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We show that topological characterization and classification in D-dimensional systems, which are thermody-
namically large in only D − δ dimensions and finite in size in δ dimensions, is fundamentally different from
that of systems thermodynamically large in all D dimensions: As (D − δ)-dimensional topological boundary
states permeate into a system’s D-dimensional bulk with decreasing system size, they hybridize to create novel
topological phases characterized by a set of δ + 1 topological invariants, ranging from the D-dimensional
topological invariant to the (D − δ)-dimensional topological invariant. The system exhibits topological response
signatures and bulk-boundary correspondences governed by combinations of these topological invariants taking
nontrivial values, with lower-dimensional topological invariants characterizing fragmentation of the underlying
topological phase of the system thermodynamically large in all D dimensions. We demonstrate this physics for
the paradigmatic Chern insulator phase, but show its requirements for realization are satisfied by a much broader
set of topological systems.
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Consequences of topology in condensed-matter physics
frequently stem from the nontrivial topological invariant of
a material bulk associated with incompressible states, cor-
responding to topological response signatures of the bulk
and topologically protected boundary states [1–3]. These sig-
natures yield the unpaired Majorana zero modes required
for topological quantum computation [4–11] and topologi-
cal boundary metals useful for spintronics devices [12–19],
for instance, reflecting their significance. While the rela-
tionship between bulk topological responses and topological
boundary states has typically been studied in systems large
enough that finite-size effects are neglected while still yield-
ing good agreement with experiment [20–22], significant
improvements in fabrication techniques now permit ex-
perimental study of lower-dimensional systems in which
finite-size effects are significant. Past work on such systems
has reported findings of lower-dimensional topological phases
[23–30] or higher-dimensional phases [27,31–37] rather than
the transition from higher-dimensional to lower-dimensional
topological phases itself, motivating greater scrutiny of this
process.

We address the need for greater understanding of this
transition between higher-dimensional and lower-dimensional
topological phases by showing that finite-size effects can yield
additional, previously unidentified topological phases. In the
case of the Chern insulator, which is two-dimensional (2D)
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in the bulk, we consider opening boundary conditions in one
direction and thinning the system in this direction to a quasi-
one-dimensional geometry, which we denote as quasi-(2-1)D
as the underlying bulk is 2D. While dimensional reduction
also considers opening boundary conditions in one direction
and thinning the system in one direction, the system size
is large in the direction in which boundary conditions are
opened, and it is small in the periodic direction [38]. Dimen-
sional reduction also holds even when the system is thinned
to be strictly one-dimensional. We note that this scenario
considered for dimensional reduction, of system size large in
the direction of open boundary conditions, is also the regime
considered by the tenfold way classification scheme [20]. We
instead consider thinning the system in the direction in which
boundary conditions are opened, to finite thicknesses that are
small relative to the penetration depth of topological boundary
modes, and keeping the system size thermodynamically large
in the periodic direction.

We also report on effects here which only occur for systems
finite in width in the direction of open boundary conditions.
In this case, the quasi-(2-1)D Chern insulator can still ex-
hibit charge pumping in response to changing magnetic flux
through a plaquette of the lattice due to a nontrivial Chern
number. However, if we open boundary conditions in the sec-
ond direction, the quasi-(2-1)D Chern insulator also exhibits
a second bulk-boundary correspondence, with quasi-zero-
dimensional—or quasi-(2-2)D—topologically protected, gap-
less boundary modes localized at the ends of the quasi-(2-1)D
system, in correspondence with a lower-dimensional topo-
logical invariant characterizing topology of the quasi-(2-1)D
bulk. These quasi-zero-dimensional states are topologically
robust and cannot be understood purely through interference
of chiral modes. Furthermore, the number of topologically

2469-9950/2023/108(4)/045144(6) 045144-1 Published by the American Physical Society

https://orcid.org/0000-0002-6293-8788
https://orcid.org/0000-0001-6358-9244
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.045144&domain=pdf&date_stamp=2023-07-28
https://doi.org/10.1103/PhysRevB.108.045144
https://creativecommons.org/licenses/by/4.0/


ASHLEY M. COOK AND ANNE E. B. NIELSEN PHYSICAL REVIEW B 108, 045144 (2023)

robust quasi-zero-dimensional modes at each end of the rib-
bon can be integer-valued in direct correspondence with the
Chern number, in the presence of only a σzI symmetry. This
symmetry may be interpreted as spatial inversion symmetry
depending upon the choice of physical degrees of freedom,
but this integer classification indicates that Z2 topological
invariants of 1D topological insulators protected by spatial
inversion symmetry are therefore unsuitable [39]. Instead,
Z classification indicates previously unidentified topologi-
cal phases characterized by both a Z Chern number and a
related Z lower-dimensional topological invariant. As topo-
logical phases are defined by their topological invariant(s)
[20,22,40], the characterization of topological states of finite-
size systems in terms of a set of topological invariants of
different dimensionalities—and in terms of more topological
invariants than required for D-dimensional systems which are
thermodynamically large in all D dimensions—is fundamen-
tally different from previous work.

We consider finite-size topological phases here for systems
with a σzI symmetry, where I is lattice inversion and σz

acts on the orbital space and squares to the identity. Our
results are therefore broadly applicable to topological phases
irrespective of other symmetries present and bulk dimension-
ality, in particular, given the Chern insulator phase is used to
construct many other topological phases of matter [3,19,41–
48]. We expect finite-size topological phases to be prominent
in lower-dimensional materials with nontrivial topology such
as stacked van der Waals materials and nanowires.

Finite-size topology of the Chern insulator. We first show
that finite-size topology occurs in the 2D Chern insulator
phase. The phase is foundational both in understanding the
quantum anomalous Hall effect [49] and as a building block
used to construct many other topological phases of matter,
most notably the quantum spin Hall insulator [19,50], the
three-dimensional topological insulator [42], and the Weyl
semimetal [51,52]. Various analogs of the Chern insulator that
are not electronic [53,54] and/or out of equilibrium [55,56]
are also expected to display finite-size topology.

The considered Chern insulator Hamiltonian,

HCI =
∑

σ,n,m

σ (M + κn,m)c†
σ,n,mcσ,n,m

− t
∑

σ,n,m

[σc†
σ,n,mcσ,n+1,m + (σ−ε)c†

σ,n,mcσ,n,m+1 + H.c.]

− �
∑

σ,n,m

(σc†
σ,n,mc−σ,n+1,m + ic†

σ,n,mc−σ,n,m+1 + H.c.),

(1)

is a simplified version of the Qi-Wu-Zhang model [57] on
an Lx × Ly square lattice, where c†

σ,n,m creates a particle in
the orbital σ ∈ {−1, 1} at the site position (n, m), M is the
Zeeman field strength, t is the strength of real hopping in both
x̂ and ŷ directions without changing the orbital, and � is the
strength of the hopping term changing the orbital. For ε = 0
this Hamiltonian has a particle-hole symmetry described by
the operator σxK , and for κn,m = 0 it has σzI symmetry. Here,
σx and σz are Pauli matrices acting on the orbital space, K
is the complex conjugation, and I is the inversion of the 2D
lattice. Unless specified otherwise, we take t = 1, � = 0.22,

FIG. 1. (a) The single-particle energy spectrum E of the consid-
ered Chern insulator model on a 20 × 600 square lattice with (pe,pe)
boundary conditions (black) is gapped except at a few values of the
Zeeman field strength M. The spectrum for (op,pe) boundary condi-
tions (blue) has states inside this gap. (b) When zooming panel (a) to
a smaller energy range, small gaps in the (op,pe) spectrum become
discernible. (c) When Lx is decreased, the small gaps become larger.
Eigenstates in the (op,pe) spectrum with momentum ky = 0 (ky = π )
are highlighted by their σzI eigenvalue [light orange (green) for +1
eigenvalue and dark orange (green) for −1 eigenvalue]. Intervals in
M over which the highest-energy occupied state at half filling within
the ky = 0 and ky = π sectors have opposite σzI eigenvalues are
highlighted with purple background color. (d) Components of the
highest-energy occupied state within the ky = 0 sector versus M for
Lx = 6 and (op,pe) boundary conditions. The wave function is real,
and the components are labeled by orbital σ and unit cell position n
in the x̂ direction. The σzI eigenvalues are indicated with plus and
minus signs.

ε = κn,m = 0, and Ly = 600 in the numerical computations
below. For these parameters, the Hamiltonian realizes a Chern
insulator phase with the Chern number C = +1 for −4 <

M < 0 and a distinct Chern insulator phase with the Chern
number C = −1 for 0 < M < 4. In the following, we use
(pe,pe), (op,pe), and (op,op) to refer to different combinations
of open (op) and periodic (pe) boundary conditions in the x̂
and ŷ directions.

For a gapped topological phase characterized in a 2D bulk
by a nontrivial Chern number C, we generally expect C chiral
modes localized on each edge if the boundary conditions are
opened in one direction x̂ and the system size in the x̂ direc-
tion, Lx, is sufficiently large. The edge modes give rise to the
blue states inside the 2D bulk energy gap seen in Fig. 1(a). As
Lx is decreased, however, the system becomes quasi-(2-1)D.
The states appearing within the 2D bulk energy gap increas-
ingly permeate into the quasi-(2-1)D bulk and hybridize, such
that we can only refer to them as states within the 2D bulk
gap resulting from bulk-boundary correspondence, rather than
edge states. The hybridization among these states can produce
gaps in the quasi-(2-1)D spectrum. In fact, small gaps can
already be seen for Lx = 20 [Fig. 1(b)], but the effect is much
larger for smaller Lx [Fig. 1(c)]. When viewed as a function of
a parameter of the model, the gaps can form bubbles separated
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by transition points as seen in Fig. 1(c). A general mechanism
to obtain such bubbles is when the highest-energy occupied
state and lowest-energy unoccupied state of the quasi-(2-1)D
bulk belong to different symmetry sectors and oscillate out of
phase with sufficiently large amplitude as a function of the
considered parameter. We describe below how this happens
for the Chern insulator. For the quasi-(2-1)D Chern insulator,
we find that there are 2Lx transition points and, hence, 2Lx − 1
bubbles.

We first consider the case κn,m = ε = 0. If |ψ〉 is an eigen-
state of HCI with energy E and an eigenstate of σzI with the
eigenvalue s, then σxK|ψ〉 is an eigenstate of HCI with the
energy −E and an eigenstate of σzI with the eigenvalue −s.
Nondegenerate pairs of states with energies ±E hence have
opposite σzI eigenvalues. Note also that HCI and σzI can be
simultaneously diagonalized within the sector with the mo-
mentum ky = 0 in the ŷ direction. The σ = +1 component of
the resulting eigenstates is symmetric (antisymmetric) under
the mirror operation that takes site n into Lx + 1 − n if the
σzI eigenvalue is +1 (−1) while the σ = −1 component is
antisymmetric (symmetric). Similar considerations apply for
ky = π .

We observe numerically [Fig. 1(c)] that the lowest-energy
unoccupied state and the highest-energy occupied state form-
ing the Lx − 1 bubbles at M > 0 have the momentum ky = 0.
Plotting the highest-energy occupied state at half filling within
the ky = 0 sector [Fig. 1(d)], we observe that the wavelength
of the wave function in the x̂ direction decreases as M goes
from 4 to 0. Let us consider the σ = −1 components of the
state. The global phase of the wave function is chosen such
that the component at n = 1 is positive. For symmetric (anti-
symmetric) states, the component at n = Lx is hence positive
(negative). A smoother change in the wavelength as a function
of M can hence be obtained by alternating between symmetric
and antisymmetric states, and this alternation produces the
bubbles. The alternating sign of the σzI eigenvalue for the
highest-energy occupied state also means that the product of
σzI eigenvalues over high-symmetry points in the slab Bril-
louin zone undergoes a relative change in sign when tuning M
through a transition point between two bubbles. The transition
points therefore generically correspond to topological phase
transitions.

We may further characterize the topology of the bubbles
as topologically nontrivial or trivial by considering half filling
and computing the eigenvalue spectrum of the (discretized)
Wilson loop operator [59]

Wjk = lim
S→∞

〈
ψ

( j)
0

∣∣PS−1PS−2 · · · P2P1

∣∣ψ (k)
0

〉
, (2)

where |ψ ( j)
0 〉 is the jth occupied energy eigenstate within

the ky = 0 sector and Pl is the projector onto the occu-
pied subspace within the ky = 2π l/S momentum sector. The
eigenvalues of Wjk are phase factors {eiϑ ( j)}, and the model
is topological if at least one of the Wannier charge centers
{ϑ ( j)} is ±π . Such characterization of the quasi-(2-1)D bulk
topology is depicted in Fig. 2(a).

We observe numerically that the highest-energy occupied
state as a function of ky is separated from the remaining
occupied states (see Supplemental Material [58], Sec. I), and
hence, we can also compute the Wannier charge center for

FIG. 2. 1D topology in the quasi-(2-1)D system. (a) Wannier
spectrum versus Zeeman field strength M for (op,pe) boundary
conditions and Lx = 6. Intervals in M, for which one of the Wan-
nier charge centers is ±π , are highlighted in purple. (b) Results
of Fig. 1(c) for (pe,pe) and (op,pe) boundary conditions superim-
posed over the corresponding (op,op) spectrum (red). (c) The energy
gap between the nearly degenerate in-gap states at zero energy in
the (op,op) spectrum decreases exponentially with Ly, with vari-
ations due to Friedel oscillations. (d) Density distribution dn,m =∑

σ 〈c†
σ,n,mcσ,n,m〉 of one of the two states at zero energy in the quasi-

(2-1)D bulk gap for (op,op) boundary conditions and M = 2. We
show only the outermost 12 rows of sites for the slab as more than
99.8% of the total density is located here. The other state is localized
at the other end.

this state alone. For systems with inversion symmetry, one
can determine the number of Wannier charge centers that are
±π from the inversion eigenvalues at the momenta ky = 0 and
ky = π [59]. This explains the agreement between the purple
regions in Figs. 2(a) and 1(c).

There is an additional bulk-boundary correspondence of
the quasi-(2-1)D Chern insulator when the Wilson loop spec-
trum possesses topologically nontrivial eigenvalues: When M
lies inside an interval corresponding to a topological bubble
for open boundary conditions in the x̂ direction and finite Lx,
additionally opening boundary conditions in the ŷ direction
yields a pair of topological, quasi-(2-2)D gapless boundary
modes at zero energy inside the bubble [Fig. 2(b)]. The energy
gap between these two states displays exponential decay to
zero with increasing Ly [Fig. 2(c)], and the probability density
of one of these states for (op,op) boundary conditions is shown
in Fig. 2(d). The probability density is strongly localized
at one end of the system in the ŷ direction, such that it is
quasi-0D. As the system with (pe,pe) boundary conditions is
two-dimensional, we more precisely identify these states as
quasi-(2-2)D. The finite-size topology in the Chern insulator
has Z topological classification, as discussed in the Supple-
mental Material [58], Sec. IV.

While there are additional states at nonzero energy in the
bubbles for the parameter sets shown and they are localized
and robust against disorder while in the bubble gap, these
states are consumed by the quasi-(2-1)D bulk through smooth
deformation of the system that reduces the maximum height
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FIG. 3. Two-dimensional topological response in the quasi-(2-
1)D system. (a) We continuously open the boundary conditions in
the x̂ direction by scaling the hopping strengths of all hops across the
boundary by α. In this process, gap closings happen for some M but
not for others. The regions where gap closings do not occur remain
topological. The black lines that fall on top of the gap closings are the
boundaries between topological regions in which the Wannier charge
center of the highest-energy occupied state is ±π and trivial regions
in which it is 0. The purple line segments above and below the
plot show the topological regions for (pe,pe) and (op,pe) boundary
conditions, respectively. (b,c) When inserting a flux φ through the
central plaquette of the 6 × 600 lattice, the single-particle spectrum
of the Chern insulator model shows (b) no pumping inside trivial
bubbles and (c) Thouless pumping inside topological bubbles across
the gap in the (op,pe) spectrum. (d,e) The in-gap states for (op,op)
boundary conditions are not affected by the flux insertion, as they
are localized at the ends of the slab.

of the bubbles in energy. The quasi-(2-2)D states at nearly
zero energy, in contrast, occur in correspondence with the
nontrivial Wilson loop spectrum of these bubbles and are only
removed by closing the quasi-(2-1)D bulk gap.

In addition to the bulk-boundary correspondence between
a topological invariant of the quasi-(2-1)D bulk and quasi-
(2-2)D topologically protected boundary states, however, the
finite-size topology Chern insulator is adiabatically connected
to a 2D system with a nonzero Chern number [Fig. 3(a)], and
response signatures of this topology persist in the quasi-(2-
1)D system, clearly distinguishing a quasi-(2-1)D finite-size
topological phase from a 1D topological phase. This is
demonstrated by computing the evolution of the spectrum for
the quasi-1D Chern insulator with open boundary conditions
in each direction, as a function of the magnetic flux φ through
the center plaquette of the lattice [Figs. 3(b)–(e)]. Such φ de-
pendence of the energy spectrum results from the dependence
of the charge density on the applied magnetic field strength
determined by the Chern number [60]. We find such charge
pumping in the spectrum versus φ, but only for topologically
nontrivial bubbles. Notably, the quasi-(2-2)D boundary states
remain at fixed energy while φ is varied, reflecting their

FIG. 4. (a) Wannier spectrum versus Zeeman field strength M
when particle-hole symmetry is broken by taking ε = 0.02. M in-
tervals for which at least one Wannier charge center is ±π are
highlighted in purple. (b) Single-particle spectrum for (op,op) bound-
ary conditions (red) of the Chern insulator slab with Lx = 6, Ly =
600, ε = 0.02, and κ = 0.02 averaged over 200 disorder realizations
(see Supplemental Material [58], Sec. III, for details of disorder
treatment). The in-gap states are twofold degenerate, and the pur-
ple background shows the topological regions computed for κ = 0.
(c) The energy gap between the nearly degenerate, quasi-(2-2)D
boundary modes (states LxLy and LxLy + 1) for M = 2, ε = 0.02,
and κ = 0 decreases exponentially with Ly. (d) The quasi-(2-2)D
nature of the boundary modes inside the bubble gaps is manifested
in the density distributions dn,m = ∑

σ 〈c†
σ,n,mcσ,n,m〉 of the states, here

plotted for M = 2, ε = 0.02, κ = 0.02, and one disorder realization.
We show only the outermost 12 rows of sites for the slab as more
than 99.8% of the total density is located here. The other state is
localized at the other end. We obtain similar results for Lx = 5 (see
Supplemental Material, Secs. II and III).

dependence on the topologically nontrivial polarization in-
variant of the quasi-(2-1)D bulk rather than on the full Chern
number.

We also consider the Chern insulator with a finite-width
wire geometry in the case of the particle-hole symmetry-
breaking term ε being nonzero. Also in this case, we observe
topological and trivial bubbles in the spectrum as a function
of M characterized by quantized Wilson loop eigenvalues
[Fig. 4(a)] and pairs of degenerate quasi-(2-2)D in-gap states
localized at the ends of the wire [Fig. 4(c)]. We also ob-
serve flux pumping similar to the results in Fig. 3. If we
add disorder of the strength κ = 0.02 by randomly choosing
κn,m ∈ [−κ, κ], both the momentum and the σzI symmetry
are broken. The (op,op) spectrum still shows bubbles with in-
gap states as a function of M. The in-gap states are localized at
the ends of the wire [Fig. 4(d)], but there is now an energy gap
between pairs of in-gap states with densities at opposite ends.
If the spectrum is averaged over several disorder realizations,
however, this gap averages to zero [Fig. 4(b) and Supplemen-
tal Material, Sec. III].

Conclusion. We show D-dimensional topological phases
exhibit additional nontrivial finite-size topology: Topo-
logically protected (D − 1)-dimensional boundary modes
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resulting from nontrivial topology of a D-dimensional bulk
can hybridize in finite-size systems to induce additional topo-
logical phase transitions in the finite D-dimensional system
with open boundary conditions even when the D-dimensional
bulk gap remains open. This additional nontrivial topology in
the finite-size D-dimensional system can yield an additional
bulk-boundary correspondence to realize additional topo-
logically protected quasi-(D-2)-dimensional boundary states,
while the system still exhibits the response theory of a D-
dimensional topological invariant. We show such finite-size
topology occurs in Chern insulators, realizing quasi-(2-2)D
topological modes in a quasi-(2-1)D system and charge pump-
ing in response to an applied magnetic field. As Chern

insulators are the basis for many other models and topological
phases [3,19,41–48], such finite-size topology is a generic
property that necessitates reexamination of known topological
phases, to be explored in future work.
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