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Quantum systems in 3+1 dimensions that are invariant under gauging a one-form symmetry enjoy novel
noninvertible duality symmetries encoded by topological defects. These symmetries are renormalization group
invariants which constrain dynamics. We show that such noninvertible symmetries often forbid a symmetry-

preserving vacuum state with a gapped spectrum. In particular, we prove that a self-dual theory with Z

(1)
N’ one-

form symmetry is gapless or spontaneously breaks the self-duality symmetry unless N = k>¢ where —1 is a
quadratic residue modulo £. We also extend these results to noninvertible symmetries arising from invariance
under more general gauging operations including, e.g., triality symmetries. Along the way, we discover how
duality defects in symmetry-protected topological phases have a hidden time-reversal symmetry that organizes
their basic properties. These noninvertible symmetries are realized in lattice gauge theories, which serve to

illustrate our results.
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I. INTRODUCTION

The study of renormalization group flows and phase tran-
sitions has been a central topic in quantum field theory since
the early 1970s. A core conceptual idea is the organization
of phases of field theories by their global symmetries and the
realization of these symmetries on the ground state. This is the
Landau paradigm for states of matter. In this paper, we explore
this framework for novel noninvertible duality symmetries.

In its modern incarnation, the idea of symmetry has
become intrinsically linked with topology. Each global sym-
metry of a theory may be understood as a codimension one
defect operator (or as a domain wall in a spontaneously broken
phase). These symmetry defects are topological: continuous
deformations of their positions which do not cross other oper-
ators leave their correlation functions invariant.

Since the early 2010s this idea has radically broadened in
its scope and applicability, encompassing higher-form sym-
metry corresponding to invertible topological operators of
general dimension [1], higher-group symmetries which inter-
twine invertible topological operators of different dimensions
[2-5], and finally noninvertible symmetries [3,6-9]: The alge-
braic frontier where the defect operators are characterized by
general higher fusion categories [10-16].

In this work, we focus on noninvertible symmetries of
(3+1)-dimensional theories, with the basic goal of determin-
ing when these symmetries are compatible with a unique
vacuum state and a gapped spectrum. As we describe below,
in general we will find that such realizations of duality sym-
metries are impossible. These obstructions are similar in spirit
to the Lieb-Shultz-Mattis (LSM) theorem [17], which implies
that certain (14-1)-dimensional lattice models are gapless or
have degenerate ground states given the existence of certain
types of symmetry. There are has been a lot of work in
extending the LSM theories to higher dimension and under-
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standing its relation to anomalies [18-23]. Our results extend
these ideas to the arena of higher-dimensional field theories
invariant under a novel class of symmetries.

A. Symmetry in duality-invariant theories

Examples of (3+1)-dimensional systems invariant under
noninvertible symmetries may be constructed by starting from
the class of quantum field theories which have a Z](vl) one-form
global symmetry. Given any such theory Q, one can construct
others by the following operations:

(i) S: Gauging the Zz(v symmetry by coupling to a dynam-
ical Zy two-form gauge field b. The resulting theory SQ, then
has an emergent dual Zf\}) global symmetry arising from the
Wilson surface operators exp(% §b).

(i) T: Stacking the theory Q with a minimal invertible
theory for the ZE\}) global symmetry. In terms of a Z;}) back-
ground gauge field B this is expressed as

9
exp [% Jx P(B)i|

2i(N + 1)
P N

N even,

Ix P(B)} N odd,

where P(B) is a suitable quadratic function [see Eq. (6)].

As an action on the set of all field theories with Z
symmetry, S, and T realize a discrete analog of the modular
group and obey the equations:

$?=C, STy =Y, 2)

where C is charge conjugation acting as B <+ —B, and Y rep-
resents stacking the original theory Q with an invertible field
theory depending only on the space-time manifold [1,24].

By performing such a gauging procedure in half of space
time with Dirichlet boundary conditions separating the two
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FIG. 1. The definition of the duality defect D via gauging in half
of space time. The left region couples to a background two-form
gauge field B, associated to the Z](\}) global symmetry. In the right
region this symmetry is gauged with dynamical field b. The right
region recovers the Z;}) global symmetry through the Wilson surface
operators of b, which couples to the background field Bg.

halves, one obtains an interface separating two theories Q
and SQ (see Fig. 1). As observed in Refs. [8,9] when the
theory is self-dual under gauging, i.e., @ = SQ, then this
interface D is a topological symmetry operator in Q, a dual-
ity defect. Such duality defects generalize Kramers-Wannier
duality lines from (1+1)-dimensional QFTs to this higher-
dimensional setting. More generally, one may also consider
theories invariant under gauging operations built from com-
posites of S and T'. For instance, invariance T-1S leads to a
triality defect [13].

These defects generalize the ordinary concept of symme-
try. In particular, their fusion is not defined by a group. For
instance, the duality defect D is invertible up to a condensate
of one-form symmetry defects. Specifically, wrapping the de-
fect D on a three-manifold M and colliding it with its CPT

conjugate D one finds:
2mi
— @b). 3
> exp( v f; ) (3)

— 1
D) x DM) =
SeH,(M,Zy)

For a complete list of the fusion rules for the duality and
triality defects see Ref. [13].

A wide variety of nontrivial examples realizing
these symmetries or related noninvertible defects have
recently been constructed in the literature. These include
Refs. [8,9,11-15,25-63], which build on extensive
previous investigations of noninvertible symmetries in
(1+1)-dimensional theories [3,6,7,64-90].

B. Phases of duality-invariant field theories

Like all notions of symmetry in quantum field theory,
the duality defects described above can be used to constrain
dynamics. Below our main focus is on characterizing the
interplay between duality-invariant phases and the mass gap.
We restrict our discussion below to theories where the long-
distance physics is Lorentz invariant.

Given any discrete symmetry in (341) dimensions, one
may always realize it in a spontaneously broken phase.
Concretely, this leads to multiple local vacua which are
characterized by the presence of distinct topological local
operators.! For the duality symmetry discussed in this paper,

'Here and below, by a local vacuum state we mean a ground state
on R? or equivalently S3.

TABLE 1. Possible N < 60 for ZI(\,I) symmetric gapped phases
invariant under gauging (S). The top line enumerates those N where
an SPT exists. These are integers where —1 is a quadratic residue
modulo N [9]. The second line enumerates those N where a duality-
invariant nontrivial TQFT exits. In this case N = k*¢, where —1
is a quadratic residue modulo ¢. A duality symmetry preserving
theory with N that does not appear above is gapless. These include
N=3,6,711,12,....

SPT 2,5,10,13,17, 25,26, 29, 34, 37, 41, 50, 53, 58, ...
TQFT 4,8,9, 16, 18, 20, 25, 32, 36, 40, 45, 49, 50, 52, ...

spontaneous symmetry breaking means that there are (at least)
two local vacua. The physics in a given ground state is un-
constrained, but the spontaneously broken duality symmetry
implies the presence of another ground state which differs
by gauging the ngl) I-form symmetry. For instance, if the
first ground state is gapped without topological order, then
its partner state would support a topological order defined by
topological Zy gauge theory. This possibility can occur at
a first-order phase transition, where the duality defect forms
the domain wall between different ground states. We discuss
spontaneous symmetry breaking further in Appendix D and
highlight its occurrence in Zy lattice gauge theory for small
N below.

In contrast with the scenario outlined above, symmetry
preserving phases are tightly constrained. In this situation
there is a unique local topological operator (the identity).
Scale-invariant phases arising at the end of renormalization
group flows can be classified as follows:

(1) Invertible phases: The theory is gapped and invertible.
Its partition function is a phase and there is a unique ground
state on any spatial topology.

(ii)) Topologically ordered phases: The theory is gapped
but described by a nontrivial topological quantum field theory
(TQFT). The ground-state degeneracy depends on the spatial
manifold. In contrast to gapless phases, there is an exponential
decay of correlation functions.

(iii) Gapless phases: The mass gap vanishes and the theory
is a free or interacting conformal field theory, with nontrivial
power law correlation functions.

In the case of invertible symmetry (characterized by
groups), the obstruction to the existence of an invertible real-
ization is the 't Hooft anomaly. However, anomalies can also
obstruct the existence of a topologically ordered phase. This
phenomenon is referred to as symmetry enforced gaplessness
explored in condensed matter systems in Refs. [91-95] and
through the lens of quantum field theory in Refs. [96-103].

We generalize these considerations to (3+1)-dimensional
duality-invariant field theories by providing the first examples
of TQFTs which are duality invariant without spontaneous
symmetry breaking and classifying all possible N for which
this can occur. This extends parallel results in (141) dimen-
sions [7] as well as the work of Refs. [9,13], where duality-
invariant (3+41)-dimensional one-form symmetry-protected
topological (SPT) phases were classified. For the case of the-
ories invariant under S with the duality defect D, our findings
are enumerated in Table I.
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Our basic method is to generalize the analysis of
Refs. [100,101] to the setting of noninvertible symmetries.
The key idea is to examine the Zf\,l) one-form symmetry
action on line operators. A distinguished role is played by
the subgroup of Z](vl) that does not act faithfully, i.e., the
subgroup of the symmetry with no associated charged ob-
jects.? In a gapped phase, these operators admit topological
boundary conditions. If we further assume that there is no
spontaneous symmetry breaking of the duality invariance,
then the effect of these unfaithfully acting surface operators
can be reduced to insertions of the identity operator. Enforcing
duality invariance then leads to constraints on N as elucidated
in Theorem 5. We also provide a converse to our constraints
on N by explicitly constructing duality-invariant TQFTs for
all allowed values of N, generalizing the results of Ref. [102]
to the setting of noninvertible symmetries.

Beyond simply reproducing the analysis in Ref. [9] for
SPT phases, our analysis of duality defects also reveals their
physical properties. In particular, we show that for a duality-
invariant SPT phase the world-volume theory of the defect D
is a minimal Abelian TQFT [106] with a T-invariant spectrum
of anyons as analyzed in Ref. [107]. This is analogous to the
analysis presented in Refs. [108-110], where Z, symmetry
defects were shown to admit T symmetry with a map relating
the bulk and defect anomalies.

Finally, we illustrate our results by considering Zy lattice
gauge theories. In these theories, topological phase transitions
for Z,, Z3, and Z4 occur by spontaneous breaking of nonin-
vertible self-duality, while for larger N the duality-invariant
point is gapless. Thus, these first-order phase transitions for
small N can be viewed as part of a generalized Landau
paradigm by incorporating noninvertible symmetries. Sev-
eral Appendices summarize more technical material about
quadratic Gauss sums, partition functions of topological two-
form gauge theories, details of our argument classifying
duality-invariant TQFTs, and comments about models that
spontaneously break duality symmetry.

II. INVERTIBLE PHASES

In this section, we classify invertible field theories with du-
ality symmetry which are invariant under combinations of the
gauging operations S and T following Refs. [9,13]. We also
highlight how self-duality leads to an antiunitary time-reversal
symmetry acting on the duality defect D and comment on
other physical aspects of the resulting symmetry defects.

For simplicity, throughout this paper we will work on a
smooth simply connected Euclidean space-time 4-manifold
X . The manifold X has the bilinear intersection pairing in the
middle dimension,

I:H*X;Z)x H*(X;Z) - Z, 4)

defined by the cup product. Associated to I we introduce
a quadratic function P(B) where B € H*(X;Zy) is a back-

2Note that a one form symmetry which acts unfaithfully by linking
with line operators may still have nontrivial correlation functions,
for instance, via triple linking or other more intricate configurations
[104,105].

ground field for the one-form symmetry and P depends on
the parity of N as:

PB) Pontryagin square € H*(X, Zyy) N even,
~ |BUB e H*X, Zy) N odd.
A. Self-dual SPT phases
The most general bosonic SPT phase for a Zj(vl) one-form
symmetry can be expressed as [111]:
ziB1=exp| [ L) ©)
= X .
Pl oN

Here the integer p characterizes the phase and is identified as
p~ p+2N. For N even there are thus 2N distinct phases,
while for N odd, p is further constrained to be even, leading
to N distinct phases.

The phase (6) enjoys duality symmetry if it is invariant
under the gauging operation S. This can be directly checked
by computing the partition function after gauging:*

2mi
> Z[b]exp|:/ WbUB}, (7
X

beH*(X,Zy)

where Ay = /|H2(X, Zy)|. The right-hand side is in general
a noninvertible TQFT and hence can only be equivalent to (6)
in the special case where all operators are trivialized by the
equations of motion for b, given by

pb+B=0 modN. 8)

SZ[B] = Ay

If p is coprime to N, then the above equation may be solved
for b restricting it to be a nonfluctuating classical background
B. Thus only in this case can gauging the SPT (6) result in
an invertible theory. From now on we assume this condition.
Substituting (8) back into the action (7) leads to*

270i(P), vy

SZ[B] = G, p, N)exp |:—/;( N

P(B)}- C))
In the above, G(I, p, N) is an overall B-independent phase
defined by a Gauss sum for the intersection form / (see Ap-
pendix A):

1 2mip
GU,p,N)= N2 gexp< N

where rk(7) is the rank of 1.

Let us focus first on the B dependence of (9). We see that
the gauged action has a quadratic dependence on B with a map
on p:

xTIx>, (10)

1 oddN
2 evenN’

P =Py YN) = { (11)

3In (7) one may also consider a more general bicharacter by mod-
ifying the the weight of the »U B term by an integer £ which is
coprime to N. This does not modify the conclusions below.

“When N is odd, we pick an even (p),(,1 so that the action is well
defined. If (p)y' is odd, then we can redefine it by a shift of N to
obtain an even (p),;l.
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FIG. 2. Z,(\}) X Z;Vl) symmetry of D arises from ending of one-
form symmetry defects from Q (purple) and SQ (green).

where the notation (oe)g1 denotes the inverse of « in the
ring Zg for coprime integers « and §. Invariance under the
S transformation therefore means that in the discrete group
classifying the SPT, this map is the identity.

Thus, a duality-invariant SPT can exist only if there are
solutions to the modular quadratic equation:

p*=—1 mod y(N)N. (12)

Moreover, when solutions to the above exist it is straightfor-
ward to check that the overall phase defined by the Gauss sum
in (9) is unity [see (A10)]. As is well known, the existence
of solutions to (12) depends on the prime factorization of N.
Thus, we reproduce the result of Ref. [9]:

Theorem 1. There exist invertible bosonic phases realizing
the duality defect D, i.e., invariant under the gauging opera-
tion S if and only if N is odd and a product of Pythagorean
primes:

N=pl'p3...py, Vi p;=1mod4. (13)
For fermionic or equivalently spin theories, we can further
refine the result above. When N is even, using the fact that

P(B) = BUw>(X) mod 2, (14)

we deduce that on a spin manifold P(B) is also even and hence
there is an identification p ~ p+ N. Then the same steps
as above imply that we have to solve the quadratic residue
equation modulo N for both odd and even N,

p*=—1 mod N. (15)

Moreover, in this case the overall phase defined by the Gauss
sum is trivial due to Rokhlin’s theorem [see (A9)]. Therefore
we again reproduce the result of Ref. [9]:

Theorem 2. There exist invertible spin phases invariant un-
der the gauging operation S if and only if N a product of
Pythagorean primes up to a single factor of two.

B. Physics of the duality defect

It is instructive to analyze the physics of the duality defect
D. We focus below on the bosonic case, though analogous
considerations hold for duality defects of fermionic SPTs.?

3This subsection is a deep dive into the symmetries of the duality
defect and might be omitted on a first reading.

D ~ AN

SPT spT/Z)

exXp |:227r]\L/p IP(BL):| zbexp |:2275\1']P jP(BR) i %ijBR}

b| = BL

FIG. 3. The duality defect D in a bulk SPT phase. The defect D
is a well-defined (2+41)-dimensional TQFT which is identified with
a minimal Abelian TQFT.

With %eneral bulk dynamics, the symmetry defect has a
Z,(\}) X 7 Nl) symmetry which arises from bulk one-form sym-
metry defects ending on the duality defect (see Fig. 2). This
ending is possible because the duality defect is defined by
Dirichlet boundary conditions for the dynamical gauge field
(see Fig. 1).

Physically, the one-form symmetries of D define Abelian
anyons within D. The self-braiding of each Z](\}) factor is
theory dependent, but the braiding between the generators
of each Z](\}) factor is fixed by the pairing of b and B in the
gauging defining the defect (see Fig. 1).6

When the bulk dynamics are invertible the theory on the
duality defect is a well-defined (2+1)-dimensional TQFT
and the bulk SPT phase on the left and the right specify
the anomaly of this system. Moreover, the construction of
the defect by gauging in a half-space identifies the (2+1)-
dimensional defect theory as a minimal Abelian TQFT AN-?
[106] (see Fig. 3). Such a theory has a spectrum of lines which
are exactly given by the Abelian anyons defining the one-form
symmetry.

Note that in this special case of invertible bulk dynamics,
the duality defect theory AY? has a single independent Z](vl)
symmetry generated by an Abelian anyon a. Thus, the left
and right bulk symmetry surfaces must each end on these
Abelian anyons but with a possible difference in the choice of
generating line. To deduce the relationship between left and
right, we consider the equation of motion (8) and interpret
B and b as the fields on the wall sourcing the right and left
symmetries. When (8) is not solved the partition function of
the total system including the defect vanishes. This means
that the quantity appearing in the equations of motion sources
charged Abelian anyons wrapping nontrivial cycles in the
defect. Correspondingly, when the equation of motions hold,
no charged lines are inserted. Hence, the left and right surfaces
end on the lines:

Left @ Right: a?¥' (16)

This relation between the left and the right symmetries (16)
may be further understood by observing that in an invertible
phase, the duality defect D has an antiunitary time-reversal

This generalizes an analogous statement in (14-1)-dimensional
theories with Tambara-Yamagami fusion category symmetry where
the bicharacter encodes the anomaly between left and right symme-
tries of the defect [7,81,112].
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FIG. 4. T symmetry of the duality defect separating phases Q and SQ. R, combined with gauging of one-form symmetry in all of space
time maps the boundary conditions to themselves but reverses the orientation of D. Hence this composite operation defines a time-reversal

symmetry T of the duality defect world volume.

symmetry, T. Note that this is true even though for general p
the bulk SPT defined in (6) does not have T symmetry.

To argue for this conclusion we proceed analogously to
Refs. [108-110]. Consider the theories Q and SQ separated
by the duality defect as in Fig. 4. A rotation by 7 along an
axis in the defect, which we denote by R, swaps the theories
Q and SQ. By composing this operation with gauging of the
one-form symmetry in all of space time, i.e., S, we obtain a
symmetry T,

T=SoR,. 17

By construction this leaves the boundary conditions invariant
and therefore acts on the duality defect. Moreover, since it
reverses the defect orientation it is a time-reversal symmetry.’

We can also deduce the unitary symmetry T? from the
fusion algebra of the duality defect (3). Within the wall the
T symmetry defect is realized by intersecting D with itself.
Since this is a time-reversal symmetry, at each such inter-
section the orientations of the defects reverse (see Fig. 5). If
we now collide two such junctions, then we obtain the fusion
of D x D resulting in a condensation of one-form symmetry
surfaces. Such surfaces come in two varieties:

"More generally, when the bulk dynamics is not invertible, we ex-
pect that the duality defect D still enjoys an antiunitary noninvertible
symmetry analogous to those recently discussed in Ref. [38].

AD

Yexp (5L §b)

T=C

FIG. 5. The T symmetry of the duality defect D is realized by
intersecting duality defects (shown as black dots). At each such
intersection the duality defect orientations reverse. Colliding two
such junctions leads to the bulk fusion algebra of D with its orien-
tation reversal D resulting in a condensation of one-form symmetry
surfaces shown in magenta. Within the duality defect world volume,
this restricts to a condensation of Abelian anyons that produces the
charge conjugation symmetry C.

(1) Surfaces parallel to the vertical duality defect D in
Fig. 5: These surfaces are simply absorbed by the duality
defect. Indeed, D is characterized by Dirichlet boundary con-
ditions (see Fig. 3) and therefore absorbs one-form symmetry
defects contained completely within it.

(i) One-form symmetry surfaces that intersect the vertical
duality defect D in Fig. 5: These are nontrivial and give rise to
Abelian anyons within the duality defect. Taking into account
the identification of generators, we see that a generator for
the bulk one-form symmetry yields an Abelian anyon al+ i
within D.

From these observations, we deduce that the operator T2
in D is defined by a condensate of Abelian anyons [11]. For
instance, taking the surface supporting T to be a torus M we

find:
1
D

yeH (M, Zy)

T2

= at O (). (18)

Although condensation operators like the one appearing above
are frequently noninvertible, in fact in this special case the
condensation is invertible and is identified with the charge
conjugation symmetry C that maps a” toa™".

To demonstrate this we note that as a consequence of (12),
when N is odd, 1 + (p);,1 is coprime to N 8 Therefore, the
condensation defect above is equivalent to a sum over all

Abelian anyons:

1
T2=1V >

yEH (M, Zy)

a(y). 19)

Now we follow Ref. [11] and evaluate the action of T2 on a
line ¢*. Let «, B € H,(M, Z) denote a basis for the one-cycles
on the torus with intersection form o N B = 1. We can split a
general line on a cycle y as:

2wipxy .

a(xa +yB) = exp N a’(Ba*(w), (20)
where x, y € Z, and above we have used that the spin of the
line a” is fixed as:

pr
2N’
We consider a geometry where the anyon a* wraps the 8
cycle at the center of the solid torus whose boundary is the
support M of T2. Then the lines wrapping « braid with the

h(a") = 2y

8Using (12), we have [1 + (p);l)(Z);,'(l — (p);,l] =1 mod N for
odd N and therefore 1 + ( p),(,l is coprime to N.
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central anyon, while those wrapping B fuse with it. Whence
using (20):

1 N—1 i
Ta) =5 > exp( G )af(ﬁ)a"(a)as(m,

g’ 2N

1= 2mwipxy  2mipxs
=—§ + Y. (22
NHOGXP( 2N N )(“ - @)

The sum above over x now enforces

py
£ =0,
> + ps

And since N is odd and p and N are coprime, we can solve
for y to find simply:

mod N. (23)

T @) =a". (24)

This is exactly the expected action of charge conjugation on
lines. In summary we have derived the algebra:’

T =C. (25)

The symmetry T that we have identified provides another
explanation of several of the features of the duality defect. As
is evident from Fig. 4, T exchanges the left and right bulk one-
form symmetries. Since these couple differently to the defect
as in (16), we conclude that T acts on the anyons of the defect
theory AY? as:

T(a) = aPv'. (26)

We can see that this is a consistent action of time reversal
by recalling that the spin of the anyon &” in (21). Indeed, T
changes the sign of the spin precisely when p obeys p?> = —1
mod N. This reproduces the condition (8) necessary for the
existence of a duality-invariant SPT. However, now we see
that it is a consequence of the T symmetry of the (2+1)-
dimensional duality defect TQFT in agreement with analysis
of Ref. [107].

Finally, let us comment on the chiral central charge ¢ of
the duality defect. This may be computed by summing over
the spins of the distinct lines (21). Recalling that pN is even
(and hence AM'? is bosonic), the distinct lines correspond to
a" forr ={0,..., N — 1}. This yields:

N-1

27TiC 1 2;1,\:‘]11 2 G([+ 1] N) (27)
ex = —F= = s Mo )
p ] W s e p

where the right-hand side is the quadratic Gauss sum for the
intersection form of CIP?. Pragmatically, this is also the same
phase factor that we encounter in (9) when we integrate out
the dynamical field b.

As remarked above [and proven in (A10)], when the con-
ditions for the existence of the duality defect are met, namely

For even N, charge conjugation is instead the condensation defect
generated by a®. This matches (18) because (15) implies that [1 +
(P31 — (p)5'1 =2 mod N and therefore 1 + (p)5' is even and
[1 4 (p)y'1/2 is coprime to N/2.

when p2 = —1 mod N for odd N, the Gauss sum above is
trivial and hence the chiral central charge vanishes modulo
eight. In particular, this implies that up to possibly stacking
with a properly quantized bosonic gravitational Chern-Simons
term, we deduce that the chiral central charge of the duality
defect AV? vanishes.

In fact, the condition ¢ = 0 is also compatible with the
time-reversal invariance of the duality defect, since T relates
left and right moving chiral edge modes. Thus we see how the
T symmetry of the duality defect explains and unifies many of
its physical properties.

C. General duality-invariant invertible phases

It is straightforward to extend the previous analysis to
invertible phases invariant under compositions of gauging (S)
and stacking (7)) operations defined in Sec. I A. Let us now
consider the composite operation 7~ S. In particular, the case
p' = £l or p’ = £(1 + N), for even or odd N, respectively,
give rise to the existence of triality defects studied in Ref. [13].

Acting on the general invertible theory defined in (6), the
operation T 7S leads to the action

(T~7'SZ)[B]

. iy

SEEDY Z[b]exp|:/ %bUB— Z]lvp P(B)i|.
beH2(X,Zx) X

(28)

Using the equations of motion for b, we can follow the same
steps that we did to derive (9) to obtain

(T~"SZ)[B]

2mip + (p)]
=G(1,P,N)exp{—/ [ = V(N)N]
X

If the theory T-7SQ is equivalent to the original theory Q
(up to a gravitational counter-term), then the dependence on
B must match. Imposing this condition leads to the following
theorem [13]:

Theorem 3. There exists a bosonic SPT that is invariant
under 777§ gauging a Z,(Vl) one-form symmetry if and only
if there exists a solution p to

P(B)}, (29)

p(p+p)=—1 mod y(N)N. (30)
Analogously, for spin theories we have [13]:
Theorem 4. There exists a spin SPT that is invariant under
T-7S gauging a Zl(vl) one-form symmetry if and only if there
exists a solution p to

p(p+p)=—-1 modN. €))

We now restrict our attention to triality-invariant SPTs.
For even N, this means that the SPT is invariant under 7S
gauging the Z;J) one-form symmetry. Such a (spin) SPT does
not exist because there is no solution to the conditions (30) or
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(31) when p’ =1 and N is even. For odd N, p’ = —(1 + N)
and such SPTs may exist.'?

As in the case of SPTs invariant under the S operation, it is
instructive to analyze the physics on the triality defect defined
by doing T~"*MS gauging in half of the space time. The
theory on the triality defect is the minimal Abelian TQFTs
ANP . ANN+1 The first minimal TQFT comes from S gaug-
ing the SPT in half of the space time while the second one
is introduced to cancel the anomaly inflow from the 7-(+V)
operation on the right. We can evaluate the chiral central
charge of the TQFT on the defect by summing over lines as
in (27) yielding:

2mic
exp (T) = G(+1], p. N)G(+11, 1 +N.N).  (32)

The first Gauss sum is the same phase factor that shows up in
(29). The Gauss sum in (32) does not equal to unity in general
but it is independent of the integer p characterizing the triality-
invariant SPT. Using (A13), we get

(27'”'0) 1 N=1 mod4, 33)
X =
P\ 1 N=3 mod 4.

Since the Gauss sum is always an eighth root of unity the
chiral central charge of the symmetry defect may be canceled
by stacking with a well-quantized spin¢ gravitational Chern-
Simons term.

Therefore, for triality-invariant SPT phases, the symmetry
defects implementing the gauging operation have a vanishing
chiral central charge modulo the addition of invertible (2+1)-
dimensional gravitational theories.

III. TOPOLOGICALLY ORDERED PHASES

In this section, we construct examples of (3+1)-
dimensional duality symmetry preserving TQFTs which are
invariant under combinations of S and 7' gauging operations
of a ZS) one-form symmetry. Without loss of generality, we
consider only TQFTs that have a unique local vacuum. After
these explicit constructions, we prove that for values of N that
are not realized by these explicit examples, such TQFTs do
not exist.

A. Examples

As a starting example, consider the case when N = k? is
a perfect square. Then, a Z; gauge theory is invariant under
gauging a Z](\;) one-form symmetry that couples to the back-
ground gauge field B as

ZIBl=x" > exp[%/bUB}
X

beH%(X,Zy)
= At 8(B mod k), (34)

where Ay = /|H?(X, Zy)|. The Zf\}) one-form symmetry, in
particular its chl) subgroup, does not act faithfully on line

¥Inspecting equation (30), we deduce that solutions exist if and
only if —3 is a quadratic residue modulo N [13].

operators. The unfaithful chl) symmetry operators U, link
trivially with all line operators. Consequently, line operators
transform with a N/k = kth root of unity, instead of a Nth
root of unity, under the Zf\}) one-form symmetry.

It is straightforward to check that gauging the Z,,’ one-
form symmetry leads to the same partition function as the
original Z; gauge theory. Using the half-space gauging con-
struction, we find that the duality defect factorizes into the
product of Dirichlet boundary conditions for the Z; two-form
gauge fields on the two sides.

More generally, consider the case when N = k£ for some
integers k and £ and —1 is a quadratic residue of £. Then there
exists a (spin) TQFT that is invariant under gauging a Zz(v])
one-form symmetry. Let p be a solution to p> + 1 = 0 mod £.
In particular, this implies that p and € are coprime.

Let us first consider the case when £ is odd. Then solutions
exist if and only if ¢ is a product of Pythagorean primes. The
TQFT invariant under gauging is a Z; gauge theory stacked
with a Zf\}) one-form SPT described by the following partition
function:'!

Z[B]l = 2! Z exp{Zni/X [%P(B)+%bu3]}

beH*(X,Zy)

2mip B
= M8 (B mod k) exp |: Y / P(;)] 35)
X

Gauging the ZS) one-form symmetry, we obtain a partition
function identical to (35)

e))
N

_ , p 1
SZ[B] = )LHI Z exp {27”/;( [g?(b) + ﬁb UB]}

beH?>(X,Ze)

PR
— 348(B mod k)G, p, £) exp [—%/P(%)]
X

— 3,8(B mod k)exp[zmp/P@)} — Z[B]. (36)
X

2¢ k

In the second equality, we used (9) for the odd ¢ case since
p and ¢ are coprime, and we pick an even (p)e_l. In the
last equality, we simplified the expression using the fact that
G, p,¢)=1 when p*+1=0 mod ¢ and and (p),'/2 =
—p/2 mod £. Note that the TQFT (35), as a bosonic TQFT, is
already invariant under gauging.

Now consider the case when £ is even. Then solutions exist
if £/2 is odd and £/2 is a product of Pythagorean primes.
Again, let us consider the theory (35). Using (9) for the even
£ case, gauging leads to

SZ[B] = Ad6(Bmod k)G, p, £)

oN—1
X exp [—zmz(%/xp(g)} (37)

UFor the expressions to be well defined, we pick an even solution
to p> + 1 = 0 mod £. If the solution p is odd, then we can get an even
solution by redefining p to p + £.
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As a spin TQFT, the theory is exactly invariant under gaug-
ing the Z](vl) one-form symmetry since ( P)z_zl = —pmod ¢
and G(I, p, £) = 1 on spin manifolds. However, as a bosonic
TQFT, the theory cannot be invariant under gauging because
there is no solution to (p)z_[l = —p mod 2¢.

B. Constraints on TQFTs

So far, we have explicitly constructed (spin) TQFTs that
have a unique local vacuum and are invariant under gauging a
Zz(vl) one-form symmetry for some particular N. We now prove
that such TQFTs do not exist for the values of N that have not
been realized in the last subsection. This means that

Theorem 5. There exists a (spin) TQFT, that has a unique
local vacuum and is invariant under gauging a Zg\}) one-form
symmetry up to a gravitational counterterm ¢/*_ if and only
if N = k*¢ for some integers k and £ and —1 is a quadratic
residue of £ (or, equivalently, £ is a product of Pythagorean
primes up to a factor of two). If such a (spin) TQFT exists,
then ¢/*X) =1 for every simply connected smooth spin 4-
manifold X .

We now present a brief sketch of the proof, while the details
are fleshed out in Appendix C.

In general, the Z 1\;) one-form symmetry can act unfaith-
fully on line operators, i.e., some symmetry surface operators
link trivially with all line operators. Denote the unfaithful
subgroup by Zf\},). Then we have N = Mk for some inte-
gers M and k. If the theory is a TQFT, then, after gauging
the Zj(vl) one-form symmetry, the Z,(Cl) subgroup of the dual

ZE\}) one-form symmetry necessarily acts unfaithfully on line
operators because their symmetry surface operators admit
topological boundary conditions provided by the topologi-
cal line operators charged under the original Zz(\:) one-form
symmetry. Using these topological boundary conditions, we
can unlink the dual Z,(cl) symmetry operators and any line
operator. Since the TQFT is invariant under gauging the
Zf\}) one-form symmetry, the unfaithful subgroup of the dual
Zf\}) one-form symmetry should be Zz(vl[)’ which should in-
clude the unfaithful Z,ﬁl) one-form symmetry as a subgroup.
This implies that M is divisible by k and N = k*¢ for some
integer £.

In a TQFT, symmetry operators of an unfaithful one-
form symmetry admit topological boundary conditions [100].
Since these operators admit topological boundary condi-
tions, they can break without changing any correlation
functions.

In our case, this means that we can cut open the symmetry
surface operators of the unfaithful ZZ(&) one-form symme-
try and shrink them to local operators. Consider placing the
TQFT on X = S? x §? and turning on the background gauge
field B = (B1, B>) € H*(S?> x 8%, Zy) = Z%,, for the unfaith-
ful Zf‘;) one-form symmetry. By shrinking the symmetry
operators to local operators at their intersections, we argue
that the partition function takes the form

\
ZIB1., By] = Z[0, 0] exp ( Z;p 3132). (38)

The partition function Z[0, 0] on $2 x S%isa positive number
because of unitarity [100].

Using the fact that the TQFT is invariant under gauging the
Zf\}) one-form symmetry (up to a gravitational counterterm),
we show that the partition function (38) obeys a constraint

24

—1 Z|by, by] —i(bC + b,Cy)

, ex

cl 1 1, D21 €Xp e 201
bl.Z*

k
1 .
= > ZItb + Cy. thy + Go] x €255 (39)
bi2=1

where C = (C}, Cy) € H*(S? x $2, Zy) = Z2 and /%557 js
aphase independent of (Cy, C,). The first line of the equality is
the partition function of the TQFT after gauging the unfaith-
ful Z,(&) one-form symmetry with the dual Zgl background
gauge field C turned on. The same partition function can
also be obtained from the Z,(\})—gauged theory by gauging the
Z,((l) subgroup of the dual Z;}) one-form symmetry with the
background gauge field C for the dual Zﬁ})/zg) one-form
symmetry turned on. Since the Z;})—gauged TQFT share the
same partition function as the original TQFT up to a gravita-
tion counterterm ¢’

Z[B] = (SZ)[Ble "*X), (40)

we have the equality (39).

In the end, the partition function (38) together with the
constraint (39) implies that —1 is a quadratic residue of .
We also learned that ¢/2”*5") = 1. Similar reasoning holds
on every simply connected smooth spin 4-manifold X. This
leads to the same constraint on £ and gives ¢/*®) = 1. This
concludes the proof for Theorem 5.

C. General duality-invariant TQFTs

It is straightforward to extend the results to more gen-
eral noninvertible symmetries associated to the invariance of
TS gauging, including the triality symmetry.

Generalizing the argument used in the proof of Theorem 5,
in Appendix C we prove the following theorem:

Theorem 6. There exists a (spin) TQFT, that has a unique
local vacuum and is invariant under 77§ gauging a Z};) one-
form symmetry up to a gravitational counterterm ¢’ if and
only if N = k*¢ for some integers k and £ and there exists a
solution p to

p(p+p)+1=0mod <. 41)

If such a (spin) TQFT exists, then ¢/*®) = 1 for every simply
connected smooth spin 4-manifold X .

When N obeys the condition, we can explicitly construct
examples of s%)in TQFTs that are invariant under 7 7S gaug-
ing of the ZA}) one-form symmetry. This spin TQFT is a
Zi gauge theory stacked with a Zf\}) one-form SPT as in
(35), where the parameter p is given by the solution of (41).
Using (41), it is straightforward to check that the theory as
a spin TQFT is invariant under gauging the Z,(\}) one-form
symmetry and ¢**) = 1 on simply connected smooth spin
4-manifold X .
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IV. LATTICE EXAMPLES

As an application of the analysis of the previous section,
let us study (341)-dimensional Zy lattice gauge theory in
the Villain formulation [113], which is defined on a four-
dimensional Euclidean hypercube lattice. The action is

1

So = —

Sz > 1Am® — Na®P, (42)

plaquette

where m'! is the integer one-form gauge field on each link,
while n® is the integer two-form gauge field on each plaque-
tte. There is an integer valued gauge redundancy

m® = m® 4 Ak 4 NED,
n® — n@ + ALY, (43)

that effectively makes the one-form gauge field a Zy gauge
field. This theory has an electric Z,(\}) one-form global symme-
try that shifts m" by a flat integer gauge field. By performing
a Poisson resummation on n® in (42), we obtain a dual
description of the theory in terms of an integer gauge field
7® on the plaquettes of the dual lattice. After introducing the
Stueckelberg fields m" and 72®, we obtain

2mi
Sso = — Y mVAR®
ST N

link
2
+% Z [AmD — Na® — @2 (44)
plaquette

By comparing the second term in (44) with (42), we see
that the duality maps the theory at coupling g’ to the one at
coupling N?/472g* with the electric Z{}’ one-form symme-
try being gauged [114-119]. At the self-dual coupling g> =
N/2m, this implies that the theory is invariant under gauging
the electric Zz(v) one-form symmetry and therefore has a non-
invertible duality symmetry [9]. Consequently, we can apply
Theorem 5 to infer that the Zy lattice gauge theory at the
self-dual coupling should either be gapless or spontaneously
break the duality symmetry unless N is of the form N = k¢,
with —1 being a quadratic residue modulo £. All values of
N < 60 where duality-invariant SPTs or TQFTs are not ruled
out are listed in Table 1.

The schematic phase diagram of the Zy lattice gauge
theory as a function of N and coupling g is summarized
in Fig. 6, with the vertical line at g;2?N = 27 demarcating
the self-dual coupling. This phase diagram is supported by
Monte Carlo simulations [120]. When N < 4, at the self-dual
coupling, the duality symmetry is spontaneously broken
leading to two local vacua: One is trivial and preserves the
Zl(vl) electric one-form symmetry, and the other one supports
a deconfined Zy TQFT that spontaneously breaks the electric
Z,(\}) one-form symmetry. See Appendix D for more discussion
regarding the spontaneous breaking of noninvertible
symmetries. On the other hand, when N > 5, the duality
symmetry is preserved and the theory flows to the gapless
Maxwell theory (U (1) gauge theory) at a particular coupling

21

1
SMaxwell = g / F A xF, o W 45)

Confined Higgs

2 g 2N

FIG. 6. Schematic phase diagram of Z, lattice gauge theory.
Solid and dashed lines represent first-order phase transitions. The
vertical line at coupling g2 = N/2x is duality invariant. At weak
coupling, the theory is in the Higgs phase, i.e., it flows to a Zy
TQFT in the IR, and at strong coupling, the theory is in the confining
phase, i.e., the vacuum is trivial. For N < 4, the Higgs and confining
phases are separated by a first-order phase transition at the self-dual
coupling g2 = N/2m where the duality symmetry is spontaneously
broken. For N > 5, the two phases are separated by an intermedi-
ate gapless coulomb phase which flows to a Maxwell theory and
at the self-dual coupling g2 = 27 /N the IR Maxwell theory has
e =2m/N.

The coupling above is fixed by matching the duality symmetry
across the RG flow. The Maxwell theory at e?> = 27 /N is
invariant under gauging the Z\’ subgroup of the U(1)®"
electric one-form symmetry thanks to the electromagnetic
duality [9]. Thus, the advocated phase diagram is consistent
with the constraints stated in Theorem 5.

More generally, one can consider a broader class of lattice
gauge theories by introducing a 6 term on the lattice. One
concrete realization is the Cardy-Rabinovici model [121,122]
or its generalization [123,124], which is a U (1) lattice gauge
theory that couples to charge N electric matter and charge
1 magnetic matter.'” The lattice model is parameterized by
a complex coupling 7. We will work with a formal con-
tinuum description of the Cardy-Rabinovici model given in
Ref. [126]."3 In the formal continuum description, the Cardy-
Rabinovici model is described as a continuum U(1) gauge
theory,

22

at coupling T = 27i/Ne® + 6 /2m with a sum over insertions
of charge N Wilson lines and charge 1 ’t Hooft lines. The sum
is weighted by the matter action. In the continuum approxima-
tion, this theory has a SL(2, Z) duality generated by the S and
T duality transformation. The S duality maps ¢ — —1/t and
swaps the electric and magnetic matter. Since the charges of
electric and magnetic matter are different, the duality maps the
theory at coupling t to the one at —1/7 with the ZE\}) electric

INO
F/\*F+—/F/\F, (46)
8m2

2For simplicity, we consider only a version of the Cardy-
Rabinovici model where both bosonic and fermionic matter is
present. Otherwise, the duality group in general differs from
SL(2, Z) [125].

13We can also work with the self-dual lattice models constructed in
Refs. [123,124] which have the SL(2, Z) duality as an exact duality
on the lattice.
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one-form symmetry gauged. The T duality maps 7 — 7 + 1
and turns the magnetic matter to dyonic matter with magnetic
charge 1 and electric charge N.

The model has a duality symmetry at T = i, which leads
to the same constraint as in the (3+1)-dimensional Z lattice
gauge theory at the self-dual coupling.

More interestingly, at T, = /3, because of the S dual-
ity the model is invariant under the ST~' gauging of the
electric Z,(\}) one-form symmetry and therefore has a triality
symmetry. Note that if the theory Q is invariant under ST ~!
operation, then the theory 7' Q is invariant under 7~'S op-
eration. According to Theorem 6, the model either is gapless
or spontaneously breaks the triality symmetry unless N = k¢
for some integers k and ¢ such that there exists a solution
to p(p+ 1)+ 1 =0mod £. Even if N obeys the condition,
we can still exclude the possibility of triality-invariant TQFT's
using the mixed triality-gravity anomaly. In Ref. [29], Hayashi
and Tanizaki showed that on a spin manifold X, the model at
the complex coupling 7, = ¢™/3 has a mixed triality-gravity
anomaly given by

Zsr-10[X] = Zo[X]exp I:—%G(X)]. (47)

In particular, we can pick X to be the simply connected
smooth spin 4-manifold K3 whose signature is —16. We then
have Zg7-10[K31/Zgl[K3] = e~2/3 However, Theorem 6
states that any triality-invariant TQFT with a unique local vac-
uum has Zg7-15[X]/Zg[X] = 1 on simply connected smooth
spin 4-manifold X. Therefore, we can deduce that the theory
at 7, = /3 cannot flow to a triality symmetry preserving
TQFT. Note that this is a stronger result than that of Ref. [29],
wherein it is shown that the theory cannot be in a SPT phase.
A heuristic calculation of the free-energy of dyons [121]
suggests the following scenario for the Cardy-Rabinovici
model at 7, = /3. When N is small, the triality symmetry is
spontaneously broken leading to three vacua: a Hlti;gs vacuum
[a Zy TQFT that spontaneously breaks the Z one-form
symmetry], a confined vacuum [a trivial vacuum that pre-
serves the Z,(\}) one-form symmetry], and a oblique confined
vacuum [a Zl(\}) one-form SPT] [127]. The triality symmetry
permutes these three vacua. When N is large, the theory flows
to the triality-invariant gapless Maxwell theory. By matching
the triality symmetry, we can fix the coupling of the Maxwell
theory to be the triality symmetric point [13]
SMaxwell = N \/_ / F+ ﬁi / F AF. (48)
These two scenarios are both consistent with the constraint
stated in Theorem 6.
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APPENDIX A: GAUSS SUMS OF INTERSECTION FORMS

Let X be a smooth simply connected 4-manifold, with the
intersection form [ : H»(X;Z) x H,(X;Z) — Z. The inter-
section form [ is a bilinear symmetric form. We are interested
in computing its normalized Gauss sum given by

j— 2
G, p,N) = N2 E exp N x,I,,xj (Al)
x;=1

where rk(/) is the rank of /. The normalized Gauss sum can be
interpreted as the partition function of a Zy two-form gauge
theory when pN is even (see Appendix B for more details). In
this Appendix, we will focus on the case that has even pN and
p coprime to N.

Note that the intersection form / may be definite or in-
definite. Let Eg be the intersection form of the Eg manifold
and H be the intersection form of S? x S2; then, by combin-
ing Donaldson’s theorem with Hasse-Minkowski theorem, we
have the following result [128]:

Theorem. The only bilinear symmetric forms that can be
realized as intersection forms of a smooth simply connected
4-manifold are

®al+1], &b[—-1]l, & EmEs®nH; (A2)

where a, b, m, and n are positive integers.

By the theorem above, the task of computing the Gauss
sum (A1) for a general intersection form reduces to computing
the Gauss sum for [+1], [—1], Eg, and H.

To prepare for the calculation below, define

{1 ifN=1 mod 4
EN = .
1

ifN=3 mod4
Let us also review the Jacobi symbol (%), which is defined
for any integer a and any positive odd integer n. The Jacobi
symbol factorizes into the product of the Legendre symbols,

(-6 () ()

where n = s|'sy - - -5} is the prime factorization of n. The
Legendre symbols is defined for any integer a and any odd
prime s as

(A3)

(A4)

0 if a = 0 mod s
if a £ 0 mod s and a = x> mod

a 1
(;) - s for some integer x (AS)
—1 if a # 0 mod s and there is no such x
The Gauss sum for I = [+1] is [129]
en(22) odd N
G(+11, p,N) = ” (A6)
et e,'(3) evenN

It is valued in fourth root of unity when N is odd and eighth
root of unity when N is even. Taking its complex conjugate
we obtain the Gauss sum for / = [—1]. For H, the Gauss sum
is unity,

: 2x1x2> =1. (A7)

N
1 2mip

GH,p,N) = —

(H,p,N) =+ Zexp(zN

xp,x0=1
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For Eg, the Gauss sum is also unity [29],
G(Es, p,N) = 1. (A8)

Since [+1], [—1], H, and Eg have signature +1, —1, 0, and
+8, respectively, the normalized Gauss sum for the inter-
section form 7 of a smooth simply connected 4-manifold X
can be summarized a function of the signature o (X) of the
4-manifold,

v (B odan

[e%ig;l (%)]U(X) even N

GU,p,N) = (A9)

Since the normalized Gauss sum is valued in the eighth root
of unity and by Rokhlin’s theorem the signature of the inter-
section form / of a spin manifold is divisible by 16, the Gauss
sum is always unity on a spin-manifold.

We now study two special cases. First, consider the case
when p?> = —1 mod N and N is odd. This situation arises only
if all the prime factors of N are 1 modulo 4, and thus ey = 1.
Since p/2 = [(2);,1(1) + 1)]*> mod N, we have (”W/Z) =1. Com-
bining these two facts, we find that the normalized Gauss sum
is unity:
GU,p,N)=1

Next, consider the case when p(p 4+ 1) = —1 mod N. This is
possible only when N is odd. Using the following properties
of the Jacobi symbol:

()= ()G G = ()

when p> = —1 mod N and N is odd. (A10)

we find that
(%)-()E) - G- ()
N N/J\N N N N
(A12)
Therefore,

o(X)
G(,p,N)= [SN(N)] when p(p+ 1) = —1 mod N.
(A13)

APPENDIX B: PARTITION FUNCTION
OF Zy 2-FORM GAUGE THEORY

In this Appendix, we compute the partition function of a
(3+1)-dimensional Zy 2-form gauge theor}/ in the presence
of the background gauge field B for the Zz(v) one-form sym-
metry. For simplicity, we assume the underlying manifold X
is simply connected and thus H>(X, Z) has no torsion classes.

The partition functions of a (341)-dimensional Zy 2-form
gauge theory is

1

|H>(X, Zn)

x 3 exp{Zni/[%P(b)—i—llvaB:H.
X

beH2(X,Zy)
(B1)

When N is even, p~ p+2N and P®): H>(X, Zy) —
H*(X, Z,y) is the Pontryagin square map. When N is

Z[B] =

odd, p~p+2N €2Z and P(b)=bUb: H*(X,Zy) —
H*(X, Zy). In both cases PN is even. Let us define
p N gKL

qg=—, =—, J=—-.

L = gcd(p, N), >

(B2)
If ¢ and K are both odd, then L has to be even because pN =
gKL? is even. Thus, J is always an integer. To evaluate the
partition function, we split b into a Z; cochain by and Zg
cocycle by:

b= Kby+b,. (B3)

The gauge symmetries are

by — by + dag + LBy — B1, by — by + Sy + KBy.

(B4)
The cocycle conditions are
8b; = 0 mod K,
8by = —8by /K mod L = —Bock(b) mod L; (BS)

where Bock(b;) is the Bockstein homomorphism applied to
the cocycle b;. The second cocycle condition ensures that
8b = 6(Kby + b)) =0mod N. Now substituting (B3) into
(B1), we obtain

1

VIH?(X, Zy)|
1
x exp{szx[%mblwrﬁbmw“

bieH2(X.Zg)
. gk 1
exp {2mi —P(by)+ —bp UB
x| 2 L

<
(B6)

Z[B] =

byeC*(X,Z1)
(Sbn:*BOCk(b] )

The second sum can be simplified using the Wu formula,
P(b) = bU vy(X) mod 2, where v,(X) = wr(X) + wi(X) U
w1 (X) is the second Wu class of the underlying manifold X
and w;(X) is the ith Stiefel-Whitney class. Summing over by
then gives

|H*(X, Z,)|

|H>(X, Zn)|

X Z exp (2711'/ {%P(bl)
X

b]EHz(X,ZK)

Z[B] =

1. 1
+ I?bl Z[B +Jv2(X)]})

x 8{[B + Jv,(X)] mod L}. (B7)
We reorganized the exponents using the Wu formula so that
each term is independently well defined. The first term is well
defined because gK(1 — K) is always even. The second term
is well defined when the delta function is nonzero. We can
complete the square in the exponent by a change of variable,

- _ B+Jv
bi = by + (1 + K)@), g ——

7 (B8)

9
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where the notation (« )El denotes the inverse of « in the ring
Zg for coprime integers o and 3, and

1, oddK
v(K) = { ) (B9)

2, evenK

When g = 0, we define (q);('K)K = 0. The exponents in the
sum now becomes

exp{Zm’/ |:q( 3K )P(b )
bt

_(1 —K)(q)y(})KP<B+J"2>”. (B10)

2K L

The remaining sum over b, is related to the normalized Gauss
sum for the intersection form / via

> exp [2;”' /X %P(b )}

EléHZ(X,ZK)

= VIH*(X, Zg)IG(, q(1 — K), K).

Summing over b; then leads to

Z[B] =V|H*(X, Z1)IGU, q(1 — K), K)

. (1 _K)(q);(ll()[( B+JU2
X exp |:—2m/X T ’P( 7 )

(B12)

(B11)

X 8[(B + Jvy) mod L].

We now discuss two situations when the formula simpli-
fies. When the underlying manifold X has a trivial second Wu
class v, (X), (B12) simplifies to

=/|H*(X, Z1)|G{, q, K)5(B mod L)

xexp|: 2711/ @5 79( )}

In the special case of L = 1, (B12) simplifies to

Z[B]

(B13)

2m(p);(1N)N

Z[Bl =G, p,N)exp |:—/X N

’P(B)i| . (B14)
When N is odd, we pick an even ( p);,l for the expression to be
well defined. This can always be achieved by redefining ( p)IQl
to (p)y' +N.

APPENDIX C: DETAILS OF TQFT ARGUMENT

In this Appendix, we provide more details of the proof of
Theorem 5 and Theorem 6.

1. Duality symmetry

Consider a (3+1)-dimensional (spin) TQFT Q that has a
unique vacuum and a Z;V) one-form symmetry. We will prove
that the TQFT cannot be invariant under gauging the ZS)
one-form symmetry up to a gravitational counterterm /)
unless N = k2¢ with k, £ € Z and —1 is a quadratic residue
of £. Furthermore, if the TQFT is invariant under gauging,

then the gravitational counterterm ¢’*®) = 1 on every simply
connected smooth spin 4-manifold X .

The Z;vl) one-form symmetry is generated by surface op-
erators U,. To detect the one-form charge of a line operator
L, we link the surface operators U, with the line operator L.
If the correlation function, where U, and £ form a Hopf link,
differs from the one, where the link is trivial, then we say the
surface operator U, links nontrivially with the line operator L.
Otherwise, we say U, and L link trivially with each other.

In general, the Zg\,l) one-form symmetry can act unfaith-
fully on line operators in the sense that some symmetry oper-
ators U, link trivially with all line operators.'* The unfaithful
one-form symmetry forms a Zz(vlf) subgroup of the Zl(\}) one-
form symmetry where M € Z and k = N/M € Z. In this case,
all line operators transform with a kth root of unity, instead of
a Nth root of unity, under the Zf\}) one-form symmetry.

We now gauge the Z,(\}) one-form symmetry by coupling
the theory to a dynamical Zy two-form gauge field b €
H*(X, Zy). This leads to a dual ZEVU one-form symmetry, gen-
erated by the Wilson surface operator U = exp(27i § b/N),
in the gauged theory Q/ Z,(\}). Here we add a hat to the dual
symmetry group to distinguish it from the original symmetry
group.

Line operators charged under the Zﬁv) one-form symmetry
become non-gauge-invariant in the gauged theory Q/ Zf\}). To
make them gauge invariant, we attach an open Wilson surface
operator to them. Recall that all line operators transform only
with a kth root of unity under the ZE\}) one-form symme-
try. Therefore, only the Wilson surface operators generated
by UM = exp(2mi § b/k) can end on these charged lines.
The charged lines are topological, based on the assumption
that Q is a TQFT, so they provide a topological boundary
condition to the Wilson surface operators ending on them.
Using these topological boundary conditions, we can unlink
any Hopf link between the surface operators generated b ly
UM = exp(2mi ¢ b/k) and any line operator. Thus, the Z(
subgroup, generated by UM = exp(2ri $ b/k), of the dual
Z,(\}) one-form symmetry acts unfaithfully in the gauged theory
Q/Zy).

The unfaithful subgroup of the dual Z,(\}) one-form sym-
metry can be larger than Z(l) If the TQFT is invariant under
gauging, then the unfalthful subgroup in the gauged theory
Q/ Zz(\}) should be Z(l) which should include Z as a sub-
group. It implies that N = k*¢ for some integer K

We now derive a constraint on £. Consider placing the
theory Q on S? x S2, which has H>(S? x S?, Z) = H*(S? x
S2,7) =7?* and an intersection form H. We can turn on
the background gauge field (By, B,) € H*(S? x §%, Zy) =
wa for the unfaithful Z,(\,l,) subgroup one-form symmetry. It
amounts to inserting B; and B, number of basic val,) sym-
metry operators wrapping around the two S2, respectively.
According to Proposition 1 of Ref. [100], any surface operator

!4 An unfaithful symmetry operator can still have nontrivial corre-
lation functions associated to other topological invariants, such as
intersections, triple linkings and quadruple linkings of surfaces, and
so on [104,105].
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in a TQFT that links trivially with all line operators admits a
topological boundary condition. In our TQFT Q, it implies
that the symmetry operators of the unfaithful Z,(Vl]) subgroup
one-form symmetry can be opened up topologically without
changing the correlation functions. On S? x S2, opening up
the (B, By) number of symmetry operators and shrinking
them leaves us with BB, number of identical local operators
O at the intersections. Since the TQFT has a unique local
vacuum, these local operators must be a multiple of the iden-
tity operator, i.e., O = A1 and therefore the partition function
is Zo[B1, B,] = AB1B2Z510, 0]. Because of the identification
By, ~ By + M, the coefficient A obeys

Zo[Bi +M,By]
Zg|[By, Bs]

MB: = 1. (C1

Solving for A, we get
2mip
Zo[B1, B2] = Zg[0, 0] exp 73132 , PEL. (C2

The fact that Q is invariant under gauging the Zﬁ\}) one-
form symmetry imposes a constraint on Zg[B;, B,]. Starting
from the theory Q, we can gauge the Zﬁ,‘,) subgroup one-form

symmetry and obtain the theory Q/ Z\D, which has a dual Zf‘;)

and a Z,((l) one-form symmetry. We put a tilde on the symmetry
group of the theory Q/ Zg;). The dual Z](&) one-form symme-
try is generated by the Wilson surface operators of the Z,(l,l,)
two-form gauge field. Turning on the background gauge field
(C1,Cy) € H(S? x S, Zy) for the Z_" subgroup of the Z{,
one-form symmetry leads to the following partition function
for the Q/ Zl(vl,) theory on % x S? that can be computed with
the formula for partition functions (C2) and (B13):

2mi
ZgzplCr, Gl = Q[bubz]GXP[T(b1C2+b2C1)i|

1 2mip
=— Zo[0,0 bib
M ol ]CXP|: TR
1,2=

2mi
+ T(blcz + b,C, ):|
27i(q)g" kCy kCy
=Zo[0,0] x L e
ol0, 0] x exp[ X I 1

x 8(kCy, mod L), (C3)

where L = ged(p, k¢), K = kl/L, g = p/L. Note that the
Gauss sum equals unity for the intersection pairing on $? x S?
as shown in the Appendix on Gauss sums. On the other hand,
we can also start from the gauged theory Q/Zj(\p and gauge
the Z,((l) subgroup of the Zf\}) one-form symmetry to obtain
the theory Q/ Z(l) The Z,(C]) one-form symmetry of Q/ Zz(vll) is
the dual s?/mmetry generated by the Wilson surface operators
of the Z(l two-form gauge field. The Z(l)/Z(l) Z(l part of

the .72}1(‘;) one-form symmetry of Q/Z,(\}) becomes the Zél)
7'} one-form symmetry of Q/Z{;. We then have another

expression for ZQ/Z}\;) [C],

k
Y Zoyplthi +Ci. thy + Cl.

1
ZQ/Z;J,’ [C1, ] = ﬁ =,

(€4

Recall that the partition functions before and after gauging
are identical up to a gravitational counterterm ¢’**) which is
a pure phase. On S? x S, this gives

Zo[B1, Bo] = Zg 0B, Ble ™). (C3)
Together with (C2) and the formula (B13), we obtain
k
1 . 2mwipl

ZQ/Z;VII) [Clv Cz] = z Z ZQ[O7 O]elﬂ(szxsz) exp [ P b1b2

b] 2=1

2mp Tip

(b1Cy + b2 Cy) + GG
1S? xS%) 2wip
=Z5l0,0]e x Lexp % CiC

27Tl(q)K [JC] pC2
——=——=18(pC dL
7 77 (pCi2 mod L),
(Co)

where L = ged(pl, k), K = k/L, G = pt/L.

On S? x S2, the partition function Zg[0, 0] is positive
[100]."> Hence, equating (C3) and (C6), we get the following
constraints. First, to match the magnitudes of the two partition
functions, we have

L8(kCy » mod L) = L8(pCy , mod L),
L = ged(p, kb),

L = ged(pt, k). (C7)

It implies that L = L= ged(p, k) and therefore ¢, p =
p/ged(p, k), and k= k/ged(p, k) are all coprime to each
other. Once these conditions are obeyed, the delta functions in
(C3) and (C6) both become trivial. Next, we match the phases
of the two partition functions. Since /%" *5") is independent
of (Cy, C,), we have

eiQ(Szxsz) —1. (C8)
Matching the remaining phases that depend on (C;, C;) leads
to the constraint

»o;"

(p )ke P2
— mod 1.
i 14

= (€9
ke

_b_
k

5This is because §? x §? is the double of an open 4-manifold x
which may be embedded inside S*. In particular this means that
the partition function of Q on S* which is necessarily nonzero by
unitarity, may be viewed as the inner-product of the state defined by
x and the state defined by the complement of . Therefore x defines
a nonzero state and the partition function on S? x $? is the norm of a
nonzero vector and so positive.
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We can multiply the equation by ke and treat it as an equa-
tion modulo £.'® The second term on the right-hand side
dropped out and the constraint simplifies to

(P, k> + p=0mod ¢. (C10)
If we further multiply the equality by ( ﬁ)lz_zl and still treat the
equality as an equality modulo ¢, then we get

[k +1=0mod . (C11)

The constraint implies that —1 is a quadratic residue of £. The
condition holds if and only if every odd prime factor x; in the
prime factorization of ¢,

Y- x‘Y’ x? O

m

(C12)

is 1 modulo 4 and the power of 2 in the prime factorization is
yo = 0, 1. This completes the first part of the proof.

The foregoing derivation remains unmodified if we replace
the space-time manifold S?> x S by any other simply con-
nected smooth spin 4-manifold X. On such manifolds, by
opening up the unfaithful Zz(é) symmetry operator and shrink-
ing them to the intersection points, we can fix the partition
function to

7 1Bl = Za00 2mwip BTIB
olBl =Zol ]eXp[ V)

where B € H*(X, Zy) = 77, is the background gauge field
for the unfaithful Zg}) one-form symmetry and / is the in-
tersection form of the 4-manifold X. Here p is an integer
because the intersection form of a spin manifold is even. Note
that Zo[0] is positive on any simply connected smooth spin
4-manifold [101]. Generalizing (C3) and (C6), we have the
equality

], peZ, (CI3)

M .
1 2mi
b=1

1 k

= WZZQ/ZMKHC]. (C14)
b=1
Substituting (C13) and
Zo[Bl = Z, /Zx)[B]e—’W) (C15)

into (C14) leads to the same constraint on ¢ as before and
since the Gauss sum for the intersection forms of X is unity,
we have ¢/*®) = 1 on every simply connected smooth spin 4-
manifolds. This concludes the proof. Since the proof only uses
spin 4-manifolds, which have a trivial second Stiefel-Whitney
class, we cannot determine whether the TQFT is a spin TQFT
or a nonspin TQFT.

2. Triality symmetry and nore general noninvertible symmetry

We now generalize the constraint on duality-invariant
TQFTs to TQFTs that preserves more general noninvertible
symmetry including the triality symmetry. Consider a (3+1)-
dimensional (spin) TQFT Q that has a unique local vacuum

16f we multiply the equation (C9) by k€ and treat it as an equa-
tion modulo k, then we get a trivial equality. Since k and ¢ are
coprime, the equality (C9) is equivalent to (C10).

and a Zj(vl) one-form symmetry. We will prove that the TQFT
cannot be invariant under 77§ gauging the Z](vl) one-form
symmetry up to a gravitational counterterm ¢’*®) unless N =
k*¢ with k, £ € Z and there exists a solution p € Z such that

p(p+p)+1=0mod . (C16)

Furthermore, if the TQFT is invariant under the 7S gaug-
ing, then the gravitational counterterm ¢**) =1 on every
simply connected smooth spin 4-manifold X. When N is
even and p’ = £1 or when N is odd and p’ = £(1 + N), the
noninvertible defects constructed by half-gauging the theory
leads to the triality defects.

The proof for these more general 77§ symmetries fol-
lows the same reasoning as in the duality case. We will
directly work on simply connected smooth spin manifolds
X. Equations (C13) and (C14) still hold but now due to the
invariance under 77§ gauging we have

2rip .
Zg,z00[B] = Zo[Bl exp [Tp(kB)TI(kB)} X (C17)

Combining this relation with (C13) and (C14), we get the
same constraint as in (C7) so £, p = p/gcd(p, k), and k=
k/gcd(p, k) are all coprime to each other and we further
derived

PP+ p)+1=0mod¢, (C18)

where p = IG(ﬁ);el. Again, because the Gauss sum for the
intersection forms of a simply connected smooth spin 4-
manifold X is unity, we learned that ¢/**) = 1. This
concludes the proof.

APPENDIX D: SPONTANEOUS SYMMETRY BREAKING

While the main focus of our analysis is on theories with a
unique vacuum state on S, it is also possible to spontaneously
break duality symmetries leading to multiple vacuum states.
In this case there is no constraint on N. Here we briefly sum-
marize some simple examples of this phenomenon. We also
note that spontaneous duality symmetry breaking is realized
in Zy lattice gauge theory for small N as discussed in Sec. IV.

We can construct an elementary gapped example of spon-
taneously breaking the duality defect D by starting from Zy
topological gauge theory (i.e., Dijkgraaf-Witten theory). This
theory has a Zl(\}) one-form symmetry under which the Wilson
lines are charged. In the presence of a background gauge field
B the partition function on a simply connected 4-manifold X is

1 2
—_— —_— UB
X, Zy)| 2 eXp[ N fxc }

ceH*(X,Zy)

= JIH2(X, Zy)[8(B mod N).

Performing the S gauging operation replaces the partition
function above by

Zpw[B] =

D)

1
|H>(X, Zy)|

x Yy exp[%/xbu(c—i—B)}. (D2)

b,ceH*(X,Zy)

SZpw[B] =
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The equation of motion for b forces ¢ = —B, and as a
consequence the theory obtained after gauging is trivial,

SZpw([B] = Zyivia[B] = 1. (D3)
This gauging procedure is reversible: Gauging a Zz(\})
one-form symmetry in the trivial theory takes us back to
the original Dijkgraaf-Witten theory.

We can now use these results to construct a theory which is
self-dual under gauging Z;J) one-form symmetry for all values
of N. We consider a theory Q which is the direct sum of the
Dijkgraaf-Witten theory and the trivial theory:!”

Zo = Zpw @ Zyivial- (D4)

By construction, Q has two local ground states and corre-
spondingly two topological local operators corresponding to
the identity operator in each of the sectors above. According

"The direct sum of d-dimensional theories assigns to a d — 1
manifold a Hilbert space which is the direct sum of the Hilbert space
assigned to each summand and assigns to a closed d manifold the
sum of the partition functions. See Refs. [130,131] for additional
details.

to the discussion above the S operation exchanges these two
summands. This implies that the theory O has a duality defect
D which permutes the two topological local operators.

Physically, the construction above can occur at a first-order
phase transition with a spontaneously broken duality symme-
try. In this case the symmetry defect D describes a domain
wall connecting the two local vacua which are hence related
by the gauging operation S. In particular, this is exactly the
phase transition which occurs in self-dual Zy lattice gauge
theory for N < 4 (see Sec. IV).

The construction above may be straightforwardly gener-
alized to produce myriad examples of spontaneously broken
duality symmetry. Indeed, given any theory G with Zz(v]) one-
form symmetry, we can consider the direct sum:

Zo =25 ® Zsg., (DS)

which again realizes spontaneously broken duality symmetry.
Similarly, we can construct gapped or gapless phases realizing
spontaneous symmetry breaking for the more general nonin-
vertible symmetries arising from invariance under 7~"'S. For
instance, a spontaneously broken triality symmetry leads in
general to three local vacua connected by sequential gauging
and stacking operations. This occurs in the Cardy-Rabinovici
model at 7, = ¢™/3 for small N (see Sec. IV).
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