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We investigate experimentally both the amplitude and phase channels of the collective modes in the quasi-1D
charge-density-wave (CDW) system, K0.3MoO3, by combining (i) optical impulsive-Raman pump-probe and
(ii) terahertz (THz) time-domain spectroscopy, with high resolution and a detailed analysis of the full complex-
valued spectra in both cases. This allows an unequivocal assignment of the observed bands to CDW modes across
the THz range up to 9 THz. We revise and extend a time-dependent Ginzburg-Landau model to account for the
observed temperature dependence of the modes, where the combination of both amplitude and phase modes
allows one to robustly determine the bare-phonon frequencies and electron-phonon (e-ph) coupling parameters.
While the e-ph coupling is indeed strongest for the lowest-energy phonon, dropping sharply for the next higher
frequency phonons, it grows back significantly for the higher-energy phonons, demonstrating their important
role in driving the CDW formation. We also include a reassessment of our previous analysis of the lowest-lying
phase modes. Assuming weaker electronic damping for the phase channel results in a qualitative picture more
consistent with quantum-mechanical treatments of the collective modes, with a strongly coupled amplitudon and
phason being the lowest frequency modes.
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I. INTRODUCTION

Charge density waves (CDWs) constitute an impor-
tant example of symmetry-broken ground states, arising in
low-dimensional conductors and typically driven by electron-
phonon (e-ph) coupling, manifesting as an electron-density
modulation and periodic lattice distortion (PLD), which in
the case of the basic Peierls mechanism possess wave vectors
q = 2kF (kF being the wave vector at the Fermi surface) [1].
Their study continues to take on new relevance, especially as
they can appear as coexisting/competing phases in complex
solids, e.g., unconventional superconductors [2–7], nematic
compounds [8,9], and Weyl semimetals [10]. Here the low-
energy excitations offer an important spectroscopic probe,
for both ground-state and nonequilibrium studies [11–16]. In
addition to the single-particle gap, corresponding to excitation
of electron-hole pairs from the CDW condensate (typically
lying in the midinfrared [17]), coupling between phonons and
the electronic modulation at q = 2kF gives rise to collective
modes at lower energies—typically in the terahertz (THz)
range—which serve as a sensitive probe of the CDW physics.
While the PLD alone can lead to the appearance of zone-
folded phonons at new energies when going below the CDW
transition temperature Tc, the CDW collective modes arise
specifically due to e-ph coupling and exhibit physical proper-
ties comprising both the underlying bare phonons and coupled
electronic wave, the latter characterized by a complex-valued
electronic order parameter (EOP, �). These excitations man-
ifest as both amplitude and phase modes (AMs, PMs), which
are, respectively, Raman- and infrared (IR)-active in cen-
trosymmetric materials. While the bare phonons may have a

vanishing dipole response vs their lattice displacements in the
normal phase (and hence be only Raman-active), the PMs pos-
sess IR activity as an electromagnetic field can drive them via
the polarization of the electron density modulation [18,19].
Nevertheless, a reliable assignment of phononlike bands ap-
pearing below Tc to CDW modes is affected by the fact that
in the quasi-one-dimensional (1D) systems, one also has a
transition from a normal metallic phase to a semiconducting
CDW phase, such that conventional IR-active phonons can
also emerge below Tc due to the lifting of screening in the
metallic phase, and any temperature dependence could, in
principle, be due to interaction with the (T -dependent) free
carriers [20,21].

In order to unequivocally assign CDW collective modes,
a rigorous approach is to demonstrate the simultaneous
appearance of both AMs and PMs (in their respective spec-
troscopies), and ideally also account for their T dependence
with an applicable physical model. This is the subject of the
present report, applied to the well-established quasi-1D CDW
system K0.3MoO3, using both impulsive-Raman pump-probe
spectroscopy and THz-time-domain spectroscopy (TDS) to
characterize the AMs and PMs, respectively, with both high
spectral resolution and coverage, resolving modes up to
9 THz (∼300 cm−1). This study extends our previous reports
[11,14,22], which were limited to the lowest-frequency modes
(<3 THz), and provides a comprehensive analysis beyond
those in other earlier studies of the Raman-active [23,24] and
IR-active modes [25–28] in K0.3MoO3.

As previously, we employ a phenomenological time-
dependent Ginzburg-Landau (TDGL) model, which we now
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FIG. 1. AM spectra from all-optical pump-probe (impulsive Raman) experiments for selected temperatures: (a) Spectral amplitude |S(ν )|
and (b) phase ϕ(ν ) = arg S(ν ), including fit results (red curves). Vertical magenta lines denote fitted mode frequencies [scaled by relative band
strength in (a)]. (c) Magnified range of spectrum in (a) for T = 10 K, including also the “incoherent” spectrum SRam(ν ) (black curve) obtained
by summing band intensities. (d) Real (Sr , dashed) and imaginary (Si, solid) parts of fitted band spectra for selected modes.

apply to account for the full set of modes and their T depen-
dence, yielding estimates of the e-ph coupling for each bare
mode contributing to the manifold. An important outcome
of this study is that while the lowest phonon indeed has the
strongest electronic coupling (akin to certain notions in the
literature that only a single phonon is involved in forming the
CDW [24]) and the coupling for the next higher-lying phonons
first weakens abruptly, it then increases with phonon energy,
demonstrating the importance of higher-frequency phonons
for driving the CDW state formation.

Moreover, the new results for the PM spectra lead us to
a significant revision of both the lowest fitted experimental
mode and parameters in the TDGL model. Our previous anal-
ysis [14] of the low-lying PMs was based on the differential
reflectivity changes in optical-pump THz-probe experiments,
to follow the time evolution of the nonequilibrium response.
A strong spectral feature at about ν ∼ 1.75 THz led us to
fit the data assuming a PM in this region, which allowed a
detailed quantitative fit of both real and imaginary parts of
the differential spectra. The presence of a PM at this location
was indeed predicted from the TDGL model used, assuming
strong damping for both the amplitude and phase components
of the EOP (discussed in Sec. V). One main motivation of
the current work was to scrutinize this assignment with high-
resolution ground-state THz reflectivity measurements. Here
we find that while such a strong feature is present in the
ground-state reflectivity spectrum at this frequency, this can
be reproduced by a band model where no PM is present in
this vicinity, due to the strong nonlocal behavior in how modes
affect the reflectivity spectrum. As presented below, this led us
to review the TDGL model, assuming a significantly weaker
damping (γ2) for the electronic phase motion, which then
predicts that the lowest AM does not have a closely lying
PM. Moreover, this yields predictions for a “phason” (i.e.,
the Goldstone mode, shifted slightly from zero frequency
due to impurity pinning) much more consistent with early

experiments [21,27], and a qualitative AM/PM arrangement
more consistent with quantum-mechanical models [18,19].

II. EXPERIMENTAL DETAILS

All experiments were performed on single crystals of
K0.3MoO3 in the incommensurate CDW phase below Tc =
183 K, using complementary time-domain spectroscopy tech-
niques, with radiation polarized along the b axis of the crystal.
The coherent detection of (Raman-active) AMs was realized
in all-optical reflective pump-probe experiments, where 40-fs
pulses from a 250-kHz Ti : Al2O3 amplifier laser at 800 nm
wavelength were used for both optical pump and probe pulses,
as described previously [11].

To investigate the (IR-active) PMs, we utilized broadband
THz-TDS, based on a 1-kHz Ti:Al2O3 amplifier laser, using
a two-color air plasma for the source [29–32] and electro-
optic sampling (EOS) with 30-fs optical detection pulses,
covering a spectral range from ∼0.5 to 7 THz (see Sec. IV,
Fig. 2, which includes a schematic of the setup). We used
a 100-μm-thick 〈110〉-cut GaP crystal as the EOS sensor,
supported by a 3-mm-thick 〈100〉-cut GaP substrate, to de-
lay signal reflections and provide a time window >40 ps
for the main THz pulse, and hence an achievable spectral
resolution of <25 GHz. Additional measurements with air-
biased coherent detection (ABCD [33]) were employed at
T = 20 K to reach higher THz frequencies (although the
signal-to-noise ratio was superior for EOS detection used for
the majority of experiments). The THz beam path comprised
four off-axis paraboloidal mirrors for imaging the beam at
the sample and detection focal planes. In order to adapt this
transmission-geometry setup for reflectivity measurements,
we employed a Au-coated hyperboloidal mirror (of in-house
construction) to divert the beam focus onto the sample (an-
gle of incidence 28◦) in a LHe cryostat (equipped with a
50-μm-thick polypropylene window), which preserved the
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FIG. 2. (a) Example of detected THz time-domain fields with
reflection sample geometry (and EOS detection): K0.3MoO3 sample
in the metallic phase T = 220 K > Tc (red curve, used as reference)
and in the CDW phase T = 20 K � Tc (blue curve). Inset shows
magnified range of oscillatory signatures after the main pulse for
the K0.3MoO3 sample at low T (while the weak residual oscillations
for T = 220 K are due to residual water-vapor absorption in the
THz beam path). (b) Corresponding intensity spectra, including an
additional reference spectrum using ABCD detection (see Sec. II,
used to provide extended bandwidth coverage for T = 20 K). Also
included is a schematic of a selected portion of the THz-TDS setup.

subsequent beam propagation to the detector. Multiple optical
guide beams and a camera were used to aid alignment of the
sample. A linear THz polarizer (vendor: Tydex) was placed in
the beam before focusing on the sample to ensure p-polarized
THz light along the b axis of the K0.3MoO3 ample, while the
whole setup was purged with dry air in order to suppress the
water vapor response in this THz range.

III. AMPLITUDE MODES: IMPULSIVE
RAMAN SCATTERING

We begin by presenting the new AM analysis results from
previously published, all-optical pump-probe reflectivity ex-
periments [11,22], which allow coherent detection of AMs via
their impulsive excitation and subsequent modulation of the
optical probe reflectivity (the term “impulsive” here implying
the general case, covering both impulsive and displacive limits
[34]). As mentioned in the Introduction, our ability to perform
a different, comprehensive analysis of the mode spectra, i.e.,
including higher-frequency/weak modes, relies on globally
fitting the complex Fourier spectra, as opposed to approaches

such as sequential fitting of bands in subranges about their
center frequencies. A summary of our method is given in
Appendix A. Notable aspects include: (i) One can resolve and
characterize (weak) bands even in the presence of significant
overlap, (ii) the initial phases ϕ0n of each mode are inher-
ently included via the spectral phase, and (iii) the regression
delivers the complex mode amplitudes An in each iteration,
such that only the mode frequencies (ω0n) and bandwidths
(�n) must be searched, greatly improving the reliability and
speed of the algorithm. Superposed on the time-domain sig-
nals S(t ) = �R(t )/R0 are nonoscillatory components Sel(t )
due to predominantly electronic responses to the excitation.
While one can incorporate these in the complex spectral anal-
ysis (assuming exponential decay kinetics, these manifest as
zero frequency, i.e., Drude-like, bands), we found that the
conventional approach of first fitting and subtracting these
contributions in the time domain [11] is advantageous for the
subsequent mode analysis, as one must ensure that any (either
broadband or low-frequency) spectral background is effec-
tively suppressed to allow fitting of the weak/broad modes,
including careful treatment of the initial signal around t = 0.

Examples of the time-domain signals and the multi-
exponential fitting analysis for Sel are given in the Supplemen-
tal Material (SM) [35]. The spectra of the residual oscillatory
signals are shown in Fig. 1 for selected temperatures below Tc,
in terms of both (a) the Fourier spectral amplitude |S(ν)| and
(b) phase ϕ(ν). Note that we explicitly use the terms “spectral
amplitude” and “spectral phase” when discussing the experi-
mental data, to avoid any confusion with the CDW amplitude
and phase channels. Also included are the fitted spectra from
the mode analysis (based on modes at the frequencies ν0n(T )
denoted by the vertical lines). One can resolve modes extend-
ing out to 9 THz, which can be fitted both in terms of their
spectral amplitude and phase, with a clear broadening of the
features with increasing T . One sees how numerous modes
manifest in |S(ν)| not as symmetric peaks, but rather with a
derivativelike structure or destructive dips in the cumulative
background of the other modes. Such features clearly hamper
approaches to fit the spectra on the basis of |S(ν)| alone, but
are handled naturally by the inclusion of the spectral phase
in the analysis. Moreover, the correspondence between the
experimental and fitted phase spectra in Fig. 1(b) also pro-
vides additional support for the validity of the fitted mode
spectra.

To examine these spectral structures more closely, in
Fig. 1(c) we show a magnified range for the modes in the
range 2–3 THz for T = 10 K. One sees that we resolve a
doublet of two narrow adjacent modes at 2.23 and 2.24 THz
(as well as two relatively close modes at 2.56/2.61 THz). The
former doublet was previously analyzed by fitting a single
mode line shape [11,22] to |S(ν)| in that spectral region.
One sees that for both doublets, |S(ν)| shows a significant
dip between the two adjacent modes. In order to assess
this, we also calculate the “incoherent” band sum spectrum,
SRam(ν), i.e., corresponding to the intensity sum of each fitted
mode line shape Sn(ν), i.e., SRam(ν) = [�n|Sn(ν)|2]1/2. This
is also included in Fig. 1(c) (black curve), and corresponds
to the signal one would measure in conventional spontaneous
Raman scattering measurements (notwithstanding possibly
different relative band strengths, due to the distinct matrix
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elements for spontaneous vs impulsive Raman interaction
[34]). Evidently, the incoherent spectrum does not exhibit
such pronounced local minima between the bands (nor the
derivativelike structures for the modes at 2.69 and 2.77 THz),
further emphasizing how band interference arises and pro-
vides more detailed information for the coherent Raman
approach here. A cursory consideration of the spectral in-
terference might lead one to conclude that the neighboring
mode pairs are significantly out of phase. To address this,
in Fig. 1(d), we plot the real/imaginary parts (S(n)

r,i ) of the
fitted mode-resolved spectra Sn(ν) [Eq. (A3)] for the doublet
modes. An inspection of the real parts demonstrates that all
modes have indeed a phase ϕ0n close to zero (corresponding
to a displacive, cosine time dependence in coherent Raman
pump-probe studies [34]), i.e. each S(n)

r (ν) corresponds to a
peak with nearly symmetric shape, while each S(n)

i possesses
a derivative shape, as well known for Lorentzian profiles in
spectral response functions. Note that for ϕ0n → ±π/2, the
real and imaginary line shapes would indeed exchange shapes,
as known for the more general Fano line shape [39]. An
inspection of S(n)

i then clarifies why destructive interference
is observed between the two bands, as one sees that S(n)

i
are inherently of opposite sign in these intermediate ranges
(while constructive interference indeed occurs at their respec-
tive peak frequencies ν0n). Correctly accounting for this effect
is clearly vital, e.g., if one were to assess the relative phase
of neighboring modes in terms of the intermediate spectral
structure (e.g., two neighboring modes in antiphase would
exhibit constructive interference between the peaks).

While we defer a presentation and analysis of the mode
frequencies and damping vs T to Sec. V (Fig. 5), clearly we
now have a much more comprehensive set of Raman-active
modes (compared to the previous analyses, which concen-
trated on modes at 1.68, 2.22, and 2.55 THz), to assess as
candidates for CDW AMs. Nevertheless, as discussed in the
Introduction, the presence of complementary PMs is decisive
for an unequivocal assignment of these bands to collective
CDW modes, as one could always consider that these are usual
Raman-active phonon modes which arise purely from zone
folding in the CDW phase [24]. Due to the centrosymmetry in
K0.3MoO3, one expects Raman-IR exclusion in the selection
rules for conventional phonons, such that the appearance of
corresponding modes is compelling evidence for their assign-
ment as CDW modes.

Note that while we have focused on the signals for both
optical pump (Eex) and probe (E) fields polarized along the
b axis, in our previous study (see the SM in Ref. [11]) we
also presented the impulsive Raman spectra vs T for E ⊥ b
(i.e.. along the [102] direction in the surface plane). Here
one also observes essentially the same manifold of modes,
which is not unusual given that the AMs are of A1g sym-
metry and hence their Raman tensor elements allow for the
impulsively driven modulation to affect the interband re-
sponse for all components of the transition dipole moment.
This contrasts with the case for the IR-active PMs in the
following section, probed directly with the THz field. Here,
in order to excite/probe the collective PMs, one must drive
the electronic component of the CDW modulation (along
b), where the centrosymmetry forbids coupling for E ⊥ b.
Hence, while previous studies (e.g., on the closely related

system Rb0.3MoO3 [40]) do show a manifold of IR-active
phonon bands for E ⊥ b, these are distinct from the PMs for
E ‖ b and do not show a strong T dependence (persisting also
above Tc).

IV. PHASE MODES: REFLECTIVE THZ
TIME-DOMAIN SPECTROSCOPY

We now proceed to the PM results using reflection THz-
TDS (see Sec. II for details). Examples of the detected THz
pulse’s temporal electric fields are shown in Fig. 2(a), mea-
sured after reflection from the K0.3MoO3 sample at both T =
220 K (in the metallic phase) and T = 20 K (in the CDW
phase), with the corresponding intensity spectra in Fig. 2(b)
obtained by Fourier transformation. One sees clearly the ap-
pearance of reflective dips across the spectrum for K0.3MoO3

in the CDW phase. Equivalently, this manifests in the time-
domain field as a long oscillatory tail in the reflected field
(while the main pulse is only weakly dependent on T ). As
discussed in Sec. II, for these experiments we ensured that
all additional reflections in the THz beam path are signifi-
cantly delayed (or their effect minimized, as in the case of the
thin polymer cryostat window, which produces weak internal
reflections with a small temporal delay). This allows a long
time range and hence high spectral resolution (∼25 GHz),
without introducing spectral modulation from signal echos.
Despite efforts to obtain reference spectra with a gold mir-
ror at the sample position, due to issues with the baseline
(depending sensitively on alignment), we rather employ the
K0.3MoO3 sample in the metallic phase at T = 220 K > Tc as
the reference, where one has a broad metallic response (for
fields polarized along the b axis, with R0 varying smoothly in
the range 0.8 − 0.9) and negligible additional spectroscopic
features in our measured THz frequency range [28]. The re-
flectivity spectra for a set of temperatures are shown in Fig. 3,
both in terms of the (a) intensity R(ν) and (b) phase ϕ(ν). In
contrast to the last section, where one obtains the mode spectra
directly from the impulsive Raman signals, for the reflectivity
measurements one must retrieve these via the complex Fresnel
field coefficient; see Appendix B for details, including the
baseline correction method used to account for the nonideal
reference. The fitted reflection intensity and phase spectra
are included in Fig. 3, based on a set of Lorentzian conduc-
tivity bands [Eq. (B2)], with mode frequencies ν0n denoted
by vertical dotted lines (see Sec. V for mode parameters vs
T ). One sees that the model reproduces both the reflection
intensity and phase spectra well across the full bandwidth
and, as per the last section, the inclusion of the spectral
phase is decisive here to achieve a robust fit with numerous
modes, especially with the mode broadening for increasing
T .

Due to the low-frequency roll-off in the spectral intensity
[Fig. 2(b)], we cannot perform a quantitative analysis of any
modes in the region below 1 THz. Nevertheless, as shown
in the SM [35], a series of fitting tests with a low-frequency
mode fixed at positions ν01 in the range 0 – 1.7 THz indicate
that such a mode is indeed required, in order to obtain the
reflectivity dip at 1.75 THz (most pronounced at low tempera-
tures). This dip essentially manifests due to the interference of
the tails of this low-frequency mode and the next higher one
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FIG. 3. Reflection spectral intensity (R(ν ), left) and phase (ϕ(ν ), right) obtained from THz-TDS measurements at the indicated temper-
atures (blue points), and fitted spectra (red curves) employing a Lorentzian-band model for each mode identified in the experimental data.
See the Supplemental Material [35] for corresponding fitted σ (ν ) for each T . Magenta vertical lines denote position of fitted modes ν0n.
Experimental spectra shown have been corrected for a slowly varying baseline offset which is included in the fitting procedure (see text and
Appendix B for details). The lowest mode was fixed at the nominal value 0.1 THz (based on literature estimates of the phason position from
microwave spectroscopy [21,27]) for all T during fitting.

at 2.14 THz. As mentioned in the Introduction, this feature
previously led us to fit a PM very close to 1.75 THz, on the
basis of nonequilibrium differential reflectivity spectra [14].
The analysis of our ground-state spectra here results in a
smaller misfit as ν01 is lowered towards 1 THz, with the misfit
then remaining essentially independent of ν01 for values below
1 THz. Hence, we tentatively fixed the position of this low-
frequency mode to ν01 = 0.1 THz, as per the experimentally
proposed position of the “phason” in previous studies [21,27],
for fitting our spectra for all T .

The complex conductivity spectra for T = 20 K are shown
in Fig. 4, including both the spectrum obtained from the
baseline-corrected experimental reflectivity (Fig. 3) via in-
version of the complex Fresnel equation, and the fitted
Lorentzian-band model (see SM [35] for the full set of spectra
for all T ). While one sees there is significant noise on the ex-
perimental spectra [especially for σ1(ν)], due to the sensitivity
of the inversion to noise in r(ν), the features are generally
well reproduced by the fitted Lorentzian bands. One also ob-
serves an additional broad bandlike feature below ∼1.5 THz,
which was found to not depend strongly on T . Efforts to
fit this feature (attempted both with an additional complex
Lorentzian or Gaussian line shape) did not allow a satisfactory
simultaneous improvement in reproducing all components of
the experimental r(ν) and σ (ν) spectra, and the feature may
well arise from systematic errors in the baseline of R(ν) at
lower frequency (due to truncation of the larger focal beam di-
ameter in this range). Nevertheless, future studies with larger
samples/tighter focusing should be applied to study this spec-
tral range more precisely, as spectral features—not assigned
to PMs, but rather due to bound collective states of unresolved

origin—have been previously reported in K0.3MoO3 [27] and
(TaSe4)2I [41] in the range �1 THz.

In order to provide additional data for PMs at higher fre-
quencies than covered with EOS detection (data in Fig. 3),
we also carried out an additional measurement at T = 20 K
with extended bandwidth using ABCD detection (see Sec. II,
Fig. 2(b), and the SM [35]).

FIG. 4. Conductivity spectrum obtained from THz-TDS reflec-
tivity (Fig. 3) for T = 20 K: (a) real (logarithmic vertical scale) and
(b) imaginary parts. Experimental data (blue points, after baseline
correction of reflectivity) and Lorentzian-band model fit (red curves).
See the SM [35] for full set of spectra for each T . Magenta vertical
lines denote position of fitted modes ν0n.
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FIG. 5. Combined T dependence of the experimental AMs (blue,
Figs. 1(a) and 1(b)] and PMs (red, Fig. 3). Left and right panels
cover the lower and higher frequency ranges, respectively, to im-
prove visibility. Vertical bars denote the band half-maximum widths
±�n/2π centered on each mode frequency point ν0n. Additional PM
data at T = 20 K (magenta) from extended-bandwidth (ABCD) THz
detection (see Sec. II).

V. COMBINED MODE ANALYSIS: TIME-DEPENDENT
GINZBURG-LANDAU MODEL

In this section, we present the combined AM and PM
results, and apply the TDGL model to substantiate their as-
signment as CDW collective modes and account for their T
dependence. In Fig. 5, we plot the fitted Raman-/IR-active
mode frequencies ν0n(T ) (from the last two sections, respec-
tively), with the respective band-half-widths �n/2π denoted
by vertical bars on each data point to depict the broaden-
ing. One indeed observes a close pairwise correspondence
between the frequencies of the AMs and PMs (ν (A)

0n and
ν

(P)
0n , respectively), with the understanding that for the lowest-

frequency respective modes, conventionally referred to as the
“amplitudon” and “phason” [42], one expects ν

(P)
01 → 0 (fixed

in our spectral analysis at ν (P)
01 = 0.1 THz [21,27], see Sec. IV)

and hence ν
(A)
01 
 ν

(P)
01 (with ν

(A)
01 = 1.68 THz at low T ). Sig-

nificant broadening for T → Tc is observed for many of the
modes, particularly so for the lowest AM (as reported before
[11,22]), but also significantly for the newly analyzed AMs
above 6 THz. While the available PM data does not approach
Tc as closely, the onset of a similar degree of broadening is
also observed for most of the PMs for T → 145 K. Compared
to the previously reported AM analysis results [11], our new

analysis approach here allows estimates of ν
(A)
01 approaching

closer to Tc, and shows a more pronounced softening, with ν
(A)
01

falling to ∼1 THz at T = 175 K. Also, here we took care to
fit the damped mode frequencies ω0n = 2πν0n [see Eqs. (A1)
and (A3)], which are also those directly yielded from the
TDGL eigenvalues below. As shown in the SM [35], the new
ν

(A)
01 (T ) data are also more consistent with those from conven-

tional Raman [23,24] and neutron-diffraction [43] studies for
T → Tc.

As all fitted modes exhibit a correspondence compati-
ble with CDW collective modes, we apply a revised TDGL
model with a bare coupled phonon (i.e., originally at q =
2kF for T > Tc with frequency �0n) for each experimental
AM/PM pair (excluding the sharp, weak Raman-active modes
at 1.36 THz, and at 1.72 THz just above the amplitudon [11]).
The 1.36-THz mode was previously attributed to a linearly
coupled mode with an order-of-magnitude lower coupling
strength, while the 1.72-THz mode result from higher-order
coupling [22].

The implementation of the TDGL is based on that in
our previous reports [11,14,22], and is described again in
detail in the SM [35]. Briefly, the TDGL equations yield
the energy (ω0n) and damping (�n) of each collective mode
via equations of motion for the complex-valued coordi-
nates (i.e., amplitude and phase of the spatial modulation
at q = 2kF) for the EOP (�̃ = �eiφ) and the components
of the lattice distortion projected onto each of the N bare
phonons (ξ̃n = ξeiχn , frequency �0n), coupled via a linear
coupling term ∝ mn for each n = 1..N . The potential for
the EOP is the conventional Mexican hat function U� =
− 1

2α(Tc0 − T )�2 + 1
4β�4, which drives a finite equilibrium

CDW amplitude �2
0 = α(Tc − T )/β for T < Tc, where Tc =

Tc0 + �nm2
n/α�2

0n is the renormalized critical temperature
which results due to the competition between the stabiliza-
tion from coupling and the elastic deformation energy cost
Uξn = 1

2�2
0nξ

2
n . To capture the effects of impurity pinning, an

additional term Up = −�2
p�

2 cos ϕ is included in the EOP
potential which introduces a restoring force for phase devi-
ations away from the equilibrium value ϕ = 0 (and whose
main effect, as shown below, is to shift the lowest PM to
a finite pinned frequency). The mode parameters are then
obtained from the eigenvalues λn = −�n/2 + iω0n of the lin-
earized coupled equations of motion about the equilibrium,
assuming phenomenological damping rates γ1,2 for the EOP
amplitude/phase, respectively (explicit damping of ξn is ne-
glected for simplicity due to its much weaker influence on
λn). As there are no mixing terms between the amplitudes and
phase of the coordinates, the set of λn segregate into modes
associated purely with the amplitude/phase of the collective
modes.

The major new development in our treatment here is to
use a significantly weaker damping parameter γ2 = 0.09 · γ1

for the EOP phase compared to γ1 for the EOP amplitude,
and hence also maintain the general-damping form (and not
the overdamped limit [11]) of the TDGL equations of motion
for the phase channel. Note that the choice of equal nomi-
nal damping used in our previous PM study [14] followed
certain assertions in the literature [44,45], the notion be-
ing that classically, compression/rarefaction (EOP amplitude)
and translation (EOP phase) of the electronic charge density
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FIG. 6. Comparison of experimental AMs (left) and PMs (right) (see Fig. 5) with fitted TDGL model predictions. Mode frequencies
ν0n = ω0n/2π shown as points (exp.) and solid curves (TDGL), while Lorentzian half-widths �n/2π (damping) are shown as vertical bars
(exp.) and shaded regions (TDGL). Equally colored curves for TDGL AM/PM results corresponding to each bare phonon mode �0n/2π used
in the model (included as horizontal dashed lines).

involve motion of the same condensate carriers. As mentioned
above, the use of an equally strong damping for the EOP
phase (in combination with a strong phase-pinning parameter
�p) results in a lowest PM ν

(P)
01 at higher frequencies, closer

to ν
(A)
01 . However, such a prediction is not consistent with

our revised determination of the lowest experimental PM.
There are indeed assertions in the literature suggesting that
phase damping/relaxation can be significantly slower than for
the amplitude in the case of CDW, where the quasiparticle
excitations are neutral (contrary to the case in supercon-
ductivity with charged quasiparticles, where the ratio of the
amplitude/phase damping rates are reversed) [12,46]. We note
though, that these assertions are generally made in the context
of the resulting collective modes, while we instead consider
here the appropriate, inherent damping magnitudes to be used
for the EOP as an input to the TDGL model, which in turn
predicts the damping of the collective modes. Nevertheless, as
shown in the following, we find that the choice γ2 = 0.09 · γ1

does lead to revised TDGL predictions where the lowest PM is
now close to zero-frequency (consistent with a nearly gapless
phason), while providing a reasonable description of the other
PMs.

The results of the revised TDGL model are shown in Fig. 6,
where we plot the AMs and PMs separately for clarity, along
with the experimental data from Fig. 5 (with each channel
plotted in three graph columns to allow better inspection of
each frequency range). The predicted modes are plotted as
filled regions tracing out ν0n(T ) ± �n(T )/2π for direct com-
parison with the experimental mode frequencies/damping,
while the bare phonon frequencies �0n are included as hor-
izontal dashed lines (the mode coupling parameters mn and
their bare-mode frequency dependence are discussed in detail
below and presented in Fig. 7, while a full account of the other
parameters is given in the SM [35]). To achieve these TDGL

results, we tuned the bare mode frequencies �0n and coupling
parameters mn, in conjunction with the global parameter α

and impurity pinning potential �p, in order to best reproduce
both the experimental AMs and PMs simultaneously. (Note
that β drops out of the equations for the AM/PM frequencies
at the equilibrium). We employ a T -independent model for
the impurity pinning �p (see the SM [35]), which yields a
pinned phason with nearly constant frequency, as observed ex-
perimentally [21,27]. The model results show overall a good
qualitative agreement with experiment, near-quantitatively for
many of the modes, although certain systematic deviations
are evident, such as the precise PM frequencies and some
of the trends approaching Tc, in particular the lack of PM
broadening which is significant for several experimental PMs

FIG. 7. Dependence of e-ph coupling parameters from TDGL
analysis on bare-mode frequency. Left scale: mn parameters from
TDGL model (at T = 0 for modes where T -dependence was
employed). Right scale: relative dimensionless e-ph coupling param-
eters λn accounting for inherent frequency scaling of mn.
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(including the phason at 0.1 THz, although here the fitting
of the bandwidth is tentative, given that the mode peak lies
outside the fitting range). Still, such deviations are not sur-
prising, considering the simplicity of the phenomenological
TDGL model.

The assumption of T -independent coupling parameters mn

neglects any influence of, e.g., the presence of normal elec-
trons (density Nth) thermally promoted across the CDW gap
as T approaches Tc, which could screen the e-ph coupling
[20,21]. As the relative fraction of charges in the CDW con-
densate should follow NC(T )/N0 = δ0(T ) (where δ0(T ) =
�0(T )/�0(0) = √

1 − T/Tc), in a two-fluid model we then
have Nth(T )/N0 = 1 − δ0(T ), and allow for a T -dependent
coupling via mn(T ) = mn(0)(1 − ηn · Nth(T )/N0). Indeed this
correction (applied sparingly to selected bare phonons �0n)
allowed us to refine the correspondence for the PMs between
2 and 2.5 THz (applied to the bare phonon at 1.82 THz, which
affects the adjacent PMs at higher frequency), and the AMs
between 5 and 6 THz (applied to the bare phonons at 5.31,
5.59, and 5.76 THz), each with moderate values ηn = 0.3(5)
(see the SM [35]); these extensions are incorporated in the
TDGL results in Fig. 6.

We assessed incorporating several other, physically plau-
sible T -dependent effects into the TDGL model, to see if
these might readily account for the remaining deviations, as
discussed in the following. To investigate mechanisms which
could lead to PM broadening, we considered the effects of (i)
T -dependent EOP-phase damping (γ2(T ) increasing for T →
Tc) and (ii) inherent bare-phonon damping with thermal anhar-
monic broadening [11]. Neither of these extensions provided
a convincing improvement for describing the experimental
trends, where we observed that the bare-phonon damping does
not translate directly to the resultant PM damping. While such
directions to extend the TDGL description deserve further
investigation in ongoing studies, it seems prudent to first
develop an estimate of the expected magnitude of such cor-
rections from microscopic models, before incorporating them
in the phenomenological TDGL framework here.

To conclude this section, we focus on the magnitude of
the coupling parameters mn, in particular their dependence on
their respective bare-mode frequencies �0n. Within the TDGL
model, at equilibrium, the amplitude of the nth phonon coordi-
nate is given by ξ0n = (mn/�

2
0n)�0, which results in an elastic

deformation energy cost of ULn = + 1
2�2

0nξ
2
0n = 1

2 m2
n�

2
0/�

2
0n

but a stabilization energy of UCn = −mn�0 · ξ0n = −2ULn,
i.e., twice the magnitude of the elastic energy cost. Based on
this 1/�2

0n-dependence, one might infer that the contribution
of each bare phonon to the CDW formation decreases with
increasing �0n. However, we show that, based on our TDGL
parameters for K0.3MoO3, this effect is actually countered by
the growth of mn vs �0n for the higher-energy phonons.

In Fig. 7, we plot mn vs �0n for the set of bare phonons
employed in the TDGL analysis in Fig. 6. As can be seen,
there is a clear increasing trend vs �0n. To interpret this result
more physically, one must transform the TDGL parameters to
a measure which reflects the inherent e-ph coupling strength,
as is the case for the dimensionless e-ph coupling parame-
ters λn in quantum-mechanical models [18,19] (as was used
tentatively in an early report of the PMs in K0.3MoO3 at a sin-
gle temperature, T = 6 K [27]). To this end, in Appendix C,

we derive a correspondence between mn and λn [Eq. (C2)],
with the result that λn ∝ (mn/�0n)2. The relative calculated
values of λn are shown in Fig. 7. One sees that while the
value of λ1 indeed is significantly larger than the values of
the subsequent modes, for n � 2 there is clear (roughly lin-
ear) increase in the dimensionless e-ph coupling, even after
correcting for the inherent �0n dependence in mn. This is in
contrast to the treatment in Ref. [27], where a constant nom-
inal value of λn�2 was assumed for the modes, and indicates
that these stiffer phonons possess character which influence
the electronic energy more significantly. This result strongly
motivates ab initio/density functional theory calculations to
assign the structural character of the bare modes and inves-
tigate how they interact with the electronic orbitals in more
detail.

VI. CONCLUSION

The combined study of the CDW collective modes in
K0.3MoO3 for both amplitude and phase channels provides
strong support for their assignment, whereby the TDGL
model applied here indicates that higher frequency modes
are indeed strongly coupled to the electronic density wave
and play an important role in stabilizing the CDW phase.
These results strongly motivate first-principles calculations of
the phonons and e-ph coupling, although this remains chal-
lenging for relatively complex materials such as K0.3MoO3.
From the experimental side, in addition to returning to the
nonequilibrium response of these modes [14,47], a rigor-
ous determination of the ground-state phase response in
the low-frequency range (�1.5 THz) is still lacking, being
complicated by the inherent issue of resolving spectral fea-
tures in reflection with R ≈ 1. Here we are pursuing THz
transmission studies of thin exfoliated flakes, although the
small lateral dimensions of sufficiently thin samples (thick-
ness <10μm) are limited, requiring specialized spectroscopic
methods. Here deposited K0.3MoO3 thin films [48,49], which
exhibit near-crystalline AM response, could provide essential
experimental results, if their morphological properties main-
tain the PM response for macroscopic field interaction. The
TDGL model can be readily applied to account for the collec-
tive modes, and serves as a versatile framework, which can be
applied to systems with multiple, coupled order parameters
and for ultrafast non-equilibrium studies [12,13,50]. How-
ever, its phenomenological basis necessitates further studies
based on microscopic quantum-mechanical/many-body mod-
els [18,19] to better establish its validity and estimate effective
parameters. Current efforts here require the extension of such
quantum-mechanical treatments to rigorously treat the finite-
temperature case and account for effects due to, e.g., Coulomb
interactions and impurities, where developments have already
begun [51].
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APPENDIX A: SPECTRAL ANALYSIS OF IMPULSIVE
RAMAN SIGNALS

The ansatz for the model differential reflectivity signal
S(t ) ≡ �R(t )/R0 vs delay time t following the pump pulse
is given by

S(t ) = Ane−t/τn cos(ω0nt − ϕ0n)�(t ) (A1)

(the sum over mode index n is implied, � the Heaviside
function), where incoherent (i.e., purely electronic) signal
components correspond to ω0n = 0. Fourier transformation
of Eq. (A1) yields the sum over a set of general Lorentzian
(Fano) line shapes

S(ω) = (�n + iω)An cos ϕ0n + ω0nAn sin ϕ0n(
ω2

0n + �2
n

) − ω2 + 2i�nω

= cn fn(ω) + sngn(ω), (A2)

with damping �n = τ−1
n , cn = An cos ϕ0n, dn = An sin ϕ0n, and

the basis functions are given by

fn(ω) = (�n + iω)/Dn(ω), gn(ω) = ω0n/Dn(ω),

Dn(ω) = (
ω2

0n + �2
n

) − ω2 + 2i�nω. (A3)

Clearly A2
n = c2

n + s2
n and tan ϕ0n = sn/cn. For the purely elec-

tronic components (ω0n = ϕ0n = 0), this reduces to the Drude
form Sn = An/(�n + iω0n).

Taking into account the experimental impulse response
H (t ) (i.e., cross correlation of the pump- and probe-pulse
intensity profiles, taken as a Gaussian function with full width
at half maximum temporal width of ∼80 fs here), one has
S(t ) → S(t ) ∗ H (t ), or for the spectra, S(ω) → S(ω) · H (ω),
such that this response can be simply multiplied into the basis
functions fn, gn. For each iteration in the optimization algo-
rithm, one generates the basis functions for the current values
of ω0n and �n, and performs linear regression to minimize
the misfit � j |S j − Ŝ j |2, where S j = S(ω j ) and Ŝ denotes the
complex experimental spectrum.

As discussed in the main text, while this approach allows
one to simultaneously fit both the incoherent (ω0n = 0) and
oscillatory components (Sel, Sosc, respectively), in practice for
the spectra here we rather first perform a fit of Sel in the
time domain, and subtract this result to fit the modes in the
residual spectrum Sosc = S − Sel. This allows one to closely
scrutinize (and take steps to further minimize) any residual
from the electronic response before fitting the modes, which
is particularly important to cleanly fit the higher-frequency
modes.

While fitting the complex spectra may appear to be equiv-
alent to fitting the time-domain signal directly, the essential
difference is that any deviations from the ideal model signal
in Eq. (A1) (e.g., due to frequency chirp or a nonexponential
decay envelope) are more robustly ameliorated by the spectral
misfit function.

APPENDIX B: SPECTRAL ANALYSIS OF THZ
REFLECTIVITY SPECTRA

For THz-TDS reflectivity measurements, one must retrieve
the complex relative permittivity εr (ν) from the complex re-
flectivity field coefficient r(ν), which, for our case of oblique
incidence (θ = 28◦) and ap-polarized field, is given by [52]:

r =
√

R · eiφ = −εrCi − Ct

εrCi + Ct
, (B1)

where Ci = cos θ and Ct = (εr − sin2 θ )1/2. The correspond-
ing conductivity spectrum is then calculated via σ =
iωε0(εr − ε∞r ) [31,53]. Due to the sensitivity of the directly
recovered conductivity spectra to the precise reference base-
line, especially here with strongly reflecting samples (as well
as an inadvertent reference pulse delay δt which introduces a
phase term r → r · e−iωδt ) we instead fit r(ω) directly, with
a conductivity model comprising a standard Lorentzian band
for each mode [52],

σ (ω) = iωσ0n

ω2
0n − ω2 + i�nω

(B2)

(again summing over mode index n) with ε∞r and δt included
in the fit parameters to minimize the misfit � j |r j − r̂ j |2 to the
experimental data r̂ j = r̂(ω j ). In order to compensate the re-
sulting intensity/phase baseline of the nonideal reference (the
metallic phase of the K0.3MoO3 sample), for each iteration
we applied a complex correction factor r(ω) → P(iω) · r(ω)
where P was taken as a third-order complex polynomial
determined adaptively via regression of the model reflectiv-
ity spectrum. The experimental results in Fig. 3 correspond
to those following this correction, i.e., r̂(ω) → r̂(ω)/P(iω).
While this approach introduces additional uncertainty into
the fitting analysis, it still maintains a reasonable degree of
robustness as one fits the full complex spectra (Fig. 3).

APPENDIX C: CORRESPONDENCE OF COUPLING
PARAMETERS BETWEEN TDGL AND
QUANTUM-MECHANICAL MODELS

In Sec. V we obtain estimates of the coupling parameters
mn for each coupled phonon mode (with bare frequencies
�0n) from fitting the experimental modes with the TDGL
model, as presented in Fig. 7. In order to obtain parameters
with a more transparent physical interpretation, we derive a
correspondence between the TDGL mn parameters and the
dimensionless e-ph coupling parameters λn from quantum-
mechanical models [18,19,54], albeit in a simplified classical
limit, to account for any inherent dependence on �0n. Fol-
lowing the development in Ref. [54], one can write the lattice
displacement along the nth phonon coordinates with wave
vector q = 2kF as un = (2Mn�0n/h̄)−1 · 2bn (Mn the reduced
mass), where one takes (b†

nq + bn,−q ) → 2bnδ(q − 2kF ) for
the phonon operators. The elastic deformation energy cost is
then ULn = 1

2 Mn�
2
0nu2

n = h̄�0nb2
n while the coupling energy

is UCn = −2gnρbn, where g ≡ g2kF is the e-ph constant in the
Fröhlich coupling term, and ρ ≡ ρ2kF = 〈�k,σ c†

k−2kF ,σ
ck,σ 〉

represents the electronic density modulation amplitude.
The corresponding expressions based on the TDGL poten-

tial energy [11,14,22] are ULn = 1
2�2

0nξ
2
n and UCn = −mn� ·
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ξn. Hence we can associate ξn = √
M · un and

gn = mn

√
h̄

2�0n

�

ρ
. (C1)

Due to the arbitrary scaling of the EOP amplitude � in the
TDGL equations, the ratio �/ρ is undetermined but con-
stant. One then obtains for the dimensionless electron phonon

constant:

λn = g2
nN0

h̄�0n
= N0

2

(
�

ρ

)2 m2
n

�2
0n

, (C2)

where N0 is the electronic density of states at the Fermi en-
ergy (in the normal undistorted phase). Equation (C2) shows
that the inherent e-ph coupling depends on the ratio m2

n/�
2
0n,

which we then take into account in Sec. V (Fig. 7) in assessing
the dependence on �0n.
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