is the ultraviolet cutoff in the self-

consistency equation (3.19) for the mean-field order parameter A.

expression given in the review by Griiner [6,47]. A graph of
the squared phase velocity in Eq. (4.48) as a function of the
dimensionless electron-phonon coupling g is shown in Fig. 4.
In general, the phason velocity is smaller than the Fermi
velocity. Though in the regime of weak electron-phonon cou-
pling, where A is exponentially small, the approximation
v, A v iS very accurate.

V. EFFECT OF LONG-RANGE COULOMB
INTERACTIONS ON THE COLLECTIVE MODES

How are the above results modified by the long-range
Coulomb interaction? According to Virosztek and Maki [20],
in the presence of long-range Coulomb interaction an incom-
mensurate CDW at zero temperature does not have a gapless
collective mode related to the breaking of the U (1) symmetry
of the complex CDW order parameter at 7 = 0. This is rather
surprising, because it means that the Coulomb interaction
completely destroys the Goldstone mode associated with the
spontaneous breaking of the U(1) symmetry of the complex
order parameter of the incommensurate CDW. We show in this
section that this result is erroneous and that the phase mode
remains gapless even in the presence of Coulomb interactions.
The crucial point is that the charge fluctuations associated
with long-wavelength acoustic phonons screen the long-range
Coulomb interaction even at zero temperature so that the
resulting effective interaction is short-range and cannot quali-
tatively modify the gapless phase mode. This screening effect
was not properly taken into account in Ref. [20].

The starting point of our investigation is the Hamiltonian
Hpc given in Eq. (2.3) which is obtained by adding the
quantized Coulomb energy of electronic and ionic charge
fluctuations to the Frohlich Hamiltonian for generic electron-
phonon interactions (2.1). After integrating the corresponding
Euclidean action over the phonon momenta and decoupling
the Coulomb interaction employing a Hubbard-Stratonovich
field ¢, we obtain the following Euclidean action of our

Frohlich-Coulomb model:

Lo 1
SFC = (Gk e la))C](aCKg + = / (U2 + w;A)X—QkXQA
(28

2

Ko
1 _1 B
+5 | f 9090+ Yg).CK+00 Cko X0
2 Jo Ko Jox

+if b0 |:/ CK+00CKo + ZanXQA]~
[0} Ko 2

In the last line the term i fQ d_0 Y ; apXps describes the
contribution of ionic charge fluctuations to the effective in-
teraction. It turns out that this term, which has been ignored
by Virosztek and Maki [20], is essential to correctly describe
the effect of Coulomb interactions on the phase modes in a
CDW.

Note that pure Coulomb interactions in one-dimensional
electronic systems are generally non-perturbative already at
low energies due to the Luttinger-liquid physics [48] dom-
inated by the gapless CDW states, and a growing body
of evidence indicates that the formation of CDWs in these
systems is more generic then the low-energy phenomenon
[49,50]. Nevertheless, the use of only the Gaussian approx-
imation is justified in our calculation by the effect of the
electron-phonon interaction which triggers the formation of
the gapfull correlated CDW state via the Peierls instability. At
low temperatures the inverse of the large value of the order
parameter A in Eq. (3.22) provides a small parameter for
the perturbative treatment of the electron-electron interaction
even in one dimension in this work. Also some numerical
studies of the interplay between Luttinger liquids and the
Peierls instability in Refs. [51,52] suggest a possibility of such
a scenario. We will return to this point later in Sec. VI where
we compare the results of this section with the experimental
data.

Following the procedure outlined in Sec. IV we may now
integrate over the fermions in the two-band approximation to
obtain the effective action of the phonons and the Coulomb
field,

(5.1

1 2, 2
Setr[X, 9] = 3 (v + wqx)ng,\XQx
0h

1
+§qu_l¢g¢g+iL¢QUQ

—sTrln (Gl_l — V), 5.2)

where the electronic propagator G; in mean-field approxima-
tion is defined in Eq. (4.7) and the fluctuation matrix V is now

given by
Vk_x' )
ipk_x' )

Here the low-energy fields Uy and Xy, are defined in Eq. (4.9),
i.e., UQ;L = XQ)\ for |q| < kr and VQ}L = XZk,,JrQ)L — 8Q,0X0,
with Up = Y, agUps and Vp =}, 5 Vps. The next few
steps are analogous to the steps in Sec. IV so that we relegate
them to Appendix A. Our final result for the effective action
of the collective amplitude and phase modes in the presence

ik

5.3
Vi e

[Vlgkx = <
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of long-range Coulomb interactions is

1 _
SertlA, B] = 3 / {[Dy @kp. iv) + TTH (Q)]A—0Ag
0

+ [Dg" @kr. iv) + TIEP(Q) + TIF5(0)]B_oBo}.
(5.4)

where the generalized polarization function TT¥8(Q) is given
by

26,18 (—o)ng ()

Q) = - - . (5.5)
: 1+ £,[112(Q) + Do(Q)]
Here
D ) 5.6
0(Q) = ; Tra (5.6)

is the propagator of long-wavelength phonons and the polar-
ization functions Hg)v (Q)and Hg"’(Q) are defined in Eq. (A3).
By comparing the effective action (5.4) with the corre-
sponding effective action (4.26) in the absence of Coulomb
interactions, we see that within the Gaussian approximation
the amplitude modes are not affected by the Coulomb interac-
tion. On the other hand, the Coulomb interaction gives rise to
an additional contribution IT%8(Q) to the polarization function
of the phase modes. Note that the denominator in Eq. (5.5),

(g, iv) = 1+ f[T10?(Q) + Do(Q)]

2
=14/ [H(’g"”(Q) +>° Ltﬂ] (5.7)
A

2
v+q)\

can be identified with the long-wavelength dielectric function
in the CDW state. After analytic continuation to real fre-
quencies the second term in the square bracket is the usual
contribution of harmonically bound charges to the dielectric
function [53].

To derive the dispersions of the long-wavelength phase
modes we expand the polarization functions in Eq. (5.4) for
small |[vpg,| K w;, K 2A and |v| < 2A. At zero temperature
we obtain

. (Uqu)z
M3 (q. iv) ~ v3=— 5 (5:8)
1 (g, iv) ~ vy (5.9)

4N 7
For simplicity, let us now assume that the system supports
only a single longitudinal acoustic phonon with linear disper-
sion

wy = vslql, (5.10)

with the sound velocity v,. Then we may omit the X
summation in Eq. (5.7) and the coupling o, is given in
Eq. (2.9). Setting ¢ = g.e, and using the fact that according
to Eq. (2.13) the combination fqoeg = le can be identified
with the square of the ionic plasma frequency, the dielectric
function €(q,, iv) in Eq. (5.7) can be written as

Q Q7
+

X ) = 1 —’
W) =14 a2

(5.11)

5] | 1 2
Ust/Qi

FIG. 5. Qualitative behavior of dispersion wp,(g.) of plasma os-
cillations in a CDW given in Eq. (5.14). The crossover momentum is
given by Q;/v, where Q; = Q;/./€, is the renormalized ionic plasma
frequency, see Eq. (5.19).

where the squares of the ionic and electronic plasma frequen-
cies are

47 (ze)n;
Q= % (5.12)
4mwe’n
Q2 = - = dme*vsvy. (5.13)

Here n; is the density of ions, 7 is the density of the electrons,
and m is the electronic mass. The energy dispersion wp(gx)
of collective plasma oscillations can now be obtained from
€(qy, o +i0) = 0, which gives

Q2
wPl(QX) = E_l + (vsq.r)zs (5]4)
where
QZ
. 1
&=1+25 (5.13)

is the static relative dielectric constant in the CDW state.
The qualitative behavior of the frequency w;i(gy) of plasma
oscillations in a CDW is illustrated in Fig. 5. Note that for
Uslgy| K€ R/ /€ and A K Q,, where €, ~ Qg/(6A2) > 1,
the scale of plasma oscillations in the one-dimensional CDW
is given by

Q,‘ Qi A m A
NG o o o6 Vi,
On the other hand, in the opposite limit vy|q,| > 2;/./€, the
plasmon oscillates with the frequency v,|g,/|, i.e. in this regime
the plasmon can be identified with the longitudinal acoustic
phonon.

Due to the coupling of the phase mode to the Coulomb
field in the CDW state, the plasma oscillations hybridize with
the phase modes. The energy dispersions of the hybrid modes
can be obtained from the zeros of the inverse propagator of
the phase modes in our effective action Seg[A, B] defined in
Eq. (5.4),

(5.16)

Dy 2kp, @) + TI§P(qr, ) + TT78(g,, ©) = 0. (5.17)
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(0] | |

0.2+ . ~ i
zvsq(/,’ w (q)
. ,

wi(0) o1t vq i

| L |

0 1 2

Ga/qe

FIG. 6. Upper panel: Energy dispersion of the gapped hybrid
mode w, (g,) resulting from the hybridization of the plasmon with
the phase modes given in Eq. (5.18). Lower panel: gapless hybrid
mode w_(q,). The plots are for v, = vy and the crossover scale ¢, is
defined by the condition €2 + Q2 = (v + v; Vg2

Substituting the above long-wavelength limits for the gener-
alized polarizations and focusing again on the single-phonon
case, we find that Eq. (5.17) can be reduced to a quadratic
equation for the squared energies w? (¢, ) of the hybrid modes.
The solutions of Eq. (5.17) can be written as

wi(q) = 5[QF + @ + (v] +v))q}]

1@ - 24 (2 — 2)2] + 29,
(5.18)

where we have introduced renormalized ionic and electronic
plasma frequencies

Q? i (5.19)
i = e .
N 1202 4dmwelvyv?
R=te T v (5.20)
Vg € €,

and v, denotes the phason velocity in the absence of Coulomb
interactions defined in Eq. (4.43). A graph of the dispersions
w+(gy) in the regime where v, ~ v is shown in Fig. 6. Note
that the lower mode w_(g,) has a gapless linear dispersion
with velocity 2v, for small |g,|. In fact, the asymptotic behav-
ior for small g, can be obtained from Eq. (5.18),

W (gx) = @ + Q + (xv] + xevfﬂ)qi +0(q}). (521

@2 (q0) = (x0] +x05)q; + O(q)),  (5.22)

where
Q2 Q2
= = ! =, Xe = =5 == ¢ =~ .
Q7 + Q2 Q2 + Q2
In the weak coupling regime where 2A < €2, the energy
of the upper branch for ¢ = 0 is given by

” ” Q2 V2
01 (0) = /O + Q2 ~ VoA ot
U

e

(5.23)

Xi

(5.24)

On the other hand, the energy w_(g,) of the lower branch
disperses linearly for small g,

w_(qx) ~ Uylqsxl, (5.25)
with the renormalized phase velocity ¥, given by
Uy = /X 02 —i—xivé. (5.26)

Thus, in the presence of Coulomb interactions the velocity ¥,
of the gapless phase mode is a weighted average of the phonon
velocity and the phason velocity without Coulomb interac-
tions; the weights are determined by the ratio of the ionic and
electronic plasma frequencies. In the adiabatic limit, where
the mass M of the ions is much larger than the mass m of the
electrons and the ionic plasma frequency is small compared
with the electronic plasma frequency, we can approximate
the weights as x, ~ 1 and x; ~ Q7 /Q} = (zm/M)vE/v]. As-
suming in addition a weak electron-phonon coupling, i.e.,
v, ~ vf, we find that Eq. (5.26) reduces to

02 —i—z%vz. (5.27)

The Bohm-Staver relation [39,40] allows us to express the
sound velocity in terms of the Fermi velocity

zm
Vg = WUF,

which is justified because by definition v, is the bare sound
velocity in the normal state of our model. Using the Bohm-
Staver relation we obtain in the adiabatic regime and for weak
electron-phonon coupling

- 4zm
Uy, = va = 2u;,.

We conclude that in this regime long-range Coulomb in-
teractions can strongly renormalize the phason velocity in the
ground state of a quasi one-dimensional CDW, as illustrated
in the lower panel of Fig. 6: While v, ~ vy in the absence of
Coulomb interactions, the inclusion of Coulomb interactions
generates a strong renormalization of the phase velocity to a
value of the order of the sound velocity vy.

Finally, consider the regime of intermediate to strong
electron-phonon coupling where v, < v; K vp. In this
regime, the coupling constant g; in Eq. (4.43) is small com-
pared with unity so that v, < vp in the absence of Coulomb
interactions. The renormalized value ¥, of the phase velocity
then has the same order of magnitude as the phase velocity
v, without Coulomb interactions because the factors x; and
x, in Eq. (5.26) have the same order of magnitude. The dis-
persions of the collective modes in this regime are illustrated

(5.28)

(5.29)
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= Vs

Qx/qc

FIG. 7. Energy dispersions w.(g,) resulting from thehybridiza-
tion of the plasmons with the phase modes given in Eq. (5.18) in
the limit of v, < v, < vr. The crossover scale g. is defined in the
caption of Fig. 6.

in Fig. 7. We emphasize that the gapless nature of the phase
mode in the presence of long-range Coulomb interactions is
protected by the existence of a longitudinal acoustic phonon
in a crystal. This is an interesting example for the interplay
of two Goldstone modes associated with the breaking of two
different continuous symmetries, U (1)-symmetry of the CDW
order parameter and translational symmetry of free space in a
crystal.

VI. COMPARISON WITH EXPERIMENTS

In this section, we fit the free parameters of our two
model Hamiltonians (with and without Coulomb interactions)
using the temperature dependence of the lowest three ampli-
tude and phase modes of Ky 3MoO;3 over a wide temperature
range.Then, we show that the predictions of our calculations
for the amplitude modes fit the available experimental data
[14-17] remarkably well. However, for the phase modes, both
models describe the experimental data given in Refs. [16,17]
only qualitatively. We, therefore, discuss the shortcomings
of our theoretical description of Kj3MoO3 and possible im-
provements to achieve a qualitatively accurate modeling of the
experiments.

A. Ky 3Mo00j; and the multiphonon Frohlich model for generic
electron-phonon interactions

The multiphonon Frohlich Hamiltonian Hy defined in
Eq. (2.1) with Ay.x phonons depends on 21, free param-
eters: The phonon frequencies wy,, and the electron-phonon
couplings ;. In principle, these parameters can be deter-
mined by measuring the energies of the A,x amplitude modes
and the associated A, phase modes at some fixed momentum
q. Unfortunately, such a measurement is not available at this
point, since the experiments [14—17] lack momentum reso-
lution. Moreover, in contrast to our results for the amplitude
modes, our experimental data for the phase modes exhibit an
unexplained temperature dependence and no mode at zero fre-
quency which prevents us from fitting our theoretical results
to the raw data for the 21, collective modes. Instead, we
fix the 2Ax free parameters of our multiphonon Frohlich

3
F " v T e es
* . . . vy
27 —
= | i
= . .
B
3 f
17
\ \ \ \
0 0.2 04 0.6 0.8

T/T,

FIG. 8. Lowest three amplitude modes of K;3Mo00QOj3. The black
dots are the measurements from Refs. [14,15], reanalyzed in
Ref. [17], while the solid lines are the predictions of the amplitude
mode equation Eq. (4.31) for T > 0 and ¢ = 0, where we matched
the coupling constants to the 7 = 0 values taking the phonon fre-
quencies from Refs. [14—17], see Appendix B for the explicit values.

model using the frequencies w; = woy,, of the bare phonon
modes from a measurement at 7 > T, and fitting the measured
amplitude modes at 7 = 0, which can then be used to fix
the squared electron-phonon couplings 2. Remarkably, if
we neglect the Coulomb interaction none of the subsequent
findings are sensitive to the precise value of the gap Ay =
A(T = 0) even though A is an additional free parameter.
This is because the solutions to the mode equations (4.31)
and (4.32) are of the order of the phonon frequencies w1,
which means that our calculation of the mode energies is not
only controlled by the dimensionless electron-phonon cou-
plings gos = ¥2vs /2a)§kF ,» but also by the small parameter
w/2Ay ~ wa,/2A0. Hence, the auxiliary function F (0, )
in Eq. (4.28) can be evaluated for small w and, therefore, all
corrections which explicitly depend on A are at least of order
w?/2A3 L 1.

In this work, we retain only the lowest three phase and am-
plitude modes of K¢ 3Mo0O;. The frequencies of bare phonon
modes for T > T, are taken from Refs. [14-16], the fre-
quencies of amplitude modes from [14-17], and the value
of the CDW gap 2A( &~ 100 meV is estimated from angle-
resolved photoemission measurements [54], which fixes all
the electron-phonon couplings y; for the three relevant
phonon modes. The numerical values of our fit parameters w;,
and y;” are given in Appendix B. Then we solve the mean-field
gap equation (3.18) to obtain the temperature-dependent gap
A(T). Cross-checking with Refs. [46,55] reveals that A(T)
can be approximated on the mean-field level. Using A(T') as
an input for the numerical solution of the function F(0, w)
defined in Eq. (4.29) enables us to solve for the roots of the
mode-frequency equations (4.31) and (4.32) in the absence of
Coulomb interactions for IT44(w + i8, 0) and 158 (w + i8, 0).
Our results are presented in Figs. 8 and 9, where we plot
the lowest three temperature-dependent amplitude and phase
modes for temperatures up to 7 < 0.987..The experimental
data were taken in Refs. [14—17,57]. The black dots in Figs. 8
and 9 are a a recently reanalyzed version of the data [17].
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FIG. 9. Temperature dependence of the lowest three phase
modes of Ky3;MoO;. The black dots of the upper two panels are
data points of Ref. [17] including the experimental uncertainty. The
black dots of the lowest panel are taken form the old experiment in
Ref. [57], also used for the analyses in [17]. The solid lines are the
predictions of the mode equation (4.32) for ¢ = 0, using the fitted
parameters ;> and wy,; from Appendix B.

From Fig. 8, we see that our calculations reproduce quan-
titatively the temperature dependence of the amplitude-mode
frequencies from Refs. [14—17] as long as T is not too close to
T.. When the temperature approaches 7, thermal fluctuations
become increasingly important and the order parameter A(7)
becomes small so that the Gaussian approximation used in this
work is expected to break down. In this regime higher-order
processes need to be taken into account, like for example in
the theory of fluctuational superconductivity for temperatures
close to T, [56].

In Fig. 9 we compare our theoretical predictions for the en-
ergies of the phase modes with the experiments. Although for
the finite-frequency modes the order of magnitudes agree with
[16,17], our Eq. (4.32) predicts that the lowest phase mode
should be gapless, in contrast to the experimental data [57]
for the lowest phase mode which exhibit a small but finite gap.

Moreover, our finite-temperature results for the phase modes
reveal a discrepancy in the magnitude of the temperature
dependence: Our solution of Eq. (4.32) predicts a variation
in the temperature dependence of the finite-frequency phase
modes of order 10~* THz which looks essentially flat on
the scale of Fig. 9. By contrast, the experimentally observed
variation, while being generally weak compared to the phase
mode frequencies, is still two orders of magnitude larger than
the theoretical estimate, i.e., of order 10~2 THz for the finite
frequency phase modes shown in Fig. 9. A possible expla-
nation for this discrepancy between our theory for the finite
frequency phase modes and experiment is that the Gaussian
approximation made in deriving Eq. (4.32) is not sufficient to
explain the temperature dependence of the phase modes. Note
that the Gaussian approximation, which is equivalent to the
random-phase approximation, retains only the lowest order in
the electron-phonon coupling by including only the contribu-
tion of a single electron-bubble to the phonon self-energy, i.e.,
it is quadratic in the dimensionless electron-phonon coupling
/8o defined in Eq. (4.46). To this order, there is no mixing
between the amplitude and phase modes, see Eq. (4.26). How-
ever, the next-order contribution in the collective fields, which
is quartic in ,/go, already introduces such a mixing that would
lead to a stronger temperature variation of the phase modes.
Since in Ky3MoOj3 the dimensionless electron-phonon cou-
pling go ~ 0.3 is small, the effect of such mixing can be
estimated as g%)SwA ~ 0.01 THz, where we used dwy ~ 0.1
THz as the variation of the higher frequency amplitude modes
in Fig. 8. This estimate matches the experimentally observed
order of magnitude of the phase mode variation. Hence, a sys-
tematic calculation of this effect for the phase modes can be
done by considering higher-order terms up to the fourth order
of the expansion (4.5), posing a route for further improving
the accuracy of the theory presented in this work.

While the experimental data for the amplitude modes
and the order of magnitude for the higher-frequency phase
modes can befitted by our results for the multi-phonon Froh-
lich Hamiltonian for generic electron-phonon interactions, the
behavior of the lowest phase mode remains somewhat myste-
rious. In fact, in experiments the frequency of this mode has
not been unambiguously determined so far; for example, with
the detectors used in Refs. [16,17] any mode with frequency
of the order of 1 THz or lower cannot be reliably detected
leading to a difference in the analyses between Ref. [16]
and Ref. [17]. Given the fact that according to our analysis
the lowest phase mode remains gapless even in the presence
oflong-range Coulomb interactions, the physical mechanism
inducing a gap in the lowest phase mode, seen in an earlier
experiment by Degiorgi et al. [57], remains unclear. One pos-
sible explanation is pinning by impurities [58], which are not
included in our model. Another possibility is that the gapped
lowest-frequency phase mode detected in the experimental
data reproduced in Fig. 9 is actually the upper (gapful) branch
of the hybrid phason-plasmon mode due to the Coulomb in-
teraction discussed in Sec. V.

B. Ky.3Mo00; and the Frohlich-Coulomb model

To examine the hypothesis that the lowest phase mode
is the upper (gapfull) branch of the hybrid phason-plasmon
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FIG. 10. Temperature dependence of the lowest phase modes of
Ko3MoOs, predicted by the mode equation (5.17) for 2, ~ 0.1 eV,
Q?/Q% ~ 1/2000, and ¢ = 0. Again the black dots are the exper-
imental data points [17,57] for the phase modes. While all modes
color graded as in Fig. 9 are weakly effected for low temperatures by
the inclusion of the additional self-energy correction 58 (w + i8, 0)
due to Coulomb interactions, it gives rise to the hybrid mode w, (0)
depicted as a gray line here. For T' 2 T, the hybrid mode gains a
strong temperature dependence related to the restoration of normal
screening at 7 = T, as discussed in Appendix B. This behavior,
indicated by switching to dotted lines T' 2 T, is not supported by
the experimental data [17].

mode induced by the Coulomb interaction, we have solved
Eq. (5.17) for the collective phase modes including the effect
of long-range Coulomb interactions. The collective modes
now depend on additional parameters, which can be chosen
to be the electronic plasma frequency Qg = 4me’n/m and the
long-wavelength electron-phonon couplings a4, = a; |q| de-
fined in Eq. (2.8). For simplicity, we work here with a minimal
model where the fluctuations of the ionic density are described
by a single acoustic phonon, i.e., neglecting hybridization
with the other phonons. Therefore, we can conveniently use
the square of the ionic plasma frequency foy = 7 as the ad-
ditional (and experimentally accessible) fit parameter instead
of the coupling a,. With €, ~ 0.1 eV and Q?/Q? ~ 1/2000
we obtain the hybrid phason-plasmon mode indicated by the
gray line in Fig. 10. At the same time, the amplitude modes are
not affected by the Coulomb interaction within our approxi-
mation and the finite frequency phase modes are marginally
shifted by the self-energy correction (5.5) due to Coulomb
interactions.

While the frequency w,(0) of the hybrid phason-
plasmon mode (depicted by the gray line in Fig. 10)
is of a reasonable magnitude and behaves as all the
other regular amplitude/phase modes for low enough tem-
peratures, the theoretically predicted dramatic temperature
dependence at higher temperatures disagrees with the ex-
periments [16,17]. For T exceeding a certain temperature
T, (which we estimate in Appendix B) the temperature
dependence of our theoretical expression for w,(0), shown
in Fig. 10, is due to a strongly T-dependent contribution to
the polarization function T{?(Q) defined in Eq. (B4). This

contribution, which vanishes for T — 0, restores to the usual
Lindhard function [35,44] in the normal metallic state and
dominates the temperature dependence of the hybrid mode
for T 2 T.. This contribution was already taken into account
in the calculations including long-range Coulomb interactions
by Visosztek and Maki [20], yet because they neglect the ionic
response it plays a different role there.

One possible explanation for the above discrepancy be-
tween theory and experiment is the breakdown of the
Gaussian approximation (which is equivalent to the random-
phase approximation) to properly describe the formation of
charge-density waves in the presence of Coulomb interactions
for T 2 T,. Since Luttinger liquid physics is generally ex-
pected to become important in electronically one-dimensional
systems with Coulomb interaction [48], higher-order inter-
action processes neglected in Gaussian approximation are
expected to stabilize the CDW state [59-61] in the temper-
ature range T 2 T, and suppress the Fermi liquid physics
including metallic screening described by the temperature
dependence of polarization function Hg‘z’(Q) for T 2 T,. We,
therefore, suggest that the proper theory of collective modes in
the presence of long-range Coulomb interactions for 7' > T
would need to include interactions between the collective
modes, which is a possible further theoretical development but
goes beyond the scope of the present work.

VII. SUMMARY AND CONCLUSIONS

In this work, we have re-examined the effect of long-range
Coulomb interactions on the collective amplitude and phase
modes in an electronically one-dimensional incommensurate
CDW. We have shown that the lowest phase mode has a
gapless linear dispersion even in the presence of long-range
Coulomb interactions. Our calculation reveals the crucial role
of the longitudinal acoustic phonon to protect the gapless
nature of the lowest phase mode in the presence of long-range
Coulomb interactions. This is an interesting example of the
interplay of two Goldstone modes associated with the spon-
taneous breaking of two different continuous symmetries in
a solid. Previous investigations of this problem [19,20] have
not properly taken the fluctuations of the ionic charge den-
sity and the associated contribution to the dielectric function
into account. Let us emphasize that a correct description of
screening is crucial to calculate the collective modes in a
CDW: Although the electronic contribution to the dielectric
function is finite due to the CDW gap, the ionic contribu-
tion associated with the last term in our expression (5.7) for
the dielectric function restores the usual 1/¢* divergence of
the static dielectric function due to the contribution from the
acoustic phonon. As a result, the Coulomb interaction is ef-
fectively screened and the phase mode remains gapless. If we
incorrectly omit the contribution of the acoustic phonon in the
sum ), o, / W2+ w,?x) in Eq. (5.7) this contribution would
vanish as g*> for small ¢ leading to a finite static dielectric
function; the Coulomb interaction would then remain long-
range leading to a gapped phase mode.

Comparison with experiments on Ky 3MoOj3 (blue bronze)
[14-17] shows that the temperature-dependent mode fre-
quencies of multiple amplitude modes are already well
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described by the multiphonon Frohlich Hamiltonian for
generic electron-phonon interactions in Gaussian approxi-
mation derived in Sec. IV. At this level of approximation,
our effective action approach is essentially equivalent to the
random-phase approximation adopted long time ago by Lee,
Rice, and Anderson [1-5]. While this model is fairly suc-
cessful in describing the order of magnitude for the higher
frequency phase modes, our calculations for the multiphonon
Frohlich model for generic electron-phonon interactions (2.1)
and its generalization (2.3) including the long-range Coulomb
interaction fail to ascertain the nature of the lowest phase
mode detected in Refs. [16], [17,57] and exhibit a temperature
dependence far beneath the experimental values. At this point,
we can only speculate about the nature of the experimen-
tally observed lowest finite frequency phase mode and if a
stabilized version of the T = 0 phason-plasmon hybrid mode
predicted by Eq. (5.4) exists. We note however, that pinning
by impurities would raise the zero-frequency phase mode to
finite frequencies.

J

Finally, let us point out that the experimental data [14—17]
for the amplitude modes and the phase modes exhibit a fi-
nite broadening. Unfortunately, at the level of the Gaussian
approximation, the collective modes predicted by Eq. (4.26)
or Eq. (5.4) have infinite lifetime and hence do not exhibit any
broadening. To compute the damping of the collective modes
within our effective action approach one has to go beyond the
Gaussian approximation, retaining in an expansion in powers
of the electron-phonon coupling gy terms up to order g% for the
amplitude- and up to order g, for the phase modes [62,63]. An
alternative method of calculating the damping of the collective
modes based on the solution of kinetic equations will be
presented in Ref. [64].
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APPENDIX A: EFFECTIVE ACTION WITH COULOMB INTERACTIONS

In this Appendix we outline the manipulations leading from the combined action Ses[X, ¢] of the phonons and the Coulomb
field given in Eq. (5.2) to the effective action Sei[A, B] of the collective amplitude and phase fluctuations in the presence of
long-range Coulomb interactions given in Eq. (5.4). Starting from Eq. (5.2) we expand the last term up to quadratic order in the
fluctuations and obtain the Gaussian low-energy effective action

1
SenlU. V. ¢] = BQ1 + BV Y vl X{I* + 3 /Qk (v* + w3, ) U-aUgs + ka(u2 + 0V Vor
A

1 K
+ = / fq71¢_Q¢Q + i/ ¢_oUp + =Tr(G;VGV), (A1)
2 Jo 0 2
where we have used the same notation as in Sec. IV. The trace in the last term can be written as
s 1 y N o 144 (0) Q) .. .
STHGIVG V] = / [§H$¢<Q>¢Q¢Q + " (QVgVo + —5——VogVo + ———=V5 Vg
[¢]
+il13" (Q)p—oVo + iH3’V<Q>¢_QV_*Q}, (A2)

where the generalized polarization functions l'lf)7 V(0), Hg V(0), and Hg V(Q) are defined in Eq. (4.13) and we have introduced
three more polarization functions associated with the Coulomb field ¢,

iw(io+ iv) + v2ko (ke + o) + |A2

% a. iv) = —2 / A
0 (@M= | P — orko? — ARG + )7 — (or (ke + 4007 — [APT (A3

e (q. iv) = / Vrgr A" A3b
0 @M =5 [ P — (orko? — [APIGe + 7 — (or ke + 4007 — 1APT (A3D)
oV V) — — UFQXA

R B T ey ey e T (A3

Since we are only interested in the phonons, we now integrate over the Coulomb field. The resulting effective phonon action is

1
Setr[U, V] = BQ + ,BVZ VX 1P+ 3 /Q;\ (v? + 0y )U-0uUgs
A

" Q) Q). ...
-0 A=/ OTVQVQ:|

+ f |:Z(v2 + WV Vor + TIT Y (QWV Vo + V_oVp +
o &

[U_g + 10" (—OWV_g + I} (0} ][Ug + 1Y (Vo + YT (OVF,]. (A4

+l/ _Ja
2Jo 14 £,11%%(0Q)
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At this point we use the gauge freedom choose A to be real and express the complex fields Vj,, in terms of two real fields as in

Eq. (4.14). Then Eq. (A4) can be written as

1
SerlUs, Ay, Bi] = B+ BV D nalXP + 5 /Q 2 (P +0p)U-:lo
A A

1
2

+l/ _fe
2Jo 14 £,113%(Q)

[U_o + vV2iT (—Q)B_o][Up + v2iT1" (0)Bo].

+ = / [Z(vz + 02)(A_orAor + B_0iBoi) + TTAA(Q)A oA + ngB(Q)BQBQ]
oLy

(AS5)

Note that the Coulomb interaction couples the phase mode B to the long-wavelength phonon U. The energies of the collective
modes can be obtained from the effective action for collective fields Uy = ), o Ui, Ag = Y _; V2Aps and Bg = ), viBoa.
As in Eq. (4.25) we implement the constraints via auxiliary fields and obtain

1 _
SerlU, A, Bl = BQ1 + BV Y v:IX1” + / Dy (Q)U-oUg
A 2Jo

1 - -
+3 / [[Dg' ke, iv) + TIHHQ)]A_0Ag + [Dy ' (2K, iv) + TI5P(Q)]B-oBo]
0

+l/ S
2Jo 14 £,113%(Q)

[U_o + v2iI" (—0)B_o][Up + v2iT1J" (0)By],

(A6)

- 2 -
where Dy(Q) = 2 and DoQkp,iv) =3, #{02 Since we are only interested in the collective amplitude and phase
A

S
Ay taog,

modes, we may now integrate over the fluctuations Uy of the long-wavelength phonons. Dropping field-independent constants
we obtain the effective action Se¢[A, B] given in Eq. (5.4) of the main text.

APPENDIX B: FIT PARAMETERS

In this Appendix we specify the parameters in the mul-
tiphonon Frohlich Hamiltonian for generic electron- phonon
interactions (2.1) and in the Frohlich-Coulomb Hamiltonian
(2.3) which we have used in Sec. VI to compare our calcula-
tions with the experimental data. The multiphonon Frohlich
Hamiltonian for generic electron-phonon interactions (2.1)
with An.x phonons depends on the bare phonon frequencies
ok, and the electron-phonon couplings y,, which form a
set of 2Amax parameters. In addition, out Hamiltonian depends
also on the ultraviolet cutoff w. in the mean-field gap equa-
tion (3.19); actually, we may use the gap equation (3.19) to
eliminate w. in favor of the experimentally measured zero-
temperature gap 2A(T = 0) & 100 meV ~ 24 THz. It is then
natural to define the dimensionless couplings

2

2
-2 V3 Yivs
= —— = . Bl
Y. 4A2(T = 0) 80,1 zwng)L (B1)

Taking the values for wy, , from the Supplemental Material of
Ref. [16] for T > T, and the amplitude modes from [14,15,17]
we tune the 77 to match the solution of the amplitude mode
equation (4.31) to its measured counterparts at 7 =0. A
summary of those values are shown in Table I. Retaining in
the Frohlich-Coulomb Hamiltonian (2.3) only the longitudinal
acoustic phonon, we obtain for small momenta

_ 2 Q2
f.Do0) ~ 0% S (B2)

V24wl vz—l—a)g’

with wg = vg|q|. Therefore, the minimal Frohlich-Coulomb
Hamiltonian depends on two additional parameters which can

(

be taken to be the ionic and electronic plasma frequencies, 2;
and 2., specified in the caption of Fig. 10.

Finally, let us estimate the temperature scale 7, above
which, according to the discussion at the end of Sec. VI, non-
Gaussian corrections to the polarization functions become
important. Therefore we calculate the polarization function
Hﬁ‘ﬁ (g, iv) defined in Eq. (A3) for T > 0. After carrying out
the frequency sum we obtain

viko (ke + q.) + IAIT
EkEk+q

N
3’ (q. iv) = —92[1+

X
» (fivg — Ji)(Erpqg —Er) s

(E+q — Ex)* +v? 1%
2kax X Az
XZ[]_UF( +Q)+||j|
X

EkEk+q
(I = fiarq — fi)Eraq + Er)
(Eyq + Ex)* +v?

; (B3)

where for an electronically one-dimensional system Ej =

V(vrk)? + A? and f = 1/(ePB + 1) is the Fermi function.

In the regime vr|g,| < w this becomes

37 gy, iv) ~ —2s

x2 kxz,
(vrgx) Z(vp )fk

2y p E}

s (vrqy)? A? BEKk
SRRLT NN 2 jann (225). (B4
iy Xk:Eg 2 B

045148-16



COLLECTIVE MODES IN THE CHARGE DENSITY WAVE ...

PHYSICAL REVIEW B 108, 045148 (2023)

At zero temperature Eq. (B4) collapses to Eq. (5.8). On
the other hand, at the critical temperature where A(7.) =0
the first term involving the derivative of the Fermi function
reduces to the usual high-frequency behavior of the Lind-
hard function in the limit vFg < w, whereas the second term
vanishes. The crossover scale 7, can be estimated from the
condition that the first term on the right-hand side of Eq. (B4)
has the same order of magnitude as the sum of the second term
and the ionic screening Eq. (B2). In terms of the dimension-
less function

27 vF )3 (vrky)?

A(T) = —
p vV E}

e (B5)

k

this condition can be written as A(T*)/a)i(O) = 1/AX(T,).
Using our result (5.24) this leads to the condition

02 v

o T v—§ ~ A(Ty), (B6)
e F

which defines the nonuniversal crossover temperature T}

above which the Gaussian approximation used in this work

is likely to break down in the presence of Coulomb interac-

tions. Substituting the experimentally relevant parameters for

Ko3MoO; we estimate T, &~ 0.37,, as indicated by the upturn

of the dotted line in Fig. 10.
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