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Theory of the anomalous Hall effect in the transition metal pentatellurides ZrTe5 and HfTe5
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The anomalous Hall effect has considerable impact on the progress of condensed matter physics and occurs
in systems with time-reversal symmetry breaking. Here we theoretically investigate the anomalous Hall effect
in the nonmagnetic transition metal pentatellurides ZrTe5 and HfTe5. In the presence of Zeeman splitting and
Dirac mass, there is an intrinsic anomalous Hall conductivity induced by the Berry curvature in the semiclassical
treatment. In a finite magnetic field, the anomalous Hall conductivity rapidly decays to zero for constant spin
splitting and vanishes for the magnetic-field-dependent Zeeman energy. A semiclassical formula is derived to
depict the magnetic field dependence of the Hall conductivity, which is beneficial for experimental data analysis.
Lastly, when the chemical potential is fixed in the magnetic field, a Hall conductivity plateau arises, which may
account for the observed anomalous Hall effect in experiments.
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I. INTRODUCTION

The transition metal pentatellurides ZrTe5 and HfTe5

are prototypes of massive Dirac materials with finite band
gap, which are very close to the topological transition
point [1–9]. Further studies uncover more exotic physics
in these compounds, such as the quantum anomaly [3,10],
three-dimensional quantum Hall effect [8,11–16], resistivity
anomaly [17–22], and anomalous Hall effect [23–29]. The
anomalous Hall effect refers to the Hall effect in the ab-
sence of an external magnetic field which typically occurs in
magnetic solids with broken time-reversal symmetry [30,31].
When an external field is applied, due to the lack of con-
vincing calculations based on the microscopic model, the
analyses often rely on an empirical relation [31]. In the empir-
ical formula, the anomalous part of Hall conductivity σ A

xy =
σ A

0 tanh(B/B0) reaches saturation at σ A
0 in a large magnetic

field B � B0. ZrTe5 and HfTe5 are nonmagnetic topological
materials without the prerequisite for anomalous Hall effect at
zero field, but the Hall conductivities are still found to saturate
in several tesla in experiments. Therefore, the physical origin
of the anomalous Hall effect therein is still under debate.
In systems with resistivity anomaly, the anomalous Hall ef-
fect can be explained by the Dirac polaron picture at high
temperature [32,33]. However, this picture cannot explain the
nonlinear Hall resistivity at low temperatures, where the tem-
perature effect becomes unimportant as T → 0, the thermal
excitation of electrons from valance band to conduction band,
is suppressed. In such case, there are several mechanisms that
have been discussed in literature. First, the multiband model is
one possible mechanism. However, as revealed by the angle-
resolved photoemission spectroscopy measurement, there is
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only one Fermi pocket near the � point in ZrTe5, eliminating
the possibility of a multiband effect at low temperatures. The
second viewpoint is the Zeeman effect induced Weyl nodes
for massless Dirac fermions [23,25,29], where the induced
anomalous Hall effect is proportional to the distance of two
Weyl nodes [34,35]. Another scenario involves finite Berry
curvature in spin-split massive Dirac fermions [25–27]. In
semiclassical theory, a strong magnetic field is required to ob-
tain a sizable anomalous Hall effect, ensuring that the energy
bands of different spins are well separated. However, when the
magnetic field is strong, the semiclassical description of the
anomalous Hall effect might be invalid. The existing discus-
sion should be revised in a quantum-mechanical formalism.

In this work, we begin with the massive Dirac fermion
with Zeeman splitting, and investigate the Hall conductivity
in it. To treat the anomalous Hall effect and the conventional
orbital Hall effect on an equal footing, the Landau levels
in a finite magnetic field are considered. When B → 0, the
Kubo formula gives the anomalous Hall conductivity in the
semiclassical theory for a constant spin splitting. However,
when the band broadening is much smaller than the Landau
band spacing in the strong magnetic field, the anomalous Hall
conductivity decays to zero very quickly. Based on the numer-
ical results, we propose a simple semiclassical equation for the
total Hall conductivity from the electrons’ equation of motion,
which captures the function behavior of Hall conductivity
from the weak magnetic field to the strong magnetic field very
well. For the magnetic-field-dependent Zeeman splitting, it
is hard to see any signals of anomalous Hall effect from the
total Hall conductivity. Hence, the Zeeman effect is excluded
as an explanation for the anomalous Hall effect in ZrTe5. If
the chemical potential is fixed in the magnetic field due to
the localization effect, a plateau structure is observed in the
Hall conductivity, which could provide an explanation for the
observed anomalous Hall effect in experiments.
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II. MODEL HAMILTONIAN AND BAND STRUCTURE

In a finite magnetic field, the low-energy Hamiltonian for
ZrTe5 can be described by the anisotropic massive Dirac equa-
tion as [2,8,9]

H (k) = mτz + ωσz +
∑

i=x,y,z

vi�i�i, (1)

where �1 = τxσz, �2 = τy, �3 = τxσx, and σ and τ are the
Pauli matrices acting on the spin and orbit space, respectively.
vi with i = x, y, z are the Fermi velocities along the i direc-
tion, �i = h̄ki + eAi are the kinematic momentum operators,
and h̄ki are the momentum operators. 2m is the Dirac band
gap, and ω is the term related to the Zeeman splitting. For
a perpendicular magnetic field, the gauge potential can be
chosen as A = (−By, 0, 0). By introducing the ladder oper-
ators a = (vx�x−ivy�y )√

2eh̄Bvxvy
and a† = (vx�x+ivy�y )√

2eh̄Bvxvy
[36], the energy

spectrum of Landau levels can be solved as (see Appendix B
for details)

εnζ s = ζ

√
(En + sω)2 + (vz h̄kz )2, (2)

where En =
√

m2 + nη2, s = ± represents two splitting states
because of the Zeeman effect for n > 0, and En = −m, s = +
for n = 0. ζ = + is for the conduction band and ζ = − is for
the valence band, η = √

2vxvyh̄/
B is the cyclotron energy,
and 
B = √

h̄/eB is the magnetic length. Without loss of gen-
erality, we choose the model parameters as m = 5 meV, vx =
6.85 × 105 m/s, vy = 4.1 × 105 m/s, and vz = 5 × 104 m/s
according to Ref. [9].

III. HALL CONDUCTIVITY IN FINITE
MAGNETIC FIELDS

In the semiclassical theory, the intrinsic anomalous Hall
effect can be attributed to the nonzero Berry curvature induced
by the Zeeman effect. The obtained anomalous Hall effect
is odd in the Zeeman energy ω and band gap 2m (see more
details in Appendix A). In a finite magnetic field, besides
the intrinsic anomalous Hall effect at B = 0, the orbital con-
tribution from the Drude formula σ N

xy ∼ χσDB
1+χ2B2 should also

be important, where χ is the electric mobility and σD is the
zero-field Drude conductivity [37]. Hence, we need to treat
the two parts on an equal footing. The total Hall conductivity
for a disordered system can be evaluated by the Kubo-Streda
formula [38–40]

σxy = Im
e2h̄

πV

∑
k

∫ +∞

−∞
nF (ε − μ)dε

× Tr

[
v̂x dGR

dε
v̂yImGR − v̂xImGRv̂y dGA

dε

]
, (3)

where GR/A = [ε − H ± iγ ]−1 is the retarded or advanced
Green’s function, γ is the disorder-induced band broadening,
and v̂x = ih̄−1[H, x] and v̂y = ih̄−1[H, y] are the velocity op-
erators along the x and y direction, respectively. nF (ε − μ) =
[1 + exp( ε−μ

kBT )]−1 is the Fermi-Dirac distribution function
with μ the chemical potential and kBT the product of Boltz-
mann constant and absolute temperature. The Kubo-Streda
formula already includes the anomalous Hall conductivity and

orbital Hall conductivity simultaneously. To understand the
effect of Zeeman splitting on the anomalous Hall conductivity,
we study two typical cases, i.e., the constant spin splitting
and the magnetic-field-dependent Zeeman splitting based on
Eq. (3).

A. Clean limit

To compare with intrinsic contribution in the semiclassical
theory, we first focus on the Hall conductivity in the disorder-
free case, where the Hall conductivity in the Landau-level
basis can be evaluated as (see Appendix B for details)

σxy = − e2η2

2πvxvyh̄

∫ +∞

−∞

dkz

2π

∑
λλ′

[
v

(1)
λλ′

]2
δn,n′−1

× nF (ελ − μ) − nF (ελ′ − μ)

(ελ − ελ′ )2
, (4)

where the subscript λ denotes quantum numbers ζ , s, n. The
product of matrix elements of v̂x and v̂y satisfies vx

λλ′v
y
λ′λ =

−i[v(1)
λλ′]2δn,n′−1 + i[v(1)

λ′λ]2δn,n′+1. To perform the summation
over λ and λ′, we take advantage of the following relations:

∑
s′ζ ′

(
v

(1)
nsζ ,n+1s′ζ ′

εnsζ − εn+1s′ζ ′

)2

= vxvy

2η2

(
2n + 1 − sm

En

)
, (5)

∑
sζ

(
v

(1)
nsζ ,n+1s′ζ ′

εnsζ − εn+1s′ζ ′

)2

= vxvy

2η2

(
2n + 1 − s′m

En+1

)
. (6)

Then,

σxy = − en0

B
, (7)

where n0 is the carrier density in the Landau-level basis,

n0 = e2

4π2h̄

∫ +∞

−∞
dkz

∑
λ

∑
χ=±

χθ (χελ)nF [χ (ελ − μ)]. (8)

Hence, the Hall conductivity is always proportional to the
carrier density and the inverse of magnetic field. Even in
the presence of a finite Zeeman energy, the anomalous Hall
effect is zero in the clean limit regardless of the magnitude
of magnetic field and temperature once the carrier density n0

is fixed. However, σxy should be finite not divergent at zero
magnetic field. Such a discrepancy between the results from
the zero magnetic field and finite magnetic field is also found
in a system without anomalous Hall effect. This contradiction
can be removed by considering a finite disorder scattering in
Eq. (3).

B. Constant spin splitting

For a constant spin splitting, there is a finite anomalous
Hall effect at B = 0, and its magnitude decreases with the
increasing of magnetic field. Here we choose the calculation
parameters as γ = 0.1 meV, ω = 3 meV, and n0 = 2.5 ×
1015 cm−3. By fixing carrier density in the magnetic field, the
chemical potential can be solved out from the definition of
n0 in Eq. (8). As shown in Fig. 1(a), the chemical potential
decreases linearly with increasing magnetic field in the weak
magnetic field region and oscillates with the field in the strong
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FIG. 1. (a) By fixing the carrier density as n0 = 2.5 × 1015 cm−3,
the chemical potential μ is a function of magnetic field. (b) Hall
conductivity as a function of magnetic field for a constant spin
splitting ω = 3 meV and constant broadening γ = 0.1 meV; the red
dots are the numerical results, the blue line is the fitting curve from
the Hall conductivity in Eq. (10), the purple dashed line denotes the
anomalous Hall conductivity at zero magnetic field, and the green
solid line represents the Hall conductivity in the clean limit. The
inset shows the fitted anomalous Hall conductivity as a function of
magnetic field.

magnetic field region. Plugging the chemical potential at finite
magnetic field into the Kubo-Streda formula, we obtain the
Hall conductivity as indicated by open circles in Fig. 1(b). The
Hall conductivity approaches the numerical value of anoma-
lous Hall effect in the zero magnetic field (purple dashed line).
To have a quantitative description for the field dependence of
anomalous Hall conductivity, we phenomenologically intro-
duce the transport equation for charge carriers in the presence
of electric and magnetic fields, which takes the following
form:

j = σDE + χ j × B + σAE × ẑ. (9)

Here j is the electric current density, the magnetic field B is
along the z direction, and σA is the anomalous Hall conduc-
tivity at B = 0 describing the Hall response in the x-y plane.
The second term is given by the Lorentz force experienced by
charge carriers in a magnetic field. After some vector algebra,
we can obtain the field-dependent Hall conductivity as

σxy = σA + χBσD

1 + χ2B2
. (10)

The denominator 1 + χ2B2 indicates that the anomalous Hall
conductivity is suppressed at the high field as χB � 1. Specif-
ically, the anomalous Hall conductivity becomes zero in the
clean limit as χ → +∞. As shown in Fig. 1(b), the calculated
Hall conductivity (red dots) can be well fitted by Eq. (10) (blue
line) in the full magnetic field regime. In the inset of Fig. 1(b),
we present the fitted anomalous Hall conductivity σ A

xy as a
function of magnetic field; it decays to zero very quickly in
the high field. A similar magnetic field dependence of σ A

xy has
also been found in two-dimensional systems [41]. In addition,
we plot the corresponding Hall conductivity in the clean limit
(γ = 0) in Fig. 1(b) for comparison (green solid line), where
we have used the analytical expression σxy = −en0/B. In the
weak magnetic field, χB → 0, the disorder effect is promi-
nent and removes the divergence of the orbital part of σxy.

FIG. 2. (a) Hall conductivity as a function of magnetic field for a
constant spin splitting ω = 3 meV and several selected band broad-
enings. The red dashed lines are the fitting curve from Eq. (10), and
the solid lines are the numerical results from Eq. (3). (b) and (c) are
the fitted orbital part and anomalous part of Hall conductivity in (a).
(d) The inverse of fitted mobility as a function of band broadenings.
The blue lines are the inverse of mobility at B = 0, χ0 = eh̄

2γ

vxvy

(μ+ω) ,

and the dashed line is the linear fitting to χ−1.

While in a strong magnetic field, if the energy spacing of
Landau levels becomes larger than the band broadening, one
can ignore the disorder effect; then, the Hall conductivities
with and without disorder effect coincide with each other in
the high-field regime. We present the Hall conductivity in a
finite magnetic field by choosing several band broadenings in
Fig. 2. The background of total Hall conductivity (solid lines)
can be well fitted by Eq. (10) as indicated by the red dashed
line in Fig. 2(a). Accordingly, we plot the fitted orbital part

χBσD

1+χ2B2 and the anomalous part σA
1+χ2B2 in Figs. 2(b) and 2(c),

respectively. The orbital Hall conductivities are suppressed in
the low magnetic field by the band broadening, and collapse
together in the high magnetic field. While for the anomalous
Hall conductivities, they are almost independent of the band
broadening at B = 0, and increase with the increasing of band
broadening in a finite magnetic field. As shown in Fig. 2(d),
the obtained mobility (red dots) is inversely proportional to
the band broadenings as indicated by the dashed line. It is
noted that the fitted χ is slightly larger than the mobility at
zero magnetic field χ0 = eh̄

2γ

vxvy

(μ+ω) , which might be caused by
the field-dependent chemical potential in Fig. 1(a). Hence,
Eq. (10) indeed quantitatively captures the magnetic field de-
pendence of Hall conductivity, and the anomalous Hall effect
vanishes in the high magnetic field and does not display a
steplike function.

C. Magnetic-field-dependent Zeeman splitting

For the magnetic-field-dependent Zeeman splitting, i.e.,
ω = 1

2 gμBB with g = 20, it is hard to distinguish the
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FIG. 3. (a) By fixing the carrier density as n0 = 2.5 × 1015 cm−3,
the chemical potential μ is a function of magnetic field. (b) Hall
conductivity as a function of magnetic field for Zeeman energy
ω = 1

2 gμBB and constant broadening γ = 0.1 meV. The open circles
are the numerical results, the blue line is the fitting curve from the
Hall conductivity σxy = χBσD

1+χ2B2 , and the green solid line represents
the Hall conductivity in the clean limit. (c) Hall conductivity as a
function of magnetic field for several selected band broadenings. The
red dashed lines are the fitting curve from the Hall conductivity σxy =

χBσD
1+χ2B2 , and the solid lines are the numerical results from Eq. (3).
(d) The inverse of fitted mobility as a function of band broadenings.
The blue line is the inverse of mobility at B = 0, χ0 = eh̄

2γ

vxvy

μ
.

contribution of anomalous Hall conductivity and conventional
orbital Hall conductivity. Setting a constant broadening width
γ = 0.1 meV and carrier density n0 = 2.5 × 1015 cm−3,
following the same procedure, we can calculate the Hall con-
ductivity with disorder effect, which has been given in Fig. 3.
When the carrier density is fixed, as shown in Fig. 3(a), the
chemical potential varies as a function of magnetic field, and
it decreases monotonically in the strong magnetic field. In
addition, the Hall conductivity can be described by the orbital
Hall conductivity σxy = χBσD

1+χ2B2 very well, as indicated by the
blue line in Fig. 3(b). Similar to the constant spin-splitting
case, the Hall conductivities with disorder effect coincide with
the Hall conductivity in the clean limit [σxy = −en0/B, the
green line in Fig. 3(b)] in the high-field regime. In addition,
we also calculate the Hall conductivity for several different
band broadenings in Fig. 3(c), where the dip position shifts to
the high magnetic field by increasing γ . The background of
total Hall conductivity (solid lines) can be well fitted by σxy =

χBσD

1+χ2B2 as indicated by the red dashed lines. The obtained
mobility χ (red dots) has good agreement with the mobility at
zero magnetic field χ0 = eh̄

2γ

vxvy

μ
as shown in Fig. 3(d), where

the Zeeman splitting is a higher order contribution in magnetic
field to the Hall conductivity and negligible. In Appendix C,
we further evaluate the transverse conductivity to obtain the
Hall resistivity; we find the Hall resistivity is almost linear

in magnetic field, which also does not show the signature of
anomalous Hall effect.

Most previous works attribute the anomalous Hall effect
to the Berry curvature effect due to the band degeneracy
lifting by the Zeeman splitting. This effect can be evaluated
based on a semiclassical approach by the integration of the
Berry curvature, and the magnetic field is only encoded in
the energy-level splitting for spin-up and spin-down electrons.
However, in Dirac systems with large spin-orbital coupling
which couples the spin-up and spin-down bands together, the
magnetic field also introduces the vector potential that the
canonical momentum is replaced by the kinetic momentum
h̄k → h̄k + eA, leading to the formation of the Landau levels.
The semiclassical approach completely ignores this part of the
contribution. In the full quantum-mechanical approach here,
we treat these two parts of the contribution simultaneously.
As previously discussed, the discrepancy between two ap-
proaches becomes more apparent for strong fields, especially
in the quantum limit where only the lowest Landau subband
is filled and the semiclassical approach is completely inappli-
cable. In this regime, the Hall conductivity decreases as B−1

as B increases in the quantum-mechanical approach, whereas
it saturates at high fields in the semiclassical approach.

IV. POSSIBLE ORIGINS

As the Zeeman effect has been excluded for the anomalous
Hall effect, we expect a new mechanism for it. By summa-
rizing the experiments in different works, we find that the
anomalous Hall effect is more significant in the thin-film sam-
ple, which is usually several hundred nanometers. Consider
the layer structure of ZrTe5 and small velocity along the z
direction; it can be regarded as a quasi-two-dimensional sys-
tem, and the localization effect may play an important role in
the Hall conductivity as in the pure two-dimensional system.
Usually, the localization effect can be effectively considered
by fixed chemical potential [42]. In the clean limit and zero
temperature, the carrier density in Eq. (8) becomes n0 = kF,z

2π2
2
B

with kF,z the Fermi wave vector of lowest Landau level. Then,
plugging n0 into Eq. (7), one obtains the Hall conductivity in
the quantum limit as

σxy = − e2

2π2h̄
kF,z. (11)

It is noted that Eq. (11) is a general expression for the Hall
conductivity in the quantum limit. Once kF,z is pinned to a
constant due to the localization effect, σxy is quasi-quantized.
For density n0 = � × 1015 cm−3 at zero temperature and zero

magnetic field, one has kF,z = (3π2n0)1/3 (vxvyvz )1/3

vz
and BQL ≈

0.314 vz

(vxvyvz )1/3 �
2/3 T, where the system enters the quantum

limit for B > BQL. In general, we expect that the critical field
for Hall plateau is smaller than BQL due to the effect of
disorder and temperature. This simple analysis is consistent
with the experimental measurements, where the magnitude of
Hall plateau and the corresponding critical field are increasing
functions of carrier density in the low temperatures [26].

As shown in Fig. 4, by fixing the chemical potential in the
magnetic field, we present the Hall conductivity at different
temperatures. There is a clear quasi-quantized structure in
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FIG. 4. Hall conductivity as a function of the magnetic field
for different temperatures. The band broadening is chosen as γ =
0.5 meV for (a) and (c) and γ = 1 meV for (b). The g factor is
chosen as g = 0 for (a) and (b) and g = 20 for (c). The carrier density
in the absence of magnetic field is fixed as n0 = 2.5 × 1015 cm−3 at
different temperatures. The chemical potential is fixed by varying the
magnetic field. (d) The comparison between Eq. (11) and experimen-
tal data in literature.

the Hall conductivity when the system enters the quantum
limit regime. The magnitude of the plateau decreases with
increasing temperature, and is almost independent of the band
broadening. The oscillatory part of Hall conductivity is al-
most smeared out by a finite temperature. In addition, the
Zeeman effect does not change the results qualitatively, and
it only leads to the upward trend in the high magnetic field
as shown in Fig. 4(c). Moreover, we plot Eq. (11) and the
experimental data in literature [24–26] together in Fig. 4(d).
Equation (11) describes the carrier density dependence of
Hall plateau value very well, which demonstrates that the
observed Hall plateau can be attributed to the fixed chemical
potential in magnetic field. Theoretically, the incommensurate
charge density wave could offer one possible mechanism for
the fixed chemical potential in ZrTe5 [8,14]. However, the
formation of charge density wave also requires the transverse
conductivity to vanish in the corresponding magnetic field
regime, which is inconsistent with most of the experimental
measurements for the ZrTe5 samples. Hence, it is anticipated
that the fixed chemical potential is caused by mechanisms
other than charge density wave, such as the localization effect
from disorder [43–45]. In addition, if there is charge transfer
between the conduction band and other strongly scattering ad-
ditional bands, the carrier density in the conduction band can
generically vary with field [15]. Correspondingly, the Fermi
wave vector kF,z might be field insensitive and is approxi-
mately a constant. The theoretical mechanism behind these
scenarios requires further study in the future.

V. SUMMARY AND DISCUSSION

In summary, we have studied the Hall conductivity for
ZrTe5 and HfTe5 based on the massive Dirac fermions. When
Landau levels are formed in a finite magnetic field, there are
two cases. (i) For a constant spin splitting, σ A

xy is finite and
robust to the weak disorder at B = 0, but vanishes in a high
magnetic field and in the clean limit. (ii) For the magnetic-
field-dependent Zeeman splitting ω = 1

2μBgB, it is hard to
identify the contribution of anomalous Hall conductivity from
the total Hall conductivity. The Hall resistivity is almost linear
in magnetic field even in the presence of Zeeman effect with
a giant g factor (g = 20). Actually, the anomalous Hall effect
for massive spin-split Dirac fermions is suppressed by a mag-
netic field by a factor (1 + χ2B2)−1 and vanishes in a finite
magnetic field or in the clean limit as (1 + χ2B2)−1 → 0. Our
calculations indicate that Zeeman field cannot generate the
anomalous Hall effect in ZrTe5 and HfTe5. Even for constant
Zeeman splitting, the anomalous Hall effect is suppressed in
the strong magnetic field, and the calculation from the semi-
classical treatment cannot be simply extended to the strong
magnetic field. If the chemical potential is fixed in the mag-
netic field, there is a plateau in Hall conductivity, which might
provide an explanation for the observed anomalous Hall effect
in experiments.
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APPENDIX A: ANOMALOUS HALL CONDUCTIVITY
WITHOUT LANDAU LEVEL

In this section, we simply consider the case semiclassically,
where the effect of magnetic field can be encoded into the
Zeeman energy as ω = gzμBB/2 with gz = 21.3 the g factor
and μB = 5.788 × 10−2 meV T−1 the Bohr magneton [46].
Then, the low-energy Hamiltonian in Eq. (1) becomes

H (k) = mτz + ωσz + vi h̄ki�i. (A1)

Solving the eigenequation, H |ψ〉 = ε|ψ〉, we can find the
energy spectrum as

εsζ = ζ

√
(m⊥ + sω)2 + (vz h̄kz )2,

where m⊥ =
√

m2 + h̄2(v2
x k2

x + v2
y k2

y ), s = ± represents two
splitting states because of the Zeeman effect, ζ = + is for
the conduction band, and ζ = − is for the valence band. The
system becomes a nodal-line semimetal when ω > m, and
the nodal ring is given by h̄2(v2

x k2
x + v2

y k2
y ) = ω2 − m2 and

kz = 0.
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FIG. 5. (a) Chemical potential and (b) Hall conductivity as a function of the Zeeman energy for a given carrier density. In (a), the dashed
lines are the energy of the band edge of conduction bands at k = 0. In (b), red open circles are numerically calculated from Eq. (A3), the purple
line is calculated by Eq. (A5), the green line is calculated by Eq. (A6), and the red line is calculated by Eq. (A7). (c) The Hall conductivity as
a function of the Zeeman energy for different given carrier density. The calculating parameters are chosen as m = 5 meV.

The corresponding eigenstates are found as

|ψλ〉 =

⎛
⎜⎜⎜⎜⎝

ζ cos φsζ

2 cos θs
2

s sgn(kz ) sin φsζ

2 sin θs
2 eiφk

sζ cos φsζ

2 sin θs
2 eiφk

sgn(kz ) sin φsζ

2 cos θs
2

⎞
⎟⎟⎟⎟⎠,

where the angles φsζ , θs, and φk are defined as cos φsζ =
ω+sm⊥

εsζ
, cos θs = sm

m⊥
, and eiφk = vxkx+ivyky√

v2
x k2

x +v2
y k2

y

. The subscript λ

denotes the quantum number s and ζ .
At the zero magnetic field, the anomalous Hall conductiv-

ity can be attributed to the nonzero Berry curvature of band
structure as [30,31]

σxy = e2

V h̄

∑
k,λ

�λ
z nF (ελ − μ), (A2)

where �λ

 is the 
th component of the Berry curvature vector

of the λth band. For well-separated bands, �λ

 can be ex-

pressed as

�λ

 = h̄2εi j


∑
λ′ �=λ

Im
[
vi

λλ′v
j
λ′λ

]
(ελ − ελ′ )2

,

where εi j
 is the Levi-Civita antisymmetric tensor with i, j, 

standing for x, y, z. vi

λλ′ = 〈ψλ|v̂i|ψλ′ 〉 is the matrix element
of velocity operator v̂i in the eigenbasis. For the massive
Dirac fermions with Zeeman splitting, we can evaluate the z

component of Berry curvature as �ζ s
z = smvxvy h̄2

2m3
⊥

. Here �ζ s
z is

independent of band index ζ and momentum kz, and its sign
depends on the band index s and Dirac mass m. The magnitude
of �ζ s

z is a decreasing function of k⊥ and has a maximum at

k⊥ = 0 as |�ζ s
z (k⊥ = 0)| = h̄2vxvy

2m2 , and it vanishes as k⊥ →
+∞. Then, we arrive the Hall conductivity as

σxy = e2vxvyh̄
∑

sζ

∫
d3k

(2π )3

sm

2m3
⊥

nF (εsζ − μ). (A3)

It is easy to check that σxy(−μ,ω) = −σxy(μ,ω) and
σxy(−ω,μ) = −σxy(ω,μ); hence, the anomalous Hall ef-
fect is asymmetric about the chemical potential and Zeeman

energy. When the chemical potential is inside the band gap
and the temperature is zero, nF (ε+ζ − μ) = nF (ε−ζ − μ),
σxy = 0; otherwise, σxy(ω �= 0, μ) �= 0. In addition, as εsζ and
m⊥ are even in m, σxy is odd in Dirac mass m and vanishes
when m = 0. The finite Dirac mass is essential for the pres-
ence of anomalous Hall effect in ZrTe5. For simplicity, we put
the chemical potential inside the conduction band (μ > 0),
and consider ω � 0 and m > 0 in the following discussion.
At zero temperature, Eq. (A3) can be further simplified as

σxy = m

2π h̄vz

e2

h

∑
s

∫ +∞

|m|+sω
dt

s
√

μ2 − t2

(t2 − sω)2
θ (μ2 − t2), (A4)

where θ (x) is the unit-step function. We can define the sum of
the two integrals as J; then, σxy = m

2π h̄vz

e2

h J .
If we fix carrier density as a constant, μ is a function of ω

and can be solved from the following equation:

n0 =
∑

s,χ=±

∫
d3k

(2π )3
χnF (εs − χμ).

For instance, we set n0 = 2.5 × 1015 cm−3; the obtained
chemical potential μ decreases with the increasing of ω. There
are two critical Zeeman energies, ωc1 and ωc2. As shown in
Fig. 5(a), when 0 < ω < ω1c, μ intersects with both bands
of s = + and s = −. When ω > ωc1, μ intersects with band
s = − only. If ω is further larger than ω2, μ is lower than the
band edge of s = − at k = 0.

Accordingly, there are three regimes for the nonzero J .
When ω is smaller than ωc1,

J =
∑

s

Js(ω,μ), (A5)

where

Js(ω,μ) = ω

μω

ln

(
μm

μω(μs + μω ) − sωm

)

+ sμs

m
− s cos−1

(
m + sω

μ

)

with μs =
√

μ2 − (sω + m)2 and μω =
√

μ2 − ω2. As indi-
cated by regime I in Fig. 5(a), the anomalous Hall conductivity
is an decreasing function of ω.
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If we further increase the Zeeman energy so that ωc1 <

ω < ωc2, the system enters regime II in Fig. 5(a), and the
dimensionless coefficient J becomes

J = J−(ω,μ), (A6)

which is an increasing function of ω.
If the Zeeman energy is so large that ω � ωc2, as shown by

regime III in Fig. 5(a), the coefficient J is found as

J = − π

(
ω√

ω2 − μ2
− 1

)
, (A7)

which increases with the increasing of ω and approaches zero
as ω � μ.

It is noted that σxy reaches its max value when ω = ωc1,
and the corresponding maximum values are

σ max
xy = m

2π h̄vz

e2

h
J−(ωc1, ωc1 + m).

For m = 5 meV, n0 = 2.5 × 1015 cm−3, ωc1 = 2.65 meV,
m

2π h̄vz

e2

h ≈ 9.25 �−1 cm−1, and |σ max
xy | ≈ 5.63 �−1 cm−1. Fur-

thermore, J−(ωc1, ωc1 + m) can be written as a decreasing
function of ωc/m. There are several ways to enlarge the mag-
nitude of σ max

xy . On the one hand, we can reduce the Fermi
velocity vz; on the other hand, we can increase the carrier
density so that ωc can be enhanced as shown in Fig. 5(c). In
addition, if we keep the ratio ωc/m as a constant, |σ max

xy | will
also increase with the increasing of Dirac mass m.

APPENDIX B: LANDAU LEVEL

In a finite perpendicular magnetic field B, in terms of the
ladder operators a and a†, the Hamiltonian in Eq. (1) can be
expressed as

H =

⎛
⎜⎜⎝

m + ω 0 ηa vz h̄kz

0 m − ω vz h̄kz −ηa†

ηa† vz h̄kz −m + ω 0
vz h̄kz −ηa 0 −m − ω

⎞
⎟⎟⎠.

For n � 1, using the ansatz |ψλ〉 = [cλ1|n −
1〉, cλ2|n〉, c3λ|n〉, c4λ|n − 1〉]T with n = 1, 2, 3, . . ., we
can solve out the eigenspectrum from the eigenequation
H |ψλ〉 = ελ|ψλ〉 as

εnζ s = ζ

√
(En + sω)2 + v2

z h̄2k2
z ,

where s = ± represents two splitting states because of the
Zeeman effect, ζ = + is for the conduction band, and ζ = −
is for the valence band, En =

√
m2 + nη2. The corresponding

eigenstates are given by

|ψλ〉 =

⎛
⎜⎜⎜⎜⎜⎝

ζ cos φnsζ

2 cos θns
2 |n − 1〉

s sgn(kz ) sin φnsζ

2 sin θns
2 |n〉

sζ cos φnsζ

2 sin θns
2 |n〉

sgn(kz ) sin φnsζ

2 cos θns
2 |n − 1〉

⎞
⎟⎟⎟⎟⎟⎠,

where cos φnsζ = ω+sEn
εnsζ

and cos θns = sm
En

. The subscript λ de-
notes the quantum number n, s, ζ .

When n = 0, we can find the eigenenergy and eigenstates
as

ε0ζ = ζ

√
v2

z h̄2k2
z + (m − ω)2,

|ψ0ζ 〉 =

⎛
⎜⎜⎝

0
sgn(kz ) sin φ0ζ

2 |0〉
ζ cos φ0ζ

2 |0〉
0

⎞
⎟⎟⎠,

where cos φ0ζ = ω−m
ε0ζ

.
In the Landau-level basis, the matrix element of velocity

operator vi
λλ′ can be evaluated as vi

λλ′ = 〈ψλ|ih̄−1[H, ri]|ψλ′ 〉.
Along the x and y directions, the velocity operators are de-
fined as v̂x = ih̄−1[H, x] = vx�1 and v̂y = ih̄−1[H, y] = vy�2,
respectively. The product of matrix elements of v̂x and v̂y

become

vx
λλ′v

y
λ′λ = −i

[
v

(1)
λλ′

]2
δn,n′−1 + i

[
v

(1)
λ′λ

]2
δn,n′+1,

vx
λλ′v

x
λ′λ = [

v
(2)
λλ′

]2
δn,n′−1 + [

v
(2)
λ′λ

]2
δn,n′+1,

where v
(1)
λλ′ = √

vxvy(cλ3cλ′1 − cλ2cλ′4) and v
(2)
λλ′ =

vx(cλ3cλ′1 − cλ2cλ′4). This relation can help us simplify
the calculation for the Hall conductivity under finite magnetic
field and temperature.

In adddition, GR/A is diagonalized in the Landau-level ba-
sis, and the diagonal elements are given by GR/A

λ = [ε − ελ ±
iγ ]−1, where λ = n, s, ζ denote the quantum numbers. By
making the integral by parts for ε in Eq. (3), σxy becomes

σxy = h̄e2

π3
2
B

∑
λλ′

∫ +∞

−∞
dkz

∫ +∞

−∞
dε

[
v

(1)
λλ′

]2
[−n′

F (ε − μ)]

× δn,n′−1

2(ελ − ελ′ )2

{
tan−1

(
ελ − ε

γ

)
+ tan−1

(
ε − ελ′

γ

)

− γ (ελ − ελ′ )((ελ − ε)(ελ′ − ε) + γ 2)

((ελ − ε)2 + γ 2)((ελ′ − ε)2 + γ 2)

}
,

which is only contributed from the states near the Fermi
surface at the low temperature. In the weak scattering limit
(γ → 0), the terms in the big parentheses become π

2 [sgn(ελ −
ε) + sgn(ε − ελ′ )]. After performing the integral of ε, one
arrives at Eq. (4).

APPENDIX C: TRANSVERSE CONDUCTIVITY
AND RESISTIVITY

As the magnitude of anomalous Hall conductivity is much
smaller than the orbital Hall conductivity for ω = 1

2 gμBB, it
is hard to see the anomalous contribution. To further confirm
our conclusion in the last part, we calculate the Hall resistivity
to see whether there is a nonlinear behavior in the Hall curve
or not. To obtain the elements of a resistivity matrix, we need
to further calculate the transverse conductivity σxx. According
to the Kubo-Strda formula, the transverse conductivity σxx in
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FIG. 6. (a) Transverse conductivity as a function of magnetic
field. (b) The resistivity (red and black lines), Hall resistivity (blue
line), and the linear background B/n0e (green line). For the resistiv-
ity, the g factors are set as g = 20 and g = 0 for the red and black
lines, respectively. For the Hall resistivity, the results of g = 20 and
g = 0 are almost overlapped with each other. Here we only present
the result for g = 20.

the Landau-level basis is given by [38–40]

σxx = e2h̄

2π3
2
B

∑
λλ′

∫ +∞

−∞
dkz

[
v

(2)
λλ′

]2
δn,n′−1

×
∫ ∞

−∞
[−n′

F (ε − μ)]ImGR
λImGR

λ′dε.

Setting the calculation parameter identical to the one in the
main text, we obtain the transverse conductivity as shown in
Fig. 6(a), where the transverse conductivity decays quickly
with the increasing of magnetic field, and display an oscil-
lating behavior for the moderate strong magnetic field. In
addition, the transverse conductivity along the y direction can
be obtained as σyy = ( vy

vx
)2σxx.

Taking advantage of the obtained Hall conductivity and
transverse conductivity, we can derive the transverse and Hall
resistivity as

ρxx = σyy

σxxσyy + σ 2
xy

, ρxy = − σxy

σxxσyy + σ 2
xy

.

As shown in Fig. 6(b), there are quantum oscillations in ρxx

and ρxy, and the oscillations split into two components in high
magnetic field due to the Zeeman energy. The background of
Hall resistivity is almost linear in magnetic field as ρxy = B

n0e ,
which means there is no anomalous Hall effect due to the
Zeeman energy. In addition, although there is large transverse
magnetoconductivity, there is almost no transverse magne-
toresistivity. Hence, despite that the Zeeman effect breaks the
time-reversal symmetry, there is no linear magnetoresistivity
in the weak magnetic field along the transverse configuration.
For comparison, we also present the resistivity without Zee-
man energy (g = 0) as indicated by the black line in Fig. 6(b).
There is no qualitative difference between the cases of g = 0
and g = 20. The Hall resistivity is also linear in magnetic field
for both g = 0 and g = 20.
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