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Topological paramagnetic excitons of localized f electrons on the honeycomb lattice
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We investigate the dispersive paramagnetic excitons on the honeycomb lattice that originate from the crys-
talline electric field split localized f -electron states in the paramagnetic state due to intersite exchange. We start
with a symmetry analysis of possible Ising-type singlet-singlet and xy-type singlet-doublet models. The former
supports only symmetric intersite exchange while the latter additionally allows for antisymmetric Dzyaloshinski-
Moriya exchange interactions. We calculate the closed expressions for magnetic exciton dispersion using both
response function formalism and bosonic Bogoliubov approach. We do this for the most general model that shows
inversion-symmetry breaking on the honeycomb lattice but also discuss interesting special cases. By calculating
Berry curvatures and Chern numbers of paramagnetic excitons we show that the xy model supports nontrivial
topological states in a wide range of parameters. This leads to the existence of excitonic topological edge states
with Dirac dispersion lying in the zone boundary gap without the presence of magnetic order.
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I. INTRODUCTION

Localized 4 f and 5 f electron states are organized in terms
and multiplets according to Hund’s rules. Since the spin-
orbit coupling is generally larger than crystalline electric field
(CEF) potentials acting on the f electrons the total angular
momentum of multiplets is a good quantum number. The
perturbation of the CEF at the f -electrons site which origi-
nates from the surrounding ligands splits the ground-state J
multiplet into a series of CEF mutliplets with degeneracies
corresponding to the possible representations of the f -site
symmetry. This is conveniently described within Steven’s
operator technique used in Refs. [1,2] with an effective
parametrized CEF Hamiltonian restricted to the lowest J-
multiplet subspace (Appendix A). The parameters may be
formally expressed in terms of a point-charge model (PCM)
with screened ligand charges, however, in practice they are
usually determined from experiment. The sizes of the split-
tings depend much on the material but are generally, at least
for a subset of CEF multiplets, in the thermal range and
lead to a large variety of physical effects [3,4] for accessible
temperatures. In particular the temperature dependence of the
susceptibility over the whole range of CEF splitting allows to
extract model sets of parameters for the CEF potential, which
is, however, rarely unique.

For intermetallic compounds the conduction electrons (c)
have an effective onsite exchange interaction Jc f with CEF
states (obtained from eliminating the c f hybridization and
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f - f Coulomb interaction [5]). First, it will lead to a broad-
ening of CEF excitations [6] observable in inelastic neutron
scattering (INS). If the CEF ground state is degenerate, a low-
temperature Kondo effect results in coherent heavy-fermion
behavior often accompanied by unconventional superconduc-
tivity [7]. Furthermore, the elimination of Jc f leads to effective
unretarded intersite exchange interactions of the Ruderman-
Kittel-Kasuya-Yoshida (RKKY) type which for degenerate
CEF ground state may cause magnetic order according to the
Doniach phase diagram [5]. But even in the paramagnetic state
their presence entails the formation of collective magnetic
exciton modes which can be viewed as propagating local-
ized CEF excitations between the multiplets. These magnetic
exciton modes have been found in numerous 4 f compounds
using INS [3,6]. Determining the dispersion and intensity of
magnetic excitons such experiments also allow to identify
suitable model Hamiltonians for the coupled CEF states by
deriving multiplet splittings and intersite exchange-coupling
models from comparison with theoretical results for the model
[8,9]. The latter are most conveniently obtained with the RPA
response function formalism of the dynamic magnetic suscep-
tibility [3] which we will also partly use in this work.

Of particular interest are CEF systems with singlet non-
magnetic ground state as occurs for f -electron materials with
integer J , e.g., Pr and U compounds (J = 4). These cannot
exhibit magnetic order of the conventional quasiclassical type
by aligning preexisting moments as in the case of degener-
ate magnetic CEF ground state. Rather the creation of local
moments and their ordering appears simultaneously through
quantum mechanical mixing of excited CEF states into the
singlet ground state, e.g., in two-singlet [10,11] and three-
singlet [12] CEF level systems caused by intersite exchange.
This happens only when the latter is sufficiently large as
expressed by a dimensionless control parameter ξ (Sec. III A).
If it is smaller than a critical value or negligible the compound
stays paramagnetic [13].
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FIG. 1. (a) Honeycomb lattice structure (triangular sublattices
σ = A, B) with unit cell (primitive lattice vectors v1,2), first-neighbor
vectors δi (i = 1 − 3, z = 3), and second-neighbor vectors ±δ̃i (i =
1 − 3, z = 6) indicated. The corresponding symmetric exchange
constants are Iσ and Iσ

2 , respectively. Lattice constant denoted by
a and d = a/

√
3 is the first-neighbor distance. The DM exchange

couplings between second neighbors at δ̃i, −δ̃i are −Dσ
J , Dσ

J , respec-
tively. The distance between the zigzag chains (e.g., along y direction
is given by x0 =

√
3

2 . (b) Reciprocal lattice with primitive unit cell and
associated vectors G1, G2. The inequivalent zone boundary valleys
are indicated by K+, K−. The expressions for the vectors in direct
and reciprocal space are given in Appendix D.

Such type of singlet ground-state-induced moment mag-
netism is preceded in the paramagnetic phase by a strong
temperature dependence and a softening of a critical magnetic
exciton mode to a varying degree at the ordering wave vector.
This type of induced singlet-singlet magnetic order is found,
e.g., in Pr metal (under pressure) [3,14,15] and Pr compounds
like PrSb [16] and Pr3Tl [8,17], PrCu2[18], PrNi [19], and
also in TbSb [20] and various U compounds [21–23]. In the Pr
systems the large hyperfine interaction with nuclear moments
can also play an essential role in the ordering [3].

The mechanism of induced order is not restricted to dipo-
lar magnetism, for example, in YbRu2Ge2 the lowest J = 7

2
Kramers doublets form a quasiquartet that supports induced
quadrupolar order due to nondiagonal quadrupole matrix ele-
ments [24,25] between them.

In these materials it is frequently possible to restrict model
calculations to a reduced low-energy level scheme consist-
ing just of the singlet ground state and an excited multiplet
(e.g., singlet or doublet) and ignoring the higher-lying CEF
states. Such simplified models will be also used in this work.
They allow closed analytic solutions for the exciton bands
and a detailed investigation how their structure and proper-
ties depend on the model parameters. Here we investigate
the magnetic excitons for such simplified singlet ground-state
systems in the paramagnetic state where the f -electron sites
are forming a two-dimensional (2D) honeycomb lattice. It
has a two-atom basis (A, B) (Fig. 1), each of them belong-
ing to a trigonal Bravais lattice with site symmetry C3v .
The honeycomb lattice may be realized as a planar structure
within a three-dimensional (3D) lattice. This structure is rel-
evant for various f -electron compounds like Na2PrO3 [26],
TmNi3Al9 [27], and recently a new class of promising 4 f
(RE = Tm,Ho) honeycomb materials BaRE2(SiO4)6 has been
discovered [28]. All compounds mentioned have integer total
angular momentum J . For concreteness we focus on J = 4
realized in trivalent Pr(4 f 2) and possibly U(5 f 2) magnetic

ions but may also be applicable to trivalent Tb and Tm with
J = 6 and Ho with J = 8.

We begin with an appropriate motivation why this is an
interesting problem. It is already well known that in the ferro-
magnetically (FM) or antiferromagnetically (AFM) ordered
honeycomb lattice magnon bands may become topologically
nontrivial and support magnonic edge modes within the gap
of split 2D bulk magnon modes [29–35]. This well-developed
subject is reviewed in Refs. [36–40]. The nontrivial topology
in 2D is characterized by a nonzero Chern number of the bulk
bands which is the integral over the Berry curvature obtained
from the magnon bands and their eigenstates. The gap opening
between the two magnon bands (due to sublattice structure)
is a prerequesite for nonvanishing Chern number. It can only
be achieved if an antisymmetric Dzyaloshinskii-Moriya (DM)
spin-exchange term between nearest neighbors (NN) is in-
cluded. Any symmetric exchange (between first neighbors
on A, B or between further neighbors) will preserve the de-
generacy of magnon bands at zone boundary points of the
trigonal Brillouin zone (BZ) leading to Chern number zero.
The DM interaction is allowed because the centers of NN
A-B are not inversion centers of the lattice, only the centers
of hexagons and next-nearest-neighbor (NNN) bonds (Fig. 1).
The DM interaction thus enables nonzero Chern number and
consequently (nondegenerate) magnon edge states inside the
bulk gap. They can carry a transverse heat current, thus lead-
ing to a topological thermal magnon Hall and Nernst effect
discussed in theoretical investigations, e.g., Refs. [30,41] and
found experimentally in a similar kagome lattice FM [42].

In this work we will study the paramagnetic excitons on
the honeycomb lattice with nonmagnetic singlet ground-state
f electrons on the C3v sites having in mind the potentially
interesting topological properties in analogy to the magnonic
case. The aim of this work is twofold.

First, we want to give a complete theory of magnetic ex-
citons in the paramagnetic state for CEF split f electrons
on the honeycomb lattice comprising two trigonal sublat-
tices A, B and C3v site symmetry based on the reduced level
schemes. We focus on two representative cases for C3v CEF
states: An Ising-type singlet-singlet system and an xy-type
singlet-doublet level scheme. Thereby we make the most gen-
eral assumption that inversion symmetry is broken leading to
inequivalent CEF splitting and interaction parameters for sub-
lattices A, B. The aim of this part is to give a solid theoretical
foundation for inelastic neutron scattering (INS) experiments
on singlet ground-state honeycomb f -electron paramagnets.
We will derive general model expressions for dispersions and
intensities that may be used to analyze such experiments pro-
vided a restriction to one excited singlet or doublet can be
justified, as is frequently the case in Pr and U compounds.

Characteristically, the magnetic excitons appear already in
the paramagnetic phase of singlet ground-state systems as
opposed to magnons which are seen only in the ordered phase
as collective excitations of the order parameter resulting from
a degenerate magnetic ground state and thus they are clearly
separate types of magnetic excitations. In an INS experiment
both magnetic excitons and magnons can be distinguished in
a standard way from phonon excitations of the underlying
lattice by following their intensity as function of total mo-
mentum transfer k̃ (including the reciprocal lattice vector).
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In the former the intensity decreases with k̃ due to the mag-
netic f -electron form factors while in the latter it increases
quadratically with k̃ [6]. The magnetic excitons considered
here bear some formal similarity to the zero-field dispersive
triplon excitations of spin dimer compounds between singlet
and excited triplet states of the dimer [43]. The dispersion
is caused by interdimer exchange smaller than the dimer
singlet-triplet gap. However, such suitably sized dimerization
is not relevant in any of the above-mentioned compounds and
also not in the honeycomb lattice discussed here with only
equidistant f -electron sites.

The Ising-type model is convenient for demonstrating the
two techniques of calculating the magnetic exciton modes,
namely, the RPA response function and bosonic Bogoliubov
quasiparticle techniques. We will show that indeed they give
equivalent results. Applied to the Ising case we calculate the
dispersion and intensity of the two modes symmetrically split
by the intersublattice interactions and an additional contribu-
tion resulting from the intrasublattice terms. For equivalent
sublattices the modes will be degenerate at specific zone
boundary points K± and we demonstrate how they will be
split when inversion-symmetry breaking occurs.

Using the same techniques we investigate the richer
singlet-doublet xy-type model. Because of nonzero diago-
nal matrix elements for both Jx, Jy total angular momentum
components an asymmetric DM interaction is possible for
the intrasublattice exchange. Due to the doublet degeneracy
four magnetic exciton modes exist in principle. For equivalent
sublattices they consist of a pair of twofold-degenerate modes
which can develop a gap at the K± zone boundary due to
the presence of the DM interaction. A further splitting into
four modes occurs when the sublattices become inequivalent.
This theory is sufficiently general to be used for modeling INS
experiments for all possible singlet-singlet and singlet-doublet
CEF systems on compounds with f electrons located on the
honeycomb lattice.

Second, we show that in the xy-type model the DM term
may lead to interesting nontrivial topology of the magnetic
exciton bands. We stress that this happens in the param-
agnetic state of f electrons on the honeycomb lattice. It is
our primary intention to demonstrate that magnetic order is
not a prerequisite for the existence of topological magnetic
excitations and corresponding edge modes. For this purpose
we investigate the behavior of Berry curvature and associated
Chern numbers of paramagnetic exciton bands and discuss
their model parameter dependence. We show that as function
of the size of inversion-symmetry breaking transitions from
zero to integer Chern numbers are possible. In the latter case
we also derive the existence of the boundary magnetic exciton
modes in a continuum approximation around the Dirac points
K±. Finally we discuss that in contrast to topological magnons
in a FM the paramagnetic topological magnetic excitons do
not lead to a thermal Hall effect as is indeed required by the
absence of time-reversal symmetry breaking.

In Sec. II we give a brief introduction to f -electron CEF
states in less common C3v symmetry with details relegated to
Appendix A. Then Sec. III discusses the Ising-type models
in various techniques and the principle of induced magnetic
order. In Sec. IV the xy-type model, its characteristic four

dispersion branches, and their topological properties includ-
ing edge modes are investigated. Section VI discusses some
numerical results and finally Sec. VII gives the summary and
conclusion.

II. CEF STATES ON THE HONEYCOMB LATTICE,
SINGLET-SINGLET, AND SINGLET-DOUBLET MODELS

The point-group symmetry for the sites on the 2D honey-
comb lattice with two basis atoms (A, B) is C3v , composed
of threefold rotations and reflections on perpendicular planes
120◦ apart (Fig. 1). The A, B sublattice sites have no inver-
sion symmetry in C3v . The honeycomb space group P6/mcc,
however, contains the inversion with centers given by the mid-
point of bonds and the center of hexagons. The point-group
symmetry leads to a CEF potential (restricted to the lowest J
multiplet) given as a sum of Stevens operators Om

n (J) (m �
n � 6) (see detailed analysis in Appendix A).

In this work we are interested exclusively in f -electron
shells with integer J to have the possibility of a nonmag-
netic singlet CEF ground state |0〉 with 〈0|J|0〉 = 0. Among
the trivalent rare-earth (RE) ions this is possible for J = 4
(Pr), J = 6 (Tb,Tm), and J = 8 (Ho). We will restrict to the
simplest case of J = 4. The complete characterization of CEF
energies and states in C3v symmetry is given in Appendix A.
In this group the J = 4 space decomposes into irreducible
representations 2�1 ⊕ �2 ⊕ 3�3, i.e., three singlets (�a,b

1 , �2)
and three doublets (�a,b,c

3 ) which are linear combinations of
free-ion states |J, M〉 (|M| � J ). The two �a,b

1 singlets are
characterized by one (θ ) and the three �a,b,c

3 doublets by
generally three (χ, φ, α) mixing angles determined by the set
of CEF parameters Bn

m in Eq. (A1) while the unique �2 is fully
determined by C3v symmetry. Explicitly, the full orthonormal
CEF state basis is given in Appendix A. Here we list only the
singlets and one representative doublet �a

3 necessary for the
following analysis:

|�1a〉 = cos θ |4, 0〉 + 1√
2

sin θ (|4, 3〉 − |4,−3〉),

|�1b〉 = − sin θ |4, 0〉 + 1√
2

cos θ (|4, 3〉 − |4,−3〉),

|�2〉 = 1√
2

(|4, 3〉 + |4,−3〉),

|�±
3a〉 = sin χ (cos φ|4,±4〉 + sin φ|4,∓2〉)

± cos χ |4,±1〉. (1)

The CEF energies E� of these eigenstates are complicated
combinations of the Bm

n (Appendix A). Because there are six
independent parameters and six irreducible representations
the energy levels can in principle take any ordering.

For investigating the magnetic exciton modes it is im-
portant to calculate the dipolar matrix elements between the
CEF states. The Jα (α = x, y, z) operators connect states with
M ′ = M, M ± 1. Here we restrict to two important cases dis-
cussed in detail in the following: The singlet-singlet �1a,b-�2

subspaces and the singlet-doublet �2-�3a subspaces. Their
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dipolar matrix elements are given by

〈�2|Jz|�1〉 = m,
(2)

〈�2|Jx|�±
3 〉 = m̃/

√
2, 〈�2|Jy|�±

3 〉 = ±im̃/
√

2,

where we defined m = 3 sin θ or m = 3 cos θ for �1a,b

singlets, respectively, and m̃ = (1/
√

2) sin χ [
√

7 sin φ +
2 cos φ)] for �3a. The matrix elements of Jx, Jy between the
�1a,b-�2 subspaces vanish as well as those within �3a doublet
subspace. Therefore, the singlet-singlet �1-�2 model is of the
Ising type while the singlet-doublet model �2-�3 is of the xy
type for the inelastic CEF excitations. The latter would also be
realized in a �1-�3 type model. These selection rules follow
also directly from the group multiplication table [44] of C3v

considering the fact that Jz transforms like �2 and (Jx, Jy )
transform like �3. We note that nondiagonal quadrupolar
matrix elements between ground and excited states are only
allowed for the xy-type model. Quadrupolar intersite interac-
tion terms will not be included here as they contribute only
indirectly to the dipolar dynamic response functions of INS in
zero field [45].

To devise suitably general models for both cases in the
following sections we start from two basic observations on
the honeycomb structure: First, the center of second-neighbor
bonds (A-A, B-B) is not an inversion center. Therefore, in
addition to symmetric exchange asymmetric Dzyaloshinski-
Moriya (DM) exchange between second neighbors (dashed
lines in Fig. 1) may be present. Second, although the bond
centers of first neighbors are inversion centers meaning that
A, B sublattices are equivalent, this can be removed when
the 2D honeycomb lattice is placed into a 3D crystal where the
chemical environment of the basis atoms A, B between the
honeycomb layers may be different. This could be achieved
by sandwiching the f -electron honeycomb layer between
nonmagnetic honeycomb layers with different chemical occu-
pations of A, B known, e.g., from unconventional honeycomb
superconductors [46]. Using such 3D layered structure with
local inversion-symmetry breaking on the f -honeycomb sites
their CEF potentials (multiplet splittings) and interactions on
the A, B sublattices may also be generally different. This pos-
sibility should be incorporated in both models. It means that
inversion symmetry with respect to center of first-neighbor
A-B bonds and hexagon centers is also broken. We stress
that such full 2D inversion-symmetry breaking in honeycomb
models has already been proposed and investigated before for
the FM-ordered honeycomb lattice [32].

III. SINGLET-SINGLET ISING-TYPE MODEL

First we address the more simple and instructive case of
the singlet-singlet CEF model. Our calculations of exciton
modes will be based on RPA response function theory as well
as Bogoliubov transformation approach. The former can also
be applied at finite temperatures while the latter allows to
address topological properties of the modes due to a bosonic
representation used for the local CEF excitations.

For concreteness we assume �2 to be the ground state and
one of the �1a,b the excited state, and the inverted scheme
leads to identical results. Furthermore, we do not distinguish
between a and b representations and denote by m = ma, mb

any of the two matrix elements between ground and excited
states. The singlet-singlet CEF Hamiltionian is then given by

H =
∑
�σ i

Eσ
� |�σ i〉〈�σ i| − I

∑
〈i j〉

Jz
iAJz

jB −
∑

〈〈i j〉〉σ
Iσ
2 Jz

iσ Jz
jσ . (3)

Here σ = A, B denotes the two sublattices and i, j the first-
neighbor lattice sites on each of them and � = �2, �1 the two
singlet states. In the first term the CEF energies E�σ (and the
�1a,b excited states) may depend on the sublattices A, B and
similar for the exchange terms. We fix Eσ

�2
= 0 on each and

denote the relative excited state energy by 	σ = E�1σ (we
suppress the a, b index of both possible �1a,b representations
from now on). The second and third terms describe the sym-
metric exchange between A and B sublattices (first neighbors)
and within A and B sublattices (second neighbors), respec-
tively. Having in mind intermetallic f -electron compounds the
effective intersite exchange terms may be generated by the
virtual exchange of, e.g., 5d and 6s conduction electron-hole
excitations [47,48]. Note that in the above model only Jz has
nonzero matrix elements [Eq. (2)]. Therefore, it is of the Ising
type and in particular no DM exchange is supported because
this needs at least two components of J to have nonzero matrix
elements (Sec. IV).

A. Response functions and magnetic exciton modes

The interaction terms in Hamiltonian of Eq. (3) allow the
�2 ↔ �1 excitations of the paramagnetic state to propagate
from site to site and thus acquire a dispersion. They are com-
monly designated “magnetic excitons” to distinguish them
from magnons which require a magnetically ordered ground
state with broken time-reversal symmetry. The most conve-
nient way to obtain the dispersion of magnetic excitons is the
calculation of the dynamic magnetic susceptibility χ̂ (q, iωn)
in RPA. It is given by the 2 × 2 sublattice-space matrix

χ̂ (k, iωn) = [1 − Î (k)û(iωn)]−1û(iωn), (4)

where

û(iωn) =
(

uA(iωn) 0

0 uB(iωn)

)
(5)

and

Î (k) =
(

z2IA
2 γ2(k) zIγ (k)

zIγ ∗(k) z2IB
2 γ2(k)

)
(6)

are the single-ion susceptibility and exchange matrices, re-
spectively. In the latter z = 3 and z2 = 6 are first- and
second-neighbor coordination numbers and γ (k), γ2(k) the
corresponding structure functions of the honeycomb lattice
[Eq. (E2)].We note that the above exchange model for the
2D honeycomb can easily be generalized to a 3D stacked
arrangement by introducing additional interlayer exchange
constants and appropriately modified 3D structure functions.
The exchange functions (25) for the xy-type model may be
generalized in a similar fashion.

Furthermore, in the singlet-singlet model we have
(σ = A, B)

uσ (iωn) = 2m2
σ	σ Pσ (T )

	2
σ − (iωn)2

. (7)
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The temperature-dependent factor Pσ (T ) = tanh 	σ

2T in the nu-
merator is equal to the difference of thermal occupations of
ground and excited singlet states and 	σ and mσ are the (gen-
erally different) singlet-singlet splitting and matrix elements.
The magnetic exciton bands [there are two (κ = ±) due two
the A and B sublattices] are then obtained as the collective
modes, i.e., the singularities of the dynamic susceptibility
as determined by detχ̂ (k, iωn) = 0. Solving this equation a
closed expression for the magnetic exciton dispersions ωκ (k)
may be evaluated:

ω2
±(k) = 1

2

[
ω2

A(k) + ω2
B(k)

] ±
[

1

4

[
ω2

A(k) − ω2
B(k)

]2

+ 4m2
Am2

B	A	BPAPB|IN (k)|2
] 1

2

,

ω2
σ (k) = 	σ [	σ − 2m2

σ Pσ Iσ
D (k)]. (8)

Here we use the abbreviations Iσ
D (k) = (z2Iσ

2 )γ2(k) and
IN (k) = (zI )γ (k) for diagonal (D) and nondiagonal (N) intra-
sublattice and intersublattice exchange in Eq. (6), respectively.
Furthermore, the ωA,B(k) may be interpreted as the sep-
arate mode dispersions on σ = A, B sublattices when the
nearest-neighbor intersublattice coupling IN (k) is set to zero.
Explicitly this formula may also be written as

ω2
±(k) = 1

2

(
	2

A + 	2
B

) − [
m2

A	APAIA
D (k) + m2

B	BPBIB
D (k)

]
±

{[
1

2

(
	2

A − 	2
B

) − [
m2

A	APAIA
D (k)

− m2
B	BPBIB

D (k)
]]2

+ 4m2
Am2

B	A	BPAPB|IN (k)|2
} 1

2

.

(9)

For numerical calculations it is convenient to use
three model parameters (dimension energy) vs = (mAmBI )
and vσ

2 = (m2
σ Iσ

2 ) and likewise |ĪN (k)| = mAmB|IN (k)| =
(zvs)γ (k) and Īσ

D (k) = m2
σ Iσ

D (k) = (z2v
σ
2 )γ2(k) (see also

Appendix B). At low temperatures T/	σ � 1 we may re-
place Pσ (T ) → 1. The dispersion simplifies further if the
intrasublattice exchange Iσ

D (k) is absent. Then we get

ω2
±(k) = 1

2

(
	2

A + 	2
B

)

±
[

1

4

(
	2

A − 	2
B

)2 + 4m2
Am2

B	A	BPAPB|IN (k)|2
] 1

2

.

(10)

On the other hand, if both first- and second-neighbor exchange
are kept but the two sublattice sites are assumed equivalent
with 	A = 	B = 	 and likewise IA

D = IB
D = ID Eq. (9) re-

duces to

ω2
±(k) = 	

[
	 − 2m2[ID(k) ∓ |IN (k)|] tanh

	

2T

]
. (11)

Here the mode splitting of ωκ (k) can be seen to be directly
associated with the intersublattice coupling. The splitting van-
ishes at the K± zone boundary points in this special case.
In the general case described by Eq. (9) the criterion for

FIG. 2. Ising-type model induced order characteristics signified
by control-parameter ξ dependence of ground-state moment 〈Jz〉
(normalized to m), magnetic ordering temperature Tm (normalized
to CEF splitting 	), and their ratio (see also Ref. [23]).

opening a gap at K± may be identified as (i) for 	A = 	B

the gap is always present and (ii) for 	A = 	B one then must
have IA

2 = IB
2 for the intrasublattice exchange. Furthermore,

we can see from the above special case that the bandwidth of
magnetic excitons is controlled by the size and k dependence
of exchange interactions, increasing with their strength. It is
frequently comparable to the CEF splitting 	 [19,49].

Eventually if the interactions become strong enough the
lower mode, e.g., ω−(k), may become soft at specific, gen-
erally incommensurate wave vector k=Q and this heralds a
spontaneous induced magnetic order with modulation wave
vector Q of the singlet-singlet system although both CEF sin-
glets are nonmagnetic with 〈�α|Jz|�α〉 = 0 (α = 1, 2). In the
above equivalent sublattice case this occurs when the control
parameter

ξ = 2m2I (Q)

	
> 1, (12)

where I (Q) = ID(Q + |IN (Q)| is the total exchange Fourier
transform. For ξ > 1 the transition temperature Tm to the
induced moment phase and the size of the induced moment
MQ = 〈Jz〉 (in units of μB) along z are given by [21]

Tm � 	

2 tanh−1
(

1
ξ

) � 	

|lnξ ′| ,
(13)

MQ/m = 1

ξ
(ξ 2 − 1)

1
2 � (2ξ ′)

1
2 ,

where the approximate expressions hold close to the critical
control parameter, i.e., ξ � 1 + ξ ′ with ξ ′ � 1. Both quan-
tities increase with infinite slope above ξ = 1 (Fig. 2). This
Ising-type two-singlet induced moment system has also been
generalized for the frequently occurring three-singlet model in
low-symmetry 4 f and 5 f materials [12]. In the present case
when the incipient soft mode (ξ < 1) appears at Q = K± zone
boundary positions as is the case in Fig. 3 the magnetic order
for critical ξ = 1 would correspond to a 120◦ commensurate
spiral structure on each triangular sublattice A, B coupled
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FIG. 3. Typical cases of the Ising model magnetic exciton dis-
persions. (a) High-temperature case T = 1.0 with equal 	A,B = 1,
vA,B

2 = −0.11, and vs = −0.10 shows moderate dispersion. (b) Same
parameters but low-temperature case exhibits large dispersion due to
increased thermal population difference of �2, �1 levels. Because of
A, B equivalent interaction constants K+ (and also K−) is a Dirac
point with degenerate and linearly dispersive exciton modes. The
splitting of modes for all other k values is due to intersublattice
interaction IN (k) ∼ vs. (c) T = 0.1 case now with distinct 	A,B =
	(1 ± ε) where 	 = 1, and ε = 0.07 and other constants as in
(a) and (b). Now the degeneracy at K± is removed. This case shows
incipient soft-mode behavior around K+ indicating closeness to com-
mensurate spiral order. (c) Same case but small vA,B

2 = −0.02 which
reduces the overall dispersion.

ferromagnetically or antiferromagnetically depending on the
sign of intersublattice coupling I in Eq. (3).

In this work, however, we restrict the investigation to the
paramagnetic phase for both CEF models. In the response
function formalism it is also straightforward to calculate the
momentum and temperature dependence of the intensity of
paramagnetic exciton modes that are essential for the inter-
pretation of INS data. It is given by the dynamical structure
function

S(k, ω) = 1

π
[Imχ̂AA(k, ω) + Imχ̂BB(k, ω)]. (14)

This may be evaluated as

S(k, ω > 0) =
∑
κ=±

Iκ (k)δ(ω − ωκ (k)),

I+(k) =
∑

σ=A,B m2
σ	σ Pσ

(
ω2

+ − ω2
σ̄

)
ω+(k)[ω2+(k) − ω2−(k)]

,

I−(k) =
∑

σ=A,B m2
σ	σ Pσ

(
ω2

σ̄ − ω2
−
)

ω−(k)[ω2+(k) − ω2−(k)]
,

(15)

with

ω2
+(k) − ω2

−(k)

= 2

[
1

4

(
	2

A − 	2
B

)2 + 4m2
Am2

B	A	B|IN (k)|2
] 1

2

,
(16)

where σ̄ = B, A for σ = A, B. Here Iκ (k) denotes the bare
intensity of each mode in the INS scattering without Bose, po-
larization, and atomic form factors [3]; it will be discussed at
the end of Sec. III B. We note that in the RPA method and also
in the bosonic Bogoliubov approach below the exciton modes
are sharp. They may develop a finite broadening or lifetime
due to intrinsic exciton-exciton interactions [3,50] or by an
extrinsic process originating from the coupling to the electron-
hole continuum of (e.g., 5d- and 6s-type) conduction bands
as discussed in detail in Ref. [3]. Away from the soft-mode
regime the large exciton gap protects them from overdamping
by these processes. However, close to the temperature Tm of
induced order the softening of ω−(Q) causes a strong increase
of damping channels may lead to a broadening of the mode
into a quasielastic line at the ordering wave vector [20]. It
should be noted that the relation between mode softening and
transition to induced order is generally more complicated than
predicted by the RPA approach [3].

B. Bosonic representation of interacting CEF excitations

An alternative approach to the magnetic exciton problem is
provided by a bosonic representation of the Hamiltonian and
a subsequent application of Bogoliubov technique for diag-
onalization [51]. It has the advantage of not only providing
the dispersion but also the eigenvectors or Bloch states of
magnetic exciton modes. On the other hand, it can only be
used as a temperature low compared to the CEF splitting. We
first apply it for the simple singlet-singlet system, restricting
for simplicity to first-neighbor interactions, in order to use it as
a guidance for the more complicated singlet-doublet system.

In the restricted �2-�1 space, considering Eq. (2) we may
replace the angular momentum component Jz by sublattice
bosonic operators according to

Jz
iA = mA(a†

i + ai ), Jz
iB = mB(b†

i + bi ), (17)

where the ai, bi and a†
i , b†

i satisfy the usual bosonic com-
mutation rules. This replacement produces the proper matrix
elements but is restricted to low T because of the different
commutation rules and statistics [3,15,51,52]. (The thermal
occupation of a finite set of CEF states is determined by their
Boltzmann factors while the mapping to bosons creates an
enlarged space with arbitrary number of excited bosons lead-
ing to bosonic statistics.) Introducing Fourier transforms like
ak = (1/

√
N )

∑
i exp(ikRi )ai, etc., and rearranging terms in

the first-neighbor exchange Hamiltonian in Eq. (3) we arrive
at

Ĥ = 1

2

∑
k

φ
†
kĥkφk + E0 with φk = (ak, bk, a†

−k, b†
−k )T ,

(18)
where E0 = (N/2)(	A + 	B). The components of this
four-spinor satisfy the bosonic commutation relations
[φn(k), φ†

m(k′)] = �nm
z δkk′ where �z = τz ⊗ 12 = diag(12,
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−12) is composed of the 2 × 2 unit 12. In this representation
we can express

ĥk =

⎛
⎜⎜⎜⎝

	A −Ī∗
N (k) 0 −Ī∗

N (k)
−ĪN (k) 	B −ĪN (k) 0

0 −ĪN (−k) 	A −ĪN (−k)
−Ī∗

N (−k) 0 −Ī∗
N (−k) 	B

⎞
⎟⎟⎟⎠,

(19)
where we used ĪN (k) = (mAmB)IN (k) = (zvs)γk which satis-
fies ĪN (−k) = ĪN (k)∗ [Eq. (E2)]. The magnetic exciton modes
may be obtained by a paraunitary Bogoliubov transformation.
The dispersions are then obtained as eigenvalues obtained
from the secular equation |�zĥk − ω1| = 0. The solution of
this equation leads to the T = 0 exciton modes

ω2
±(k) = 1

2

(
	2

A + 	2
B

)

±
[

1

4

(
	2

A − 	2
B

)2 + 4m2
Am2

B	A	B|IN (k)|2
] 1

2

.

(20)

The above Eq. (20) is identical to the RPA result for
zero temperature (PA = PB = 1) obtained before in Eq. (10).
Therefore, on the RPA level one may say that temperature
enters in the theory just as a parametric change of the effective
exchange coupling by modification of the matrix elements
to effective ones with the replacement m2

σ → Pσ (T )m2
σ . In

the case of equivalent sublattices A, B the above equation re-
produces the T = 0 case of Eq. (11). The Bloch functions
corresponding to magnetic exciton bands are the eigenvectors
of �zh̄k corresponding to the four eigenvalues ±ω±(k).

At this point, to obtain a preliminary impression of the
behavior of magnetic excitons in the honeycomb lattice we
discuss the results for the Ising-type model as presented in
Fig. 3. In Figs. 3(a) and 3(b) the symmetric case 	A = 	B is
shown for elevated (a) and low temperature (b). In the former
a moderate dispersion due to small thermal population differ-
ences PA,B in Eq. (9) or (11) exists which becomes larger in the
low-temperature case. The dispersion of modes is controlled
by both by intrasublattice (v2) and intersublattice (vs) interac-
tion strength while the mode splitting is only due to the latter
(for vσ

2 = v2). At the K± zone boundary points, however,
they become degenerate because γ (K±) = 0 (Appendix D).
This degeneracy is lifted by introducing inequivalent A, B
CEF splittings as demonstrated in Figs. 3(c) and 3(d) for two
cases with different strength of intrasublattice coupling v2. A
similar removal of degeneracy at K± occurs if the splittings
are kept equal but the intrasublattice couplings vA,B

2 become
inequivalent. The intensity of the modes corresponds to the
brightness of the dispersion curves in Fig. 3. In particular, in
Fig. (3 c) one can see that the low-energy modes have larger
intensity (are brighter) the the high-energy modes. This is
due to the mode frequencies appearing in the denominator of
intensity expressions in Eq. (15).

Experimentally the magnetic exciton dispersion curves are
determined by INS [8,9,49,53]. Comparison with theoretically
predicted model dispersions as derived here [Eqs. (9) and
(27)] are the most direct way to extract the physical relevant
parameters such as CEF splittings and exchange interaction

strengths of the singlet ground-state honeycomb material in-
vestigated.

The consistent results of two different techniques in this
section encourage us to consider the more involved and richer
singlet-doublet xy-type model. It may also be treated within
the response function approach by a simple extension (Ap-
pendix D). It has the drawback of giving only the spectral
density of the magnetic excitons but not the composition of
the eigenmodes which is important for discussing topological
properties relevant in the xy model. Therefore, in this case we
employ the bosonic technique in the following.

IV. SINGLET-DOUBLET xy-TYPE MODEL

We outline the aim and according procedure in this sec-
tion for clarity: First we define the minimal model ingredients.
Then we carry out the transformation of the Hamiltonian
to bosonic coordinates up to bilinear terms (Sec. IV A 1)
where, as compared to the Ising case, a doubling of the four-
component boson fields occurs due to doublet degeneracy.
The magnetic exciton energy bands are then obtained for
our most general form of the Hamiltionian (Sec. IV A 2). It
shows the effects of the various exchange couplings in the
Hamiltonian in a transparent form which will be of great value
for extracting their physical value from future experiments
on singlet ground-state honeycomb materials. The bosonic
approach also allows to compute the eigenvectors or Bloch
states corresponding to the four exciton bands. These are
essential inputs to identify their topological character via the
Berry curvature and Chern number as carried out in Sec. V.

The exciton dispersions for our most general model are
quite involved. Therefore, in Sec. IV A 3 we derive approxi-
mate mode energies for the weakly dispersive case sufficiently
away from the soft-mode regime. We show that in this case
the band energies are described by weakly dispersive separate
sublattice modes coupled by the nearest-neighbor exchange. It
is also important to consider the general solution for exciton
bands for simpler cases to isolate the effect of sublattice sym-
metry breakings and the presence or absence of the various
exchange terms, in particular the DM interaction. This will be
carried out in Sec. IV B. At the special zone boundary points
K± the exciton modes are degenerate unless the DM inter-
action is nonvanishing. The opening of a bulk gap due to the
latter is an important issue in the honeycomb model because it
provides the energy window for the appearance of topological
edge modes. Therefore, we discuss the asymptotic form of
bulk bands in the vicinity of the K± points to considerable
detail in Sec. IV C.

A. Bosonic approach to the magnetic exciton bands of the
singlet-doublet model

In contrast to the Ising model we focus here on the Bo-
golibuov approach to diagonalize the model Hamiltonian. The
response function formalism can be applied accordingly and
is described in Appendix C. Our aim is to show that due to
the degeneracy of the excited state it allows for the existence
of nontrivial topological character of magnetic exciton bands
and associated appearance of edge modes within the gap of
2D bulk modes.
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1. Model Hamiltonian and transformation to bosonic coordinates

The singlet-doublet model for honeycomb magnetic exci-
tons leads to additional possibilities because of its xy-type
exchange structure as enforced by the selection rules of
Eq. (2). They show that in this model two of the total angu-
lar momentum operators Jx, Jy have nonzero matrix elements
complementary to the previous singlet-singlet case that in-
volves only Jz. Because the centers of second-neighbor bonds
are not inversion centers in any case this opens the possibility
for asymmetric DM exchange HDM = ∑

〈〈i j〉〉 νi jDJ (JixJjy −
JiyJjx ) according to Moriya rules [54]. Here we defined
DJ = (gJ − 1)2D (gJ = Landé factor) as the original DM
spin-exchange constant D projected to the lowest angular
momentum multiplet (J = 4) considered in this work. It has
to be staggered along each bond direction as expressed by
νi j = ±1, i.e., second neighbors (−δ̃i, δ̃i ) (i = 1 − 3) have
DM exchange (−DA

J , DA
J ) on A sublattice and conversely

(DB
J ,−DB

J ) on the B sublattice. (Fig. 1). The total Hamiltonian
in the �2-�3 model is then given by

H =
∑
�σ i

Eσ
� |�σ i〉〈�σ i| −

∑
〈i j〉

Iσ
(
Jx

iAJx
jB + Jy

iAJy
jB

)

−
∑

〈〈i j〉〉σ
Iσ
2

(
Jx

iσ Jx
jσ + Jy

iσ Jy
jσ

)

+
∑

〈〈i j〉〉σ
νi jD

σ
J

(
Jx

iσ Jy
jσ − Jy

iσ Jx
jσ

)
. (21)

Here we formulated the most general case of the model with
first- (〈i j〉) and second- (〈〈i j〉〉) neighbor exchange.We have
in mind symmetric and asymmetric (DM) exchange inter-
actions that are mediated by conduction electrons [48,55].
Further allowed exchange interactions like Kitaev terms or

symmetric terms off diagonal in momentum components are
suppressed here to keep the number of model constants at
a minimum and to isolate the effect of the DMI term. The
CEF splittings as well as the three types of interactions are
assumed to be sublattice dependent. As in the Ising case this
may be caused by a different chemical environment of the
two sublattice sites when the bare 2D honeycomb lattice of
4 f ions is integrated into a larger 3D structure. We treat this
model again by using the bosonic representation which is now
defined by (J± = Jx ± iJy)

JiA
+ =

√
2m̃A(a†

i+ + ai−), JiB
+ =

√
2m̃B(b†

i+ + bi−),

JiA
− =

√
2m̃A(a†

i− + ai+), JiB
− =

√
2m̃B(b†

i− + bi+).
(22)

We notice that there is an additional degree of freedom λ = ±
corresponding to the two doublet components |�λ

3 〉 repre-
sented by the a†

iλ, b†
iλ creation operators. Only for some special

cases this will remain a degeneracy index throughout the Bril-
louin zone (BZ) for the diagonalized excitonic eigenmodes.

Now again we introduce the Fourier-transformed bosonic
operators akλ, bkλ and conjugates and express the Hamiltonian
of Eq. (21) through them by using Eq. (22). We finally obtain

Ĥ = 1

2

∑
kλ

φ
†
kλĥkλφkλ + E0, (23)

with φkλ = (akλ, bkλ, a†
−kλ̄

, b†
−kλ̄

)T . Here we defined λ̄ = −λ

and E0 = N (	A + 	B). Similar to the Ising-type model the
four spinor components satisfy bosonic commutation relations
[φn(kλ), φ†

m(k′λ′)] = �nm
z δkk′δλλ′where the 4 × 4 diagonal

matrix is defined above in Eq. (19). In this representation we
now have

ĥkλ =

⎛
⎜⎜⎜⎜⎝

	A − ĪA
D (kλ) −Ī∗

N (k) −ĪA
D (kλ) −Ī∗

N (k)

−ĪN (k) 	B − ĪB
D (kλ) −ĪN (k) −ĪB

D (kλ)

−ĪA
D (−kλ̄) −ĪN (−k) 	A − ĪA

D (−kλ̄) −ĪN (−k)

−Ī∗
N (−k) −ĪB

D (−kλ̄) −Ī∗
N (−k) 	B − ĪB

D (−kλ̄)

⎞
⎟⎟⎟⎟⎠. (24)

Here the intrasublattice (D) and intersublattice (N) sublat-
tice interactions are defined by

ĪA
D (kλ) = m̃2

AIA
D (kλ),

IA
D (kλ) = (

z2IA
2

)
γ2(k) + λ

(
z2DA

J

)
γ̃D(k)

= IA
D (−kλ̄) = IB

D (−kλ),

ĪB
D (kλ) = m̃2

BIB
D (kλ),

IB
D (kλ) = (

z2IB
2

)
γ2(k) − λ

(
z2DB

J

)
γ̃D(k)

= IB
D (−kλ̄) = IA

D (−kλ),

ĪN (k) = m̃Am̃BIN (k), IN (k) = (zI )γ (k). (25)

2. General case for magnetic exciton dispersion

Again for numerical computation it is convenient
to use (now generally five) model parameters vs =

(m̃Am̃BI ), vσ
2 = (m̃2

σ Iσ
2 ), and vσ

D = (m̃2
σ Iσ

D ) and likewise
|ĪN (k)| = (zvs)γ (k), ĪA

D (kλ) = (z2v
A
2 )γ2(k) + λ(z2v

A
D)γ̃D(k),

and ĪB
D (kλ) = (z2v

B
2 )γ2(k) − λ(z2v

B
D)γ̃D(k) (see also Ap-

pendix B). Note the sign of the DM term changes with
sublattice inversion and �3 degeneracy index which leads to
the symmetry λ̄γ̃D(−k) = λγ̃D(k) which has been used in the
construction of the Hamiltonian matrix (24). The excitonic
eigenmodes in the present general model are then, similar
as in previous section, obtained by solving |�zĥk − ω1| =
0. The solution leads to a closed form of their dispersions
ω2

κ (kλ)(κ = ±), given by a formally similar expression as
Eq. (9) in the zero-temperature limit:

ω2
±(kλ) = 1

2

[
ω2

A(kλ) + ω2
B(kλ)

] ±
[

1

4

[
ω2

A(kλ) − ω2
B(kλ)

]2

+ 4m̃2
Am̃2

B	A	B|IN (k)|2
] 1

2

(26)
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with

ω2
σ (kλ) = 	σ

[
	σ − 2m̃2

σ Iσ
D (kλ)

]
.

It is, however, distinct from the singlet-singlet model in the
following aspects. First, in contrast to the latter the singlet-
doublet model can realize the presence of a DM interaction
in the intrasublattice part because two components Jx, Jy have
nonzero matrix elements m̃ between �2 and �3. Second, due
to the excited state �3 being a doublet (λ = ±) the number
of modes doubles to four. They are still degenerate at each
k point for zero DM interaction. For nonzero Dσ

J the modes
still fulfill the symmetry relation ω2

±(kλ) = ω2
±(−kλ̄). Fur-

thermore, the matrix elements m̃σ are different from those of
the singlet-singlet model (mσ ) [see below Eq. (2)]. Similar as
in Sec. III A the above exciton dispersion ω2

κ (kλ) (κ = ±) can
be written more explicitly as

ω2
±(kλ) = 1

2

(
	2

A + 	2
B

) − [
m̃2

A	AIA
D (kλ) + m̃2

B	BIB
D (kλ)

±
{[

1

2

(
	2

A − 	2
B

) − [
m̃2

A	AIA
D (kλ)

− m̃2
B	BIB

D (kλ)
]]2

+ 4m̃2
Am̃2

B	A	B|IN (k)|2
} 1

2

.

(27)

When the DM interaction is set to zero and we replace
m̃σ → mσ and the degeneracy in the �±

3 index λ is ig-
nored, this becomes equivalent to the general case of the
Ising-type singlet-singlet model [Eq. (9)]. The temperature
dependence of the dispersions can be incorporated by re-
minding (Sec. III B) that it enters in a parametric way by
introducing effective matrix elements m̃2

σ → m̃2
σ tanh 	σ

2T (1 +
fσ )−1 where the correction factor with fσ = 1

2 (1 − tanh 	σ

2T )
is due to the twofold degeneracy of the �3 doublet. This may
be concluded from the complementary RPA approach for the
xy-type model (Appendix C).

3. Approximate dispersions from a reduced Hamiltonian

The exact expressions for the exciton dispersions of the
4 × 4 Hamiltonian in Eq. (24) as given by Eq. (26) exhibit
the redundancy or doubling which is typical for the Bogoli-
ubov technique, i.e., they appear in pairs (+ωκ,−ωκ ) (in the
RPA response function technique they correspond to poles at
positive and negative frequencies). These expressions may be
considerably simplified if certain conditions are fulfilled: (i)
the dispersion width is small compared to the CEF excita-
tion energy 	 which means that throughout the BZ it is far
from soft-mode behavior. This requires m̃2

σ Iσ
D (kλ)/	σ � 1.

In this case (+ωκ,−ωκ ) pairs are sufficiently apart which
means they correspond approximately to the solution of
the diagonal 2 × 2 blocks in �zĥkλ. This approximation
is reasonable if 	A,B CEF splittings are not too different.
More precisely, if we define the various averages 	av =
1
2 (	A + 	B), 	̄ = (	A	B)

1
2 ,	m = [ 1

2 (	2
A + 	2

B)]
1
2 the con-

ditions 	̄/	av � 1,	av/	m � 1 should be respected. For
	A = 	B they hold identically. With these premises the exact
dispersions of Eq. (27) may be approximated by the (positive)

exciton energies

ωr
±(kλ) = 1

2
[ωA0(kλ) + ωB0(kλ)]

± 1

2

[
[ωA0(kλ) − ωB0(kλ)]2 + 4m̃2

Am̃2
B|IN (k)|2

] 1
2

,

ωσ0(kλ) = 	σ − m̃2
σ Iσ

D (kλ). (28)

It can be seen easily that these modes correspond directly to
the eigenvalues of the reduced 2 × 2 Hamiltonian

ĥr
kλ =

(
	A − ĪA

D (kλ) −Ī∗
N (k)

−ĪN (k) 	B − ĪB
D (kλ)

)
, (29)

which corresponds only to the diagonal blocks in the 4 ×
4 Hamiltonian (24). Effectively, the nondiagonal blocks in
�zĥkλ have the effect of coupling the positive and negative
frequency solutions ±ωr

κ (kλ) (κ = ±) of the two diagonal
blocks and produce the exact solutions ±ωκ (kλ) of Eq. (26)
or (27). The approximate treatment of this section provides
a convenient starting point for calculating the topological
boundary modes in continuum approximation as carried out
in Sec. V B.

B. Special cases of the singlet-doublet model

Now we return to the exact and general dispersion model
equations (26) and (27). We will discuss a few interesting
special cases which have either less coupling terms and/or
more sublattice equivalences of model parameters.

1. First special case

Here we assume the absence of symmetric second-
neighbor exchange and sublattice equivalence of DM terms:
Iσ
2 = 0, Iσ

D = ID.
In this case Eq. (27) reduces to the simpler form

ω2
±(kλ) = 1

2

(
	2

A + 	2
B

) − λ(z2vD)(	A − 	B)γ̃D(k)

±
{

1

4
(	A + 	B)2[(	A − 	B) − 2λ(z2vD)γ̃D(k)]2

+ 4	A	B(zvs)2|γ (k)|2
} 1

2

, (30)

where we introduced abbreviations vs = m̃2I and vD = m̃2DJ .
This form gives convenient access to the mode dispersions
around the inequivalent zone boundary points K±. The essen-
tial part is the “mass term” (first term in curly brackets) given
by

M(K±, λ) = 1
2 (	A + 	B)[(	A − 	B) − 2λ(z2vD)γ̃D(K±)],

(31)

which may be both positive or negative depending on condi-
tions and valley position K± (Secs. IV B and V). The above
equation shows that in general the λ degeneracy resulting from
�±

3 doublet is lifted if, first, the CEF splittings are inequivalent
and, second, the DM term is nonzero. This becomes also clear
from the next special case.
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2. Second special case

Here, in addition to the first case we assume the equiva-
lence 	A = 	B = 	: Then we obtain the further simplified
dispersion form

ω2
±(k) =	

{
	 ± 2[(z2vD)2γ̃D(k)2 + (zvs)2|γ (k)|2]

1
2
}
.

(32)
Due to the equivalent CEF splittings the dispersions now
retain the twofold degeneracy (λ = ±) throughout the BZ,
therefore, this index has been suppressed. As a result, only two
dispersion curves (κ = ± due to two sublattices) are present.
We also give the simplified dispersion of the reduced model
from Eq. (28) for the same special case:

ωr
±(k) = 	 ± [(z2vD)2γ̃D(k)2 + (zvs)2|γ (k)|2]

1
2 . (33)

It is obviously the approximation to Eq. (32) for moderate
dispersion (vs, vD � 	) far from the soft-mode regime.

C. Expansions of magnetic exciton dispersion around K± valleys

It is important to understand the behavior of exciton bands
around the inequivalent valley points K± because they influ-
ence their topological character. It is largely determined by the
expansion of structure functions in Appendix E.

1. General case

For the most general case of parameter sets in Eq. (27) we
obtain the following result (now κ = ± and λ = ± for the two
mode pairs and K± referring now to the two boundary points):

ωκ2
D (K±, λ, q̂) = ω2

D0(K±, λ) + κ{M(K±, λ)2

+ 3π2	A	B(vsq̂)2} 1
2 , (34)

where we use the scaled momentum q̂ = (q2
x + q2

y )
1
2 /(π/a)

with respect to the K± Dirac points, i.e., k = K± + q. The
generally distinct energies of the latter are given by (vσ =
m̃2

σ Iσ
2 , vσ

D = m̃2
σ Dσ

J and σ = A, B)

ω2
D0(K±, λ) = 1

2

(
	2

A + 	2
B

) + 3(	AvA + 	BvB)

± λ
√

3
(
	AvA

D − 	BvB
D

)
,

(35)

and depend on valley (±) and �3 degeneracy index λ. The
splitting of bands at K± is determined by the mass term of the
square root in Eq. (34) given by

M(K±, λ) = 1
2

(
	2

A − 	2
B

) + 3(	AvA − 	BvB)

± λ
√

3
(
	AvA

D + 	BvB
D

)
.

(36)

The last term leads to different mass values and (generally)
splittings at K± due to its different signs. The size of the
mode splitting δ(K±) at zone boundary points is given by
the difference of the mass terms for λ = ±, i.e., δ(K±) =
±2

√
3(	AvA

D + 	BvB
D). It is only finite when the DM in-

teraction is nonzero and changes sign between K±. For the
equivalent A, B sublattice model then δ(K±) = ±4

√
3	vD

the splitting provides a direct means to determine the size
of the DMI. This originates in the different signs of the DM
structure function γ̃D(K±) = ∓ 3

√
2

z2
(Appendix E). If the mass

term vanishes, the exciton bands are all degenerate at K±

and show a linear dispersion around it due to the last term
in Eq. (34).

Obviously interchanging valley K± position and simulta-
neously the �3 states λ = ± leaves the Dirac point energy
and mass term invariant, i.e, they fulfill the symmetry
ωD0(K±, λ) = ωD0(K∓,−λ) and M(K±, λ) = M(K∓,−λ).

As in the previous subsection it is again useful to consider
the two special cases with reduced parameter set.

2. First special case

Here only the CEF splittings are different on A and B. Then
we can simplify, defining the average gap by 	av = 1

2 (	A +
	B), we have

ω2
D0(K±, λ) = 1

2

(
	2

A + 	2
B

) ± λ
√

3vD(	A − 	B),
(37)

M(K±, λ) = 	av[(	A − 	B) ± λ2
√

3vD].

The square of the exciton dispersion is then given by

ωκ2
D (K±, λ, q̂) = ω2

D0(K±, λ) + κ[M(K±, λ)2 + D2
0q̂2]

1
2 ,

D0 =
√

3π (	A	B)
1
2 vs. (38)

It is instructive to evaluate directly the dispersion
ωκ

D(K±, λ, q̂) at small q̂ for the case of finite mass term

ωκ
D(K±, λ, q̂) = ωκ

D0(K±, λ) + κ
D2

0

4|M|ωD0
q̂2,

ωκ
D0(K±, λ) = ωD0(K±, λ) + κ

|M|
2ωD0

. (39)

The first term describes the split energies at the Dirac points or
valleys K± [first of Eq. (37)]. For 	A = 	B in Eq. (37) there
are four distinct energies at each K± indexed by (κ, λ) and
four corresponding split parabolic exciton bands around them
[Figs. 4(b)–4(d)].

3. Second special case

As in the previous Sec. IV B 2 we assume now in addition
equal CEF splittings 	 on both A and B sublattices these
expressions further simplify in an obvious manner with ωD0 =
	, M(K±, λ) = ±λ2

√
3	vD and D0 = √

3π	vs which re-
sults in two degenerate (λ = ±) pairs of modes. If we turn
off the DM interaction (vD = 0) the mass term vanishes and
we have to go back to Eq. (38), which then leads to

ωκ
D(q̂) = 	 + κ

√
3

2
πvs|q̂|, (40)

which describes two Dirac half-cone (κ = ±) exciton disper-
sions centered around the CEF excitation energy 	 which
are identical for K± and retain the twofold degeneracy with
respect to �3 index λ.

V. TOPOLOGICAL PROPERTIES OF MAGNETIC
EXCITON MODES

Like any kind dispersive modes, in particular magnons in
the ferromagnetic honeycomb lattice, the paramagnetic exci-
ton bands studied here can be characterized according to their
topological properties. For 2D systems the relevant quantities
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FIG. 4. Exciton dispersions ωλ
κ (k) (T = 0.1) and their typ-

ical behavior of gap formation at K± for xy-type model for
�MK+� K−M path in the BZ. Common parameters are 	 = 1, vs =
0.08. (a) v2 = 0, ε = 0, dashed line: vd = 0; full line: vd = 0.008.
The DM interaction opens gaps at K± but keeps the twofold �±

3

(λ) degeneracy throughout the BZ if parameters are identical on
sublattices A and B. (b) Dashed line: vd = 0.008, ε = 0; full line:
vd = 0.008, ε = 0.025 with 	A,B = 	(1 ± ε). For inequivalent 	A,B

the λ degeneracy is generally lifted (green: λ = +; red: λ = −) but
prevails along the �M direction. This is due to the band crossing
along K+K− segment at ky = 0. As a consequence, the band order-
ing (green/red) is inverted at K+ and K−. (c) Here 	A = 	B but
vA,B

d = vd (1 ± εd ) is different with εd = 0.35. This also lifts the K±
degeneracies but with different sequence of bands. (d) This panel
corresponds to (b) but now finite (AF) v2 = −0.03 included which
destroys the approximate reflection symmetry around ω = 	.

to investigate for this purpose are the Berry curvature and the
associated Chern number topological invariant.

A. Berry curvature and Chern numbers

The topological character of magnetic exciton bands is
determined by Berry curvature obtained from the effective

Hamiltonian matrix h̃(kλ) = �zĥ(kλ) [Eq. (24)] which has,
for each λ = ± two positive ωκ (k, λ) (κ = ±, τ = +) and
two negative −ωκ (k, λ) (κ = ±, τ = −) eigenvalues [from
Eq. (27)]. The latter are a result of the doubling of degrees
of freedom in the Bogoliubov method [56]. The index τ = ±
corresponds to the positive or negative set [the sign in front
of τωκ (k, λ)]. Then we may combine positive and negative
solutions to a single index n = (κ, τ ) = 1–4 resulting from
sublattice degree of freedom and Bogoliubov doubling. This
is done for each λ = ± subspace resulting from the �3 CEF
degrees of freedom. The index λ is suppressed as a dummy
index in the following that simply refers to two different
sets of bands (which may be completely degenerate in the
BZ as discussed before in special cases). Physical relevant
excitations are only the positive energy solutions. The neg-
ative solutions, however, do appear in the calculation of the
topological quantities.

The topological properties of these bands are described by
the Berry curvature given by

�n(k) = ∇k × i〈n(k)|∇k|n(k)〉, (41)

where |n(k)〉 denote the eigenvectors or Bloch functions
corresponding to the eigenvalue equation h̃(k)|n(k)〉 =
ωn(k)|n(k)〉. This may also be written as [ωn(k) > 0] [57]

�n(k) = i
∑
m =n

〈mk|�z∇k|nk〉∗�mm
z × 〈mk|�z∇k|nk〉. (42)

An alternative expression more useful for numerical compu-
tation is given by [57]

�n(k) =
∑
m =n

i〈nk|∇kĥk|mk〉�mm
z × 〈mk|∇kĥk|nk〉

[ωn(k) − ωm(k)]2
, (43)

where the sum over m runs over eigenstates with positive
and negative energies ωm(k). Using the explicit expression
of ĥk and its gradient ∇kĥk as well as the eigenvalues and
eigenvectors of k̃k = �zĥk the Berry curvature �n(k) may
be computed numerically from the above expression. For the
2D honeycomb models only the �z

n(k) component is nonzero.
Explicitly, it is given by

�z
n(k) =

∑
m =n

i
[〈

nk
∣∣ĥx

k

∣∣mk
〉
�mm

z

〈
mk

∣∣ĥy
k

∣∣nk
〉 − 〈

nk
∣∣ĥy

k

∣∣mk
〉
�mm

z

〈
mk

∣∣ĥx
k

∣∣nk
〉]

[ωn(k) − ωm(k)]2
. (44)

The Chern number characterizing the topological character of
magnetic exciton bands (reintroducing now the �3 index λ) is
then obtained by [n = (κ, τ )]

Cn(λ) = 1

2π

∫
BZ

dk �z
n(k, λ). (45)

The k dependence of ĥk in Eqs. (19) and (24) stems entirely
from that of the structure functions. Therefore, the gradients
ĥα

kλ = ∂ ĥk/∂kα (α = x, y) required in Eq. (44) may be
computed analytically (Appendix F). Because the

eigenvectors in Eq. (44) have to be obtained numerically,
this is also necessary for the Berry curvature. It is shown
in Fig. 6 for some typical parameters for the positive
bands in the irreducible BZ and will be discussed in more
detail in Sec. VI. There are two typical cases to be observed
with Berry curvature maximum (or negative minimum)
located at the K± zone boundary symmetry points, or at three
(C3v equivalent) of-symmetry points. Whether the Chern
number (i.e., the integral of the Berry curvature over the
irreducible BZ) is zero (topologically trivial) or nonzero
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FIG. 5. Contour plot of Chern numbers as functions of (a) ε

in 	A,B = 	(1 ± ε) and εD in vA,B
D = vD(1 ± εD ) by setting ε2 =

0 in vA,B
2 = v2(1 ± ε2). Symbols �, �, • correspond to values used

in Figs. 6(a)–6(d), 6(e)–6(h), and 6(i)–6(l), respectively. (b) As
functions of εD and ε2 by setting ε = 0.175. Common parameters
are 	 = 1, vs = 0.08, v2 = −0.03, and vD = 0.04. The topological
nontrivial bands are stable in the sublattice-equivalent cases, e.g.,
(ε, εD ) = (0, 0) and (ε2, εD ) = (0, 0).

integer (topologically nontrivial) exciton bands depend to
some extent on the amount of inversion symmetry breaking
(difference of σ = A, B sublattice parameters 	σ , vσ

2 , vσ
D),

as discussed in Sec. VI. For the sublattice-equivalent case
when they are all equal the Chern numbers are all ±1 for
the four bands and therefore each of them is topologically
nontrivial which should entail the existence of gapless 1D
excitonic edge states inside the 2D bulk DM gap at K±. The
symmetric case is conveniently accessible by a continuum
approximation, i.e., small momentum approximation around
K±. This will indeed predict the existence of edge states as
we shall show now.

B. Topological edge modes in continuum approximation

An alternative and direct way to approach the nontrivial
topology is provided by the explicit construction of excitonic
magnetic edge states within the 2D bulk gap at K± valleys
which decay exponentially into the bulk. We demonstrate this
in the simplified approach mentioned before that neglects
the interaction of ±ωn(kλ) modes in the secular equation.
This is acceptable as long one is not too close to a soft-

mode situation. It amounts to considering only the reduced
2 × 2 Hamiltonian of Eq. (29). For the reduced model we
apply the continuum approximation around the K± by setting
k = K± + q′ where q′ is expressed in the rotated Cartesian
coordinate systems defined in Appendix E. We first focus on
K+. The q′

x direction corresponds to zigzag chain direction in
real space which we consider as an edge of the semi-infinite
honeycomb lattice. Then we have to replace the perpendicular
coordinate according to q′

y → −i∂y′ in the reduced Hamilto-
nian above. For the simplified equivalent sublattice case (ii) in
Sec. IV B (v2 = 0) we obtain

ĥr (q′
xλ, y) =

(
	 + λδD (zvs)ξ (q′

x − ∂y′ )

(zvs)ξ (q′
x + ∂y′ ) 	 − λδD

)
, (46)

where ξ = a
2
√

3
and λδD = λ3

√
2vD describes the effect of the

DM interaction which importantly has opposite sign on the
two sublattices. As an ansatz wave function for the excitonic
edge eigenstate we use w(q′

x, y) = w0eiq′
xx′

e−κDy′
. The corre-

sponding eigenvalue equation ĥr (q′
xλ, y)w(q′

x, y) = ωw(q′
x, y)

then leads to the secular equation

∣∣∣∣ 	 + λδD − ω (zvs)ξ (q′
x + κD)

(zvs)ξ (q′
x − κD) 	 − λδD − ω

∣∣∣∣ = 0, (47)

which has λ degenerate solutions

ω± = 	 ± [[
δ2

D − (zvs)2ξ 2κ2
D

] + ξ 2(zvs)2q′2
x

] 1
2 . (48)

Choosing κD = |δD|
zvsξ

=
√

3
2

vD
vs

we obtain gapless edge-mode
dispersions (κ = ±)

ωκ (q′
x ) = 	 + κ (zvs)ξ |q′

x| = 	 ±
√

3

2
πvs|q̂x|, (49)

where q̂x = q′
x/(π/a). This describes a 1D Dirac cone of

excitonic edge modes emerging from the Dirac point ωD0 = 	

with momentum oriented along the zigzag chain direction.
The calculation is equivalent for the K− value with the re-
placement (δD, κD) → (−δD,−κD) in Eq. (47) leading to the
same dispersion for the edge modes around K−. The edge-
mode dispersion approaches asymptotically the gapped bulk
mode dispersion (for 	A,B = 	) of Eq. (38) for q′

y = 0 and
becomes identical to this mode [Eq. (40)] when the gap closes
(vD → 0 and κD → 0).

It is interesting to consider an alternative case of the simpli-
fied model without the second-neighbor DM exchange (vD =
0) but instead including the second-neighbor symmetric ex-
change (v2 = 0). In this case the essential difference from
Eq. (47) is the lack of sign change in δ2 = 3

√
2v2 between

the sublattices leading simply to a renormalization of the CEF
splitting 	̃ = 	 + δ2. Therefore, the secular equation has no
solution for edge states for q′

x → 0 and only bulk states are
present. We conclude that the general structure of the mag-
netic exciton models discussed here always require a nonzero
DM interaction for the existence of topological edge states.
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FIG. 6. Density plot of Berry curvature in BZ corresponding to bands (κ, λ) = (+,+), (−,+), (+,−), (−,−) from left to right in each
row according to decreasing energy for each λ. Parameters are same as in Fig. 5(a). First we show two cases according to symbols (�,�) in
Fig. 5(a) to the right and left of the topological boundary. (a)–(d) Chern number 0 at the � point ε = 0.2 and εD = 0.2 in Fig. 5(a); (e)–(h)
Chern number ±1 at the � left boundary point ε = 0.175 and εD = 0.2 in Fig. 5(a). Berry curvature has both ± sign in for each panel of
(a)–(d) so the integration gives a zero Chern number, however, it shows only positive or negative values for each panel of (e)–(h) and therefore
finite Chern number ±1. In (i)–(l) ε = 0.15 is relatively small compared to εD leading to a shift of the Berry curvature extrema to three C3v

equivalent incommensurate positions closer to the M point, however, the Chern number still is ±1 corresponding to • in Fig. 5(a).

VI. DISCUSSION OF NUMERICAL RESULTS FOR THE
xy-TYPE MODEL

We already discussed the magnetic excitons in the simple
Ising-type model (Sec. III) and now focus on the more intri-
cate results of the xy-type model (Sec. IV).

For a first impression one may restrict to the special
models of Sec. IV B. The restricted parameter set is then

given by CEF splitting energies 	A,	B and the sublattice-
equivalent interaction energy parameters vs = m̃2I and vD =
m̃2DJ corresponding to first-neighbor (z = 3) (A-B) symmet-
ric exchange and second-neighbor (z2 = 6) (A-A, B-B) DM
exchange. The energy unit for these parameters may be cho-
sen as the average 	 and we use the representation 	A,B =
	(1 ± ε), etc. (Appendix B).
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Some representative dispersion results for these special
cases for the xy model are shown in Fig. 4. In Figs. 4(a) and
4(b) we also set intrasublattice v2 = 0, therefore, the splitting
of modes caused by intersublattice interaction vs is nearly
symmetric around 	. In Fig. 4(a) when ε = 0 the upper and
lower modes (κ = ±) inherit the twofold degeneracy with
respect to the CEF �3 index λ = ±. If the DM interaction van-
ishes (vd = 0) the two pairs of mode are fully degenerate at
K± zone boundary points (dashed lines) but for nonvanishing
vd the degeneracy is lifted and a gap appears. The gap persists
in the case of inequivalent CEF splittings (ε = 0) [Fig. 4(b)].
Now the fourfold degeneracy is completely removed because
λ = ± modes are no longer degenerate. This is also true
when a finite v2 is included which removes the approximate
reflection symmetry of lower and upper branches [Fig. 4(d)].
Note the important point that in both cases the ordering of
modes λ = ± (corresponding to the coloring green/red) is
interchanged at K± This is due to the symmetry ωκ (k, λ) =
ω(−k, λ̄) and the fact that K− is equivalent to −K+. For
comparison we also show a case where the CEF splittings are
equivalent (ε = 0) but the DM coupling strengths vA,B

D are not,
again with v2 = 0 [Fig. 4(c)]. It looks similar to Fig. 4(b) but
the band ordering is changed such that the gaps at K± do not
depend on λ in contrast to Fig. 4(b).

Now we discuss the topological properties of the mag-
netic exciton bands. The crucial role there is played by the
DM interaction which opens the necessary gap at K± for
nontrivial topology (nonzero Chern number). In the inversion-
symmetric case with all A and B sublattice parameters
equivalent the Chern number is always nonzero in the (vs, vD)
plane as shown in Fig. 5. This agrees with the fact that in
the inversion-symmetric case the continuum approximation
shows the existence of zone boundary modes as shown in
the previous section. The introduction of A and B sublattice
asymmetry, e.g., by assuming different CEF splittings 	A,B =
	(1 ± ε) can destroy the topological state leading to vanish-
ing Chern number as is shown in the example denoted by � in
Fig. 5 which shows that the inequivalence of 	A,B should stay
below a threshold to achieve topologically nontrivial bands
with C = ±1.

To obtain an intuition how the vanishing and nonzero
Chern numbers are obtained we also plot the Berry curvature
�z

n(k, λ) in the irreducible wedge of the BZ for the different
sets of (positive energy) bands ωn(k, λ) with n = (κ, τ =
+) leading to four panels in each row corresponding to all
four choices of (λ = ±, κ = ±). We show these four panels
for three cases corresponding to the trivial (a)–(d) [Cn(λ) =
0] and nontrivial (e)–(h), (i)–(l) [Cn(λ) = ±1] regions of
Fig. 5 marked by symbols �,�, •, respectively. According to
Eq. (44) the extremum of Berry curvature occurs close to the
points where the exciton band gap is smallest. This naturally
happens at K± unless the splitting is dominated by the DM
interaction as discussed below. From the dispersion plots in
Fig. 4 it is seen that for a given λ the gaps at K± are unequal
with an inverted order for the opposite λ. This means the main
extremum is situated either on K− or K+ for a given λ. In the
trivial case [Figs. 6(a)–6(d)] the (absolute) large Berry curva-
ture values at the extrema are compensated by opposite sign
values in the surrounding in the irreducible sector integrating

to zero Chern number. In the nontrivial case [Figs. 6(e)–6(h)]
the sign is the same everywhere and the integration leads to
Chern numbers ±1. Depending on parameters, in particular
when DM interaction vD is large, the minimum gap may shift
from K± to other (C3v equivalent) incommensurate positions
closer to the M point in the irreducible BZ sector. Such a
case is presented in the Berry curvature plot of Figs. 6(i)–6(l).
However, the Chern number is still C = ±1 since one stays in
the nontrivial regime of Fig. 5.

Finally, we comment on the absence of a thermal Hall ef-
fect in the present paramagnetic case. The thermal Hall effect
has been proposed and investigated many times [30,34,36,58–
60] for the FM-ordered honeycomb lattice. In this case time-
reversal symmetry is broken and an intrinsic nonzero thermal
Hall current carried by the topological magnonic edge states
may appear. It vanishes, however, on the antiferromagnetic
honeycomb lattice [41] due to the twofold degeneracy of
magnon modes caused by a symmetry operation consisting of
the product of time reversal and inversion [61]. The situation
is similar here in the equivalent sublattice model due to the
λ degeneracy of magnetic excitons. But even in the asym-
metric case when all modes are split we have the symmetry
�z(k, λ) = −�z(−k, λ̄) which can be seen from Fig. 6. Since
the thermal Hall conductivity involves a summation over k, λ

it will vanish also for the most general case of exciton bands
which is consistent with the paramagnetic state.

VII. SUMMARY AND CONCLUSION

In this work we have developed a comprehensive theory of
paramagnetic excitons on the honeycomb lattice originating
from the localized CEF excitations of f -electron elements on
the two sublattice sites. We assumed a general case where the
inversion symmetry may be broken due to different chemi-
cal environment of the sublattices. We focused on a model
without magnetic order which may be realized for integer
J lanthanide ions like Pr, Tm, or U where the CEF ground
state can be a nonmagnetic singlet. Specifically, we treated
the J = 4 based case of an Ising-type singlet-singlet model
and an xy-type singlet-doublet model allowed by the C3v site
symmetry and with CEF splitting energies 	A,B. The effective
intersite interactions comprise symmetric intrasublattice and
intersublattice exchange in both models as as well as a new
DM-type asymmetric exchange for xy-type model allowed
by lack of an inversion center on second-neighbor A-A, B-B
bonds. These interactions lead to dispersive magnetic exci-
tons in the paramagnetic state with characteristic properties
enforced by the underlying honeycomb symmetry. The disper-
sion increases with decreasing temperature due to the thermal
population effect of CEF levels. We have treated our general
model using two alternative techniques, RPA response func-
tion method and Bogoliubov bosonic approach, and showed
that they lead to equivalent results. The latter approach is the
suitable one for discussing topological properties of magnetic
excitons.

In the Ising-type case there are two modes which are split
by the A, B intersublattice exchange. If inversion symmetry
is present, the honeycomb structure enforces the degeneracy
of these modes at the zone boundary K± points. This de-
generacy is lifted if the two sublattices become inequivalent
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(e.g., have different splittings 	A,B). For sufficiently strong
exchange interactions one mode may turn into a precursor soft
mode for an induced magnetic order of the spiral type. The
Ising-type model cannot support a DM asymmetric exchange
and, therefore, its magnetic excitons are topologically trivial.

This changes in the xy-type singlet-doublet model which
supports the DM exchange term. The Fourier transform of the
asymmetric exchange is nonvanishing at the K± points. Due
to the doublet degeneracy there are now generally four modes
present. The symmetric intersite exchange splits them only
into two pairs if A, B sublattices are still equivalent, however,
even in this case the gap caused by the DM term is preserved
at K±. The remaining pair degeneracy is lifted throughout
the BZ for sublattice-inequivalent CEF splitting or exchange,
except along the �M symmetry direction.

In the xy-type model a nonzero DM exchange term ex-
ists which has not been considered before in the context of
paramagnetic excitons. It may support topologically nontrivial
magnetic exciton bands even though there is no magnetic
order present. This distinguishes the present model from
all previous magnetic honeycomb models investigated [36]
which all use (anti)ferromagnetic order as a precondition to
obtain topological magnon states. We have shown that indeed
the nonzero Chern numbers of topological paramagnetic ex-
citons are stable over a wide range of parameter space, in
particular for all parameters in the A, B sublattice-equivalent
case. The peculiar structure of the underlying Berry cur-
vature in the irreducible BZ sector has been mapped out.
Furthermore, we have shown within a continuum approxima-
tion for the sublattice-symmetric case that magnetic exciton
edge modes inside the 2D bulk magnetic exciton gap caused
by DMI at K± exist and their decay length is governed
by the ratio of asymmetric DM exchange to symmetric in-
tersublattice exchange. This suggests to extend the present
analysis and perform an investigation of edge states of the
xy-type magnetic exciton model within a numerical diagonal-
ization approach for various edge and stripe geometries of the
honeycomb lattice. Because of the paramagnetic state time-
reversal symmetry is not broken and as a consequence these
edge modes do not support a thermal Hall effect as another
distinction to the magnon topological excitations in the mag-
netically ordered honeycomb lattice. However, it is possible
that, as in the magnetically ordered honeycomb models, a

finite-temperature (pseudospin) Nernst effect [31,41,61] may
exist in the paramagnetic exciton case which should be in-
vestigated based on the analysis in this work. Furthermore,
conduction electrons can easily couple to the gapless edge
modes. This will modify their spectral properties which may
be accessible by STM investigations.
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APPENDIX A: CEF POTENTIAL WITH C3v SYMMETRY,
LEVELS, AND EIGENSTATES

Here we discuss to some detail the J = 4 CEF states for
the less common C3v symmetry of the crystalline electric
field potential on the honeycomb lattice because they are,
to our knowledge, not easily available in the literature. The
corresponding CEF Hamiltonian is given in terms of Stevens
operators Om

n (J) of the ground-state J multiplet which are
polynomials of (n − m)th order in Jz and mth order in J±
according to Refs. [1,2]. Its structure is determined by the
symmetry alone but contains six independent CEF poten-
tial parameters Bm

n . Formally they may be given in terms
of a point-charge model simply representing the neighboring
ligands of the f -electron site by Coulomb potentials. The
associated charges of the ligands are effective ones screened
by the intervening outer-shell (e.g., 5d , 6s) electrons of f
elements [1]. In practice the Bm

n have to be determined from
adjustment to experimental quantities like low-temperature
specific heat, susceptibility in the whole temperature range,
and spectroscopic results from INS or Raman scattering. The
C3v CEF Hamiltonian is given by

HCEF = B0
2O0

2 + B0
4O0

4 + B0
6O0

6 + B3
4O3

4 + B3
6O3

6 + B6
6O6

6.

(A1)

It may be represented as a (2J + 1) × (2J + 1) matrix in
the space spanned by free-ion states |J, M〉 (|M| � J). If
we rearrange the natural sequence (decreasing M) of |J, M〉
states suitably HCEF can be written in block-diagonal form
according to

HCEF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 −3 4 1 −2 2 −1 −4
3 d3 m30 m33 0 0 0 0 0 0
0 m30 d0 −m30 0 0 0 0 0 0

−3 m33 −m30 d3 0 0 0 0 0 0
4 0 0 0 d4 m41 m42 0 0 0
1 0 0 0 m41 d1 −m21 0 0 0

−2 0 0 0 m42 −m21 d2 0 0 0
2 0 0 0 0 0 0 d2 m21 m42

−1 0 0 0 0 0 0 m21 d1 −m41

−4 0 0 0 0 0 0 m42 −m41 d4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2)

045143-15



AKBARI, SCHMIDT, AND THALMEIER PHYSICAL REVIEW B 108, 045143 (2023)

where the first row and column denote the free-ion M value. In
terms of the CEF parameters Bm

n the matrix entries are given
by

d4 = 28
[
B0

2 + 30
(
B0

4 + 6B0
6

)]
,

d3 = 7
[
B0

2 − 180
(
B0

4 + 17B0
6

)]
,

d2 = −8B0
2 − 660

(
B0

4 − 42B0
6

)
,

d1 = −17B0
2 + 180

(
3B0

4 + 7B0
6

)
,

d0 = −20
(
B0

2 − 54B0
4 + 1260B0

6

)
,

m41 = 15
√

14
(
B3

4 + 24B3
6

)
,

m42 = 720
√

7B6
6,

m30 = 9
√

35
(
B3

4 − 20B3
6

)
,

m33 = 2520B6
6,

m21 = 15
√

2
(
B3

4 − 42B3
6

)
. (A3)

For the eigenvalues and eigenvectors of the three singlets
(�1a,b, �2) we obtain

E1a = 1

2
(β −

√
8γ 2 + δ2),

E1b = 1

2
(β +

√
8γ 2 + δ2),

E2 = α,

(A4)

where we defined

α = d3 + m33,

β = d0 + d3 − m33,

γ = m30,

δ = d0 − (d3 − m33). (A5)

According to these expressions the singlet-singlet splitting of
the Ising-type �1a,b model of Sec. III is given by 	 = α −
1
2 (β ∓

√
8γ 2 + δ2) and depends, via Eqs. (A3) and (A5), on

all six Bm
n CEF parameters. And a similar situation holds for

the splitting 	 of the �2-�3 xy-type singlet-doublet system of
Sec. IV.

Furthermore, the corresponding singlet eigenfunctions are
given by

|�1a〉 = cos θ |4, 0〉 + sin θ
1√
2

(|4, 3〉 − |4,−3〉),

|�1b〉 = − sin θ |4, 0〉 + cos θ
1√
2

(|4, 3〉 − |4,−3〉),

|�2〉 = 1√
2

(|4, 3〉 + |4,−3〉),

cos θ = 1√
2

√
1 + 1√

1 + t2
,

sin θ = 1√
2

√
1 − 1√

1 + t2
,

t := tan(2θ ) = 2
√

2γ

δ
, 0 � θ � π

4
. (A6)

We note that the antisymmetric linear combination of the
|4,±3〉 states belongs to the totally symmetric �1 represen-
tation while the symmetric linear combination belongs to �2.

Because �2 is determined by symmetry alone the eigen-
values and eigenvectors of the remaining singlets �1a,b are
obtained as explicit solutions of a quadratic equation. This
factorization of the original 3 × 3 matrix problem (upper left
block in HCEF) is due to the fact that two entries (d3, d3)
appear pairwise. However, the second and third blocks (which
give the twofold-degenerate levels of the three doublets) the
equivalent entries (d2, d4) are generally different, therefore,
the eigenvalues and eigenvectors result from a true cubic
equation. It is too tedious and not useful to give their explicit
expressions. In the special case when CEF parameters fulfill a
constraint such that d2 = d4 the three doublet eigenvalues will
also factorize in one isolated value and a pair resulting from a
quadratic equation.

Nevertheless, it is possible to parametrize the form of the
doublet eigenfunctions. From the second and third blocks of
the matrix representation of HCEF in Eq. (A2) we can read off
that they correspond to superpositions like

∣∣�±
3

〉 = u|4,±4〉 + v|4,∓2〉 ± w|4,±1〉 (A7)

with normalized coefficients u, v,w which we interpret as
coordinates of a point on the surface of a 3D unit sphere
spanned by the |J,±M〉 states. Orthonormality is ensured by
writing the doublets in the form

∣∣�±
3a

〉 = sin χ (cos φ|4,±4〉 + sin φ|4,∓2〉)

± cos χ |4,±1〉,∣∣�±
3b

〉 = (cos α cos χ cos φ − sin α sin φ)|4,±4〉
+ (cos α cos χ sin φ + sin α cos φ)|4,∓2〉
∓ cos α sin χ |4,±1〉,∣∣�±

3c

〉 = (− sin α cos χ cos φ − cos α sin φ)|4,±4〉
+ (− sin α cos χ sin φ + cos α cos φ)|4,∓2〉
± sin α sin χ |4,±1〉. (A8)

The three independent angles χ , φ, and α are determined by
the three roots of the secular equation of the Hamiltonian
doublet block submatrix. The coefficients of the |�+

3x〉 states
turn out to be nothing else than the columns of the Euler-
angle parametrization of the 3D rotation matrix, associating
αEuler → φ, βEuler → χ , γEuler → α, and the columns like
1 → |�+

3b〉, 2 → |�+
3c〉, 3 → |�+

3a〉. This holds equivalently
with βEuler → π − χ for the |�−

3x〉 states.

APPENDIX B: COLLECTION OF PARAMETERS FOR
NUMERICAL CALCULATIONS

We use parameters that absorb the matrix elements mσ and
m̃σ of the Ising and xy cases, respectively, into the interaction
parameters so that matrix elements do not appear explicitly.
This is done by defining the quantities (dimension of energy)
vs, vσ

2 , and vσ
D (σ = A, B sublattice), for brevity we also use
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the notation vA,B
2 = v2(1 ± ε2) and vA,B

D = v2(1 ± εD) in the
same manner as we have used 	A,B = v2(1 ± ε) before. Here
ε, ε2, and εD characterize the amount of inversion-symmetry
breaking between the sublattices. There are three (five) pos-
sible Ising (xy) model parameters given by (coordination
numbers z = 3, z2 = 6):

Ising-type model:

vs = (mAmBI ),

vσ
2 = (m2

σ Iσ
2 ),

(B1)

leading to

mAmB|IN (k)| = (zvs)|γ (k)|,
m2

σ Iσ
D (k) = (z2v

σ
2 )γ2(k).

(B2)

xy-type model:

vs = (m̃Am̃BI ),

vσ
2 = (m̃2

σ Iσ
2 ),

vσ
D = (m̃2

σ Iσ
D ),

(B3)

leading to

m̃Am̃B|IN (k)| = |ĪN (k)| = (zvs)|γ (k)|,
m̃2

AIA
D (kλ) = ĪA

D (kλ) = (z2v
A
2 )γ2(k) + λ(z2v

A
D)γ̃D(k),

m̃2
BIB

D (kλ) = ĪB
D (kλ) = (z2v

B
2 )γ2(k) − λ(z2v

B
D)γ̃D(k).

(B4)

It is clear that a full consideration of the model in the five-
parameter space would be too exhaustive. Therefore, only
typical cases will be considered with some sublattice parame-
ters equal and/or some parameters set to zero.

In the definition of the Hamiltonians we choose the con-
vention that positive I, Iσ

2 corresponds to FM exchange and
negative ones to AF exchange. The same convention applies
then to vs and vσ

2 if we make the reasonable restriction that
mA and mB matrix elements have the same sign. The sign of
Iσ
D is not essential as the DM interaction alternates from bond

to bond and from A to B. A change in sign of Iσ
D or vσ

D just
means a redifinition of λ → −λ notation in the exciton bands.

APPENDIX C: RPA RESPONSE FUNCTION APPROACH
FOR THE xy-TYPE MODEL

In this model the twofold �±
3 excited-state degeneracy

(λ = ±) and two sublattices lead in principle to a 4 × 4 sus-
ceptibility matrix which, however, is the direct sum of 2 × 2
matrices so that instead of Eq. (6) we now have

χ̂ (k, λ, iωn) = [1 − Î (kλ)û(iωn)]−1û(iωn),

û(iωn) =
(

uA(iωn) 0

0 uB(iωn)

)
,

Î (kλ) =
(

IA
D (kλ) IN (k)

I∗
N (k) IB

D (kλ)

)
,

(C1)

where the exchange matrix elements are defined in Ap-
pendix B above. The single-ion susceptibility (the sum of xx

and yy components) is given by

uσ (iωn) = 2m̃2
σ	σ Pσ (T )

	2
σ − (iωn)2

. (C2)

Now the thermal population factor for the singlet-doublet case
is Pσ (T ) = tanh 	σ

2T (1 + fσ )−1 where fσ = 1
2 (1 − tanh 	σ

2T ).
The poles of the dynamical susceptibility associated with
magnetic exciton modes may then be obtained in a completely
analogous way to the Ising model case, except for the addi-
tional mode index λ resulting from the �3 degeneracy:

ω2
±(kλ) =1

2

[
ω2

A(kλ) + ω2
B(kλ)

] ±
[

1

4

[
ω2

A(kλ) − ω2
B(kλ)

]2

+ 4m̃2
Am̃2

B	A	BPAPB|IN (k)|2
] 1

2

,

ω2
σ (kλ) = 	σ

[
	σ − 2m̃2

σ Pσ Iσ
D (kλ)

]
. (C3)

In the zero-temperature limit Pσ → 1 and the above expres-
sion is completely equivalent to the xy-model exciton dis-
persions obtained from the Bogoliubov approach [Eq. (26)].
Likewise, the spectral function of the magnetic response is
given in an obvious generalization as

S(k, ω) = 1

π

∑
λ

(Imχ̂AA(kλ, ω) + Imχ̂BB(kλ, ω)). (C4)

APPENDIX D: GEOMETRIC PROPERTIES OF
HONEYCOMB LATTICE AND BRILLOUIN ZONE

The honeycomb lattice (Fig. 1) has two basis atoms de-
noted by A and B with a distance d apart (NN distance A-B).
The lattice constant is denoted by a (NNN distance A-A or
B-B). They are related by d = a/

√
3. We generally use the

lattice constant a in the direct lattice and 2π/a in the recip-
rocal lattice as units. The three vectors to NN sites δi and six
vectors to NNN sites ±δ̃i (i = 1–3) are given by

δ1 =
(√

3

6
,

1

2

)
a, δ2 =

(√
3

6
,−1

2

)
a, δ3 =

(
−

√
3

3
, 0

)
a,

δ̃1 =
(√

3

2
,

1

2

)
a, δ̃2 =

(
−

√
3

2
,

1

2

)
a, δ̃3 = (0,−1)a.

(D1)
As basis vectors of the unit cell and lattice we may use v1 =
−δ̃2, v2 = δ̃1. The reciprocal lattice vectors G1, G2 are then
defined via vi · G j = 2πδi j (i, j = 1, 2). Explicitly, we have

v1 = −δ̃2 =
(√

3

2
,−1

2

)
a, v2 = δ̃1 =

(√
3

2
,

1

2

)
a,

G1 =
(√

3

3
,−1

)
2π

a
, G2 =

(√
3

3
, 1

)
2π

a
. (D2)

For the direct unit-cell volume we have Vc = |v1 × v2| =√
3

2 a2 and likewise for the reciprocal cell volume �c = |G1 ×
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G2| = 2√
3
( 2π

a )
2

which fulfill the relation Vc · �c = (2π )2. The
inequivalent zone boundary vectors K± are given by

K+ = 1

3
[G1 + 2G2] =

(√
3

3
,

1

3

)
2π

a
,

K− = 1

3
[2G1 + G2] =

(√
3

3
,−1

3

)
2π

a
. (D3)

APPENDIX E: PROPERTIES OF
MOMENTUM-DEPENDENT HONEYCOMB STRUCTURE

FUNCTIONS

The momentum dependence and in particular gap existence
of exciton modes at the zone boundary are determined by the
structure functions of the nearest- and next-nearest-neighbor

interactions depicted in Fig. 1. They are given by

γ (k) = 1

z

∑
δ

exp(ik · δ), γ2(k) = 1

z2

∑
δ̃

exp(ik · δ̃),

(E1)

γ A,B
D (k) = 1

z2

∑
δ̃

νA,B
δ̃

exp(ik · δ̃) =: ∓iγ̃D(k),

where γ (k) and γ2(k) correspond to the symmetric first (δ)
and second (δ̃) neighbor exchange, with coordination numbers
z = 3 and z2 = 6, respectively, whereas γ̃D(k) is associated
with the asymmetric DM exchange with second neighbors.
The first one is complex with γ (−k) = γ ∗(k), the second one
is real and even γ (−k) = γ (k), while the latter is real and
odd γ̃D(−k) = −γ̃D(k) under inversion. The latter is due to
the staggered nature of the DM interaction leading to νδ̃ =
−ν−δ̃ = ±1 and νB

δ̃
= −νA

δ̃
. Explicitly we have, from Fig. 1,

γ (k) = 1

3

[
exp i

(√
3

6
akx + 1

2
aky

)
+ exp i

(√
3

6
akx − 1

2
aky

)
+ exp

(
− i

√
3

3
akx

)]
,

γ2(k) = 1

3

[
cos

(√
3

2
akx + 1

2
aky

)
+ cos

(
−

√
3

2
akx + 1

2
aky

)
+ cos aky

]
,

γ̃D(k) = 1

3

[
sin

(√
3

2
akx + 1

2
aky

)
+ sin

(
−

√
3

2
akx + 1

2
aky

)
− sin aky

]
. (E2)

It is important to know the behavior of the structure functions around the zone boundary valleys K± = (
√

3
3 ,± 1

3 ) 2π
a . We express

the momentum by k = K± + q with |q| � π
a . Then the structure functions in Eq. (E2) may be expanded in terms of q to lowest

order. It is more convenient to use hexagonal coordinates q′ = (q′
x, q′

y) instead of the Cartesian (qx, qy). The transformations
between them, for each K±, are given by

K+ : q′
x = 1

2 (
√

3qx + qy), q′
y = − 1

2 (qx −
√

3qy),

K− : q′
x = 1

2 (
√

3qx − qy), q′
y = 1

2 (qx +
√

3qy). (E3)

Then the expansion leads to

γ (k) = γ (K± + q′) = − a

2
√

3
(q′

x ± iq′
y),

|γ (k)|2 = a2

12

(
q2

x + q2
y

) = a2

12

(
q′

x
2 + q′

y
2) = π2

12
q̂2,

γ2(k) = γ2(K±) = − 3

z2
, (E4)

γ̃D(k) = γ̃D(K±) = ∓3
√

2

z2
,

where we defined q̂ = (q2
x + q2

y )
1
2 /(π/a). The lowest-order term in γ (k) is the term linear in q′ because γ (K±) = 0. On the

other hand, γ2(k) and γ̃D(k) have finite values at K± and no linear terms in q′. Note that importantly γ̃D(K±) changes sign
between the nonequivalent BZ boundary points.

APPENDIX F: MOMENTUM GRADIENTS OF STRUCTURE FUNCTIONS AND HAMILTONIAN

The Hamiltonian gradients ĥα
kλ = ∂ ĥk/∂kα (α = x, y) appearing in the matrix elements for the Berry curvature �z

n(k) of
Eq. (44) are entirely determined by those of the structure functions γ α (k) = ∂γ (k)/∂kα and likewise for γ2(k) and γ̃D(k). From
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Eq. (E2) we get for first neighbors

γ x(k) = i

(
a
√

3

6

)
1

3

[
exp i

(√
3

6
akx + 1

2
aky

)
+ exp i

(√
3

6
akx − 1

2
aky

)
− 2 exp

(
− i

√
3

3
akx

)]
,

γ y(k) = i

(
a

2

)
1

3

[
exp i

(√
3

6
akx + 1

2
aky

)
− exp i

(√
3

6
akx − 1

2
aky

)]
, (F1)

and for second neighbors

γ x
2 (k) =

(
−

√
3a

2

)
1

3

[
sin

(√
3

2
akx + 1

2
aky

)
− sin

(
−

√
3

2
akx + 1

2
aky

)]
,

γ
y
2 (k) =

(
− a

2

)
1

3

[
sin

(√
3

2
akx + 1

2
aky

)
+ sin

(
−

√
3

2
akx + 1

2
aky

)
+ 2 sin(aky)

]
,

γ̃ x
D(k) =

(√
3a

2

)
1

3

[
cos

(√
3

2
akx + 1

2
aky

)
− cos

(
−

√
3

2
akx + 1

2
aky

)]
,

γ̃
y
D(k) =

(
a

2

)
1

3

[
cos

(√
3

2
akx + 1

2
aky

)
+ cos

(
−

√
3

2
akx + 1

2
aky

)
− 2 cos(aky)

]
. (F2)

Then, using Eq. (24) we obtain the Hamiltonian gradients as

ĥα
kλ =

⎛
⎜⎜⎜⎝

−ĪAα
D (kλ) −Īα∗

N (k) −ĪAα
D (kλ) −Īα∗

N (k)

−Īα
N (k) −ĪBα

D (kλ) −Īα
N (k) −ĪBα

D (kλ)

ĪAα
D (−kλ̄) Īα

N (−k) ĪAα
D (−kλ̄) Īα

N (−k)

Īα∗
N (−k) ĪBα

D (−kλ̄) Īα∗
N (−k) ĪBα

D (−kλ̄)

⎞
⎟⎟⎟⎠, (F3)

and the interaction derivatives are obtained from Eq. (25) as

ĪAα
D (kλ) = m̃2

AIAα
D (kλ),

IAα
D (kλ) = (

z2IA
2

)
γ α

2 (k) + λ
(
z2DA

J

)
γ̃ α

D (k)

= −IAα
D (−kλ̄) = −IBα

D (−kλ),

ĪBα
D (kλ) = m̃2

BIBα
D (kλ),

IBα
D (kλ) = (

z2IB
2

)
γ α

2 (k) − λ
(
z2DB

J

)
γ̃ α

D (k)

= −IBα
D (−kλ̄) = −IAα

D (−kλ),

Īα
N (k) = m̃Am̃BIα

N (k),

Iα
N (k) = (zI )γ α (k). (F4)
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