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Classification and construction of interacting fractonic higher-order topological phases
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The notion of higher-order topological phases can have interesting generalizations to systems with subsystem
symmetries that exhibit fractonic dynamics for charged excitations. In this work, we systematically study the
higher-order topological phases protected by a combination of subsystem symmetries and ordinary global
symmetries in two and three-dimensional interacting boson systems, with some interacting fermionic examples.
In particular, we discover some important results, including (i) an Abelian subsystem symmetry group that does
not allow for a nontrivial higher-order symmetry-protected topological phase in 2D without global symmetry.
(ii) inhomogeneous subsystem symmetries do not allow for that either.
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I. INTRODUCTION

Symmetry-protected topological (SPT) phases greatly ex-
pand our knowledge of quantum phases of matter beyond
the conventional Landau symmetry-breaking paradigm [1–4].
Tremendous progress has been made over the past decade
in classifying and characterizing SPT phases with internal
and crystalline symmetries [5–15]. A common feature of SPT
phases is that the boundary of an SPT phase is usually gapless
due to symmetry protection. For instance, the celebrated 3d
topological insulator hosts single massless Dirac cones pro-
tected by charge conservation and time reversal symmetry on
its 2d surfaces. However, in contrast to the phenomenology of
the ordinary topological insulator, recently a new class of SPT
phases is shown to exist where symmetry-protected gapless
modes only show up on certain low-dimensional submani-
folds on the boundary while the majority of the boundary can
be gapped without breaking the symmetry. These features de-
fined a new class of SPT phases which is dubbed higher-order
topological phases [16–20].

Higher-order topological phases turn out to be rather
common in systems with crystalline symmetries. A great
deal of weakly interacting higher-order topological insula-
tors and superconductors has been established theoretically
[21–33] and discovered experimentally [34–37] as well. For
strongly interacting systems of fermions or bosons, one can
also demonstrate the existence and study the properties of
higher-order topological phases with methods such as the
crystalline equivalence principle [26] and the block state con-
structions [38–43]. These studies bring us a complete picture
of symmetry-protected topological phases with crystalline
symmetries.

Coming from a rather orthogonal direction, a new type
of symmetry, namely subsystem symmetry, is discovered
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along the exploration of so-called fracton topological phases.
Compared to ordinary global symmetry, subsystem sym-
metries are more closely intertwined with the underlying
foliation [44–47] structure of space and only act on a rigid
submanifold/leaf of the whole system. As the charges on each
submanifold are conserved individually, single charge tunnel-
ing events are forbidden, which leads to fractonic behaviors
[44–47]. Approximate subsystem symmetries have natural
manifestations in certain physical systems. For instance, in
twisted bilayer tungsten ditelluride systems, at a twist angle
of 5◦, experiments [48] exhibit exceptionally large transport
anisotropy between two orthogonal in-plane directions, in-
dicating vanishing single-particle tunneling in one direction.
Another system with approximate subsystem symmetry is 3d
kagome metal materials, Ni3In as an example [49], where
the single-particle tunnelings within xy plane are suppressed
due to interference effects of atomic orbitals. Subsystem sym-
metry may also be an emergent symmetry at some quantum
critical points [50].

A natural question is whether there are nontrivial SPT
phases associated with subsystem symmetry. Indeed, previous
works have shown the existence of subsystem symmetry-
protected topological (SSPT) phases [51–66]. Examples of
higher-order topological phases with subsystem symme-
tries are also discovered [67] but still lack a systematic
understanding. In this work, we systematically study pos-
sible higher-order topological phases in strongly interacting
bosonic systems protected by a combination of global and
subsystem symmetries labeled by Gg × Gs. We present a gen-
eral scheme for classifying higher-order SSPT states, that
applies to both bosonic and fermionic systems and work out
the complete mathematical classification in the bosonic case.
From the general classification, we establish a few interesting
facts. For instance, for Abelian subsystem symmetry, there is
no nontrivial two-foliated higher-order SSPT phase in (2+1)d
systems without the aid of global symmetry. In addition, we
prove that for inhomogeneous subsystem symmetries, there is
no nontrivial higher-order SSPT phase. Besides the general
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classification, we also explicitly construct models of such
SSPT states in 2 and 3 spatial dimensions.

The rest of the paper is organized as follows. In Sec. II, we
discuss the classifications and explicit model constructions of
higher-order SPT phases with two-foliated subsystem sym-
metry. In particular, we prove that if Gg is trivial, there is
no nontrivial higher-order SSPT phase in (2+1)D systems.
Finally, in Sec. IV, we consider three-dimensional systems
with the 3-foliation structure, including the classifications
and explicit lattice model constructions. We will explicitly
construct an exactly solvable lattice model of (3+1)D third-
order SSPT phase with three-foliated Z2 × Z2 subsystem
symmetry. Furthermore, we will demonstrate that for arbi-
trary foliated inhomogeneous subsystem symmetries in any
dimension, there is no nontrivial higher-order SSPT phase.
In Sec. V, we summarize the main results of this paper and
discuss further outlooks.

II. SECOND-ORDER SSPT PHASES WITH 2-FOLIATED
SUBSYSTEM SYMMETRY

A foliation is a decomposition of a manifold into an
infinite number of disjoint lower-dimensional submanifolds
called leaves. By 2-foliation, we mean the physical system
we consider can be decomposed into two orthogonal sets
of disjoint codimension-1 submanifolds. And an independent
conserved symmetry charge can be defined on each of these
codimension-1 subsystems.

Before passing to the two-foliated systems, we want to
mention that one-foliated systems cannot host any nontrivial
higher-order SSPT phases even with global symmetry. The
argument is presented in Appendix. A.

In this section, we consider the system with two-foliated
subsystem symmetries. We will assume that the symmetries
are on-site, so the unitaries that implement the symmetry
transformations are tensor products of unitaries acting on the
Hilbert spaces of sites. We will generally consider the follow-
ing two scenarios: (1) homogeneous subsystem symmetries
where the two-foliated subsystem symmetries are built out
of the same on-site symmetry transformations and (2) in-
homogeneous subsystem symmetries where the symmetries
in different directions act completely differently. As we will
see, the two kinds of subsystem symmetries have significant
physical differences, therefore, we discuss them separately.
Schematically, we denote the subsystem symmetry group by
Gs. In addition to the subsystem symmetries, we also con-
sider an additional global symmetry, Gg, in the system. For
simplicity, in this work, we consider the situation where the
total symmetry is a direct product of Gs and Gg, although
our formalism can be generalized to situations where the two
groups have nontrivial central extensions straightforwardly.

A. General remarks

For a (d + 1)D lattice with a 2-foliation structure, for our
purpose, it is convenient to think of the system as a square
grid. Each site-(x, y) of the grid corresponds to a (d − 2)
system, whose Hilbert space is denoted by Hxy. For d > 2
the (d − 2)D system itself may be extensive. The total Hilbert
space is a tensor product H = ⊗x,yHxy. The two-foliated

ŷ

x̂ Ux(gy)

Uy(gx)

A2A1

A4

A3

FIG. 1. Coupled-wire model with two-foliated subsystem sym-
metries Ux (gy ) and Uy(gx ). Blue strips depict subsystem symmetries,
and A1,2,3,4 depict the background gauge fields of corresponding
subsystem symmetries marked by red solid lines.

homogeneous subsystem symmetries are defined as follows:

Ux(g) =
∞∏

y=−∞
uxy(g)

Uy(g) =
∞∏

x=−∞
uxy(g)

, g ∈ Gs, (1)

where uxy(g) is an on-site unitary operator acting on the
(d − 2)D system at site (x, y), and forms a faithful linear
representation of the subsystem symmetry group Gs. The
geometry of subsystem symmetries in (2 + 1)D systems is
illustrated in Fig. 1.

So far Gs may be Abelian or non-Abelian. Suppose Gs is a
non-Abelian group. For a given site (x, y), and g1, g2 ∈ Gs we
consider the following unitary:

Uy
(
g−1

2

)
Ux

(
g−1

1

)
Uy(g2)Ux(g1) = uxy

(
g−1

2 g−1
1 g2g1

)
. (2)

This operator is nontrivial if and only if g−1
2 g−1

1 g2g1 �= 1. This
commutator becomes a local symmetry of the site when this
is the case. More generally, there is a local symmetry group
[Gs, Gs] on each site as the commutator of the subsystem
symmetry Gs, and an effective Abelian subsystem symmetry
G′

s = Gs/[Gs, Gs] known as the Abelianization of Gs. There-
fore it is sufficient to consider the Abelian subgroup of the
non-Abelian subsystem symmetry [53].

There is another possible pattern of subsystem symme-
try: the subsystem symmetries along the two directions are
completely different, i.e., they have different group struc-
tures and have different actions. Suppose the subsystem
symmetry along the horizontal/vertical direction is Gx

s/Gy
s ,

the two-foliated subsystem symmetries should be defined
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as (∀x, y ∈ Z):

Ux(gy) =
∞∏

y=−∞
uy

xy(gy)

Uy(gx ) =
∞∏

x=−∞
ux

xy(gx )

,

{
gx ∈ Gx

s

gy ∈ Gy
s

, (3)

where uy
xy(gy)/ux

xy(gx ) is the linear representation of Gx
s/Gy

s

on the site-(x, y), and uxy(g) = uy
xy(gy)ux

xy(gx ) is the linear
representation of Gy

s × Gx
s on the site-(x, y), g = gxgy.

We first consider systems with homogeneous subsystem
symmetries and derive a complete classification.

B. Classification using boundary anomaly

Consider a system with finite extension in x and y, and
infinite in the remaining directions. The boundary consists of
two lines/planes parallel to x, and two parallel to y, with four
(codimension-2) corners. By definition, the boundary is triv-
ially gapped except at the corners. Each corner individually
can be described by a theory in (d − 2)-dimensional space.
The subsystem symmetries, when restricted to one corner,
become internal global symmetries of the corner theory. For
homogeneous subsystem symmetry, the two subsystem sym-
metries should have identical symmetry action in the corner
theory, since the corner is where two submanifolds intersect.
Label the four corners as BL, BR, TL, and TR (B for bottom,
T for top, L for left, and R for right). The corresponding
submanifolds passing through the four corners are labeled as
1, 2, 3, and 4, as illustrated in Fig. 1.

We now view this whole system as a (d − 2)-dimensional
system, with a on-site symmetry group G×4

s . Clearly, as a
physical (d − 2)-dimensional system, the symmetry action
of G×4

s must be free of any ’t Hooft anomaly. This is the
consistency condition that we will impose to classify the SSPT
phases. But before going to the actual classification, first we
review how to describe ’t Hooft anomaly.

For a local quantum system in (D + 1)-dimensions (may
be a lattice model or a continuum theory) with global unitary
symmetry group G, the ’t Hooft anomaly of G can be probed
by coupling the system to a (flat) background G gauge field
A. The anomaly is the fact that the system is not invariant
under gauge transformations of the background gauge field A.
Through the inflow mechanism, the anomaly can be uniquely
associated with a (D + 2)-dimensional invertible theory (the
background gauge field should also be extended to the (D +
2)-dimensional bulk). The topological response theory of the
bulk to A will be denoted by S[A], which should be a quantized
topological term of the background gauge field A. For bosonic
systems in D � 2 with unitary symmetry, the anomaly (and
the associated SPT phases) can be fully classified by the group
cohomology HD+2(G, U(1)). Namely, each anomaly class (or
the SPT phase) is uniquely determined by a cohomology
class [ν] ∈ HD+2(G, U(1)), where ν is a representative group
cocycle. Formally, the anomaly action can be written as

Sanomaly[A] =
∫

MD+2

A∗ν, (4)

where we view the background gauge field A as a mapping
from the space-time manifold MD+2 to the classifying space
BG, and A∗ν is the pullback of Hd (BG,R/Z).

In our case, since the symmetry group is G×4
s , the

background gauge fields can be written as (A1, A2, A3, A4),
where the 1,2,3,4 indices indicate which subsystem the
symmetry acts on, but we should keep in mind that in
the (d − 2)-dimensional system they all become internal
global symmetries. Since Gs is Abelian, we adopt the con-
vention that the gauge field Ai’s are all additive.

The structure of the system symmetry places more con-
straints on how the symmetries act on the corner theories. To
give one example, consider the BL corner. By definition, G(3)

s
and G(4)

s do not act on BL corner (so the theory is not coupled
to A3 and A4), and G(1)

s and G(2)
s have identical symmetry

actions. So when A1 (or A2) is turned on, the ’t Hooft anomaly
of the BL theory is captured by an action SBL[A1] (SBL[A2]).
However, when both A1 and A2 are turned on, the anomaly
response of the BL corner theory becomes SBL[A1 + A2].

Now we consider the anomaly of G(1)
s alone. Equivalently,

only A1 is turned on. Both TL and BL corner theories are
coupled to A1, so the vanishing of the anomaly for G(1)

s implies

SBL[A1] + STL[A1] = 0. (5)

Similarly, we have

SBR[A2] + STR[A2] = 0,

STL[A3] + STR[A3] = 0,

SBL[A4] + SBR[A4] = 0. (6)

Thus the four response actions can all be related to, e.g., SBL:

SBR[A] = −SBL[A],

STL[A] = −SBL[A],

STR[A] = SBL[A]. (7)

Next we consider G(1)
s × G(4)

s , i.e. turning on both A1 and
A4, which intersect at the BL corner. The vanishing of the
anomaly leads to

SBL[A1 + A4] + STL[A1] + SBR[A4] = 0. (8)

Using the relations, we have

SBL[A1 + A4] − SBL[A1] − SBL[A4] = 0. (9)

It is important that the left-hand side should be viewed as the
anomaly response for the symmetry group Gs × Gs.

It is easy to see that considering other pairs of intersecting
subsystem symmetries lead to the same mathematical condi-
tion as (9). Furthermore, once (9) is satisfied, the symmetry
group G×4

s is indeed nonanomalous.
We now translate the condition (9) into a more concrete

statement about the group cocycle. Suppose the anomaly ac-
tion SBL corresponds to a group cocycle [ν] ∈ Hd (Gs, U(1)).
We introduce an “obstruction” map from Hd (Gs, U(1)) to
Hd (Gs × Gs, U(1)), as

f (ν)((g1, g′
1), . . . , (gd , g′

d )) = ν(g1, . . . , gd )ν(g′
1, . . . , g′

d )

ν(g1g′
1, . . . , gd g′

d )
,

(10)
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and the condition (9) is the statement that [ f (ν)] is triv-
ial in Hd (Gs × Gs, U(1)), which defines a subgroup of
Hd (Gs, U(1)).

We note that for d = 2, the corner theory is 0+1d and
the only anomaly is the ’t Hooft anomaly of a global sym-
metry, which essentially says the corner state transforms as
a projective representation of the global symmetry. In d = 3,
the corner theory is 1+1d, which may have a gravitational
anomaly characterized by a chiral central charge c, which is
always an integer multiple of 8 in bosonic systems. However,
in that case, the gravitational anomaly and ’t Hooft anomaly
can be completely decoupled, and the vanishing of the gravi-
tational anomaly requires

cBL + cTL + cBR + cTR = 0. (11)

Then they can always be canceled by stacking layers of E8

states on the four surfaces.
Next, we turn to the case with an additional global sym-

metry Gg. The story is similar but with a few twists. We will
also need to turn on background gauge fields for the global
symmetry, and the corner theory can have mixed anomalies
between the global and the subsystem symmetries. We can
assume that the corner theories do not carry any anomaly of
the Gg symmetry alone, as they can be canceled by boundary
reconstruction. This is analogous to the argument that we can
ignore the gravitational anomaly.

Therefore the anomaly response for, e.g., the BL corner
theory in the presence of both subsystem background gauge
field As and Ag should take the following form:

SBL[As] + SBL[As, Ag]. (12)

The first term is the subsystem symmetry anomaly, which we
have already studied carefully. The second term represents the
mixed anomaly. Namely, it is only nontrivial when both As and
Ag are nontrivial.

Following the same anomaly vanishing argument, we find

SBR[As, Ag] = −SBL[As, Ag],

STL[As, Ag] = −SBL[As, Ag],

STR[As, Ag] = SBL[As, Ag]. (13)

and

SBL[As + A′
s, Ag] − SBL[As, Ag] − SBL[A′

s, Ag] = 0. (14)

Let us turn it into an algebraic expression for the case of
group-cohomology SPT phases. We assume that SBL[As, Ag]
corresponds to a cocycle ν in Hd (Gs × Gg, U(1)). Denote
the group elements of Gs × Gg by a pair (g, h) where g ∈
Gs, h ∈ Gg. Define the obstruction map from ν to Hd (Gs ×
Gs × Gg, U(1)):

f (ν)((g1, g′
1, h1), . . . , (gd , g′

d , hd ))

= ν((g1, h1), . . . , (gd , hd ))ν((g′
1, h1), . . . , (g′

d , hd ))

ν((g1g′
1, h1), . . . , (gd g′

d , hd ))
.

(15)

Here we denote the elements of Gs × Gs × Gg as (g, g′, h).
The condition is then f (ν) corresponds to a trivial class in

Hd (Gs × Gs × Gg, U(1)).

⊗ ⊙

⊗⊙

⊗ ⊙

⊗⊙

⊗ ⊙

⊗⊙

⊗ ⊙

⊗⊙

Av
1

Ah
n

Ah
n−1

Av
2

⊗

⊙

⊗

⊙

FIG. 2. Illustration of the “coupled wire” construction. Each
“
⊗

” represents a codimension-2 system with the given anomaly of
Gs (e.g., a projective representation in d = 2, or a Luttinger liquid
in d = 3), and each “

⊙
” represents a system with the opposite

anomaly. Each square represents a “site,” which has no anomaly for
the Gs symmetry and thus can be realized by certain microscopic
model. Green plaquettes represent the four-body interactions in bulk,
and yellow ellipse for the on-site two-body coupling on the edge.
(Av

1, Av
2, Ah

n−1, Ah
n ) are background gauge fields of subsystem sym-

metry Gs defined on different codimension-1 subsystems. On the left
edge, a codimension-1 SSPT phase might be adhered to trivialize
the bulk SSPT phase, each blue plate represents a site and each red
ellipse represents a two-body inter-site coupling.

C. Microscopic constructions

Next, we demonstrate that all obstruction-vanishing
anomalies can be realized in the corner theory of a bulk SSPT
state, generalizing a “coupled wire” construction in Ref. [68].

For this, we can consider the following lattice construction.
First we pick a (d − 2)-dimensional symmetry-preserving
gapless theory T with the given Gs anomaly class S[A].
For d = 2, it is a projective representation. For d = 3, one
can choose a (1+1)d CFT with the given anomaly. Denote
by T the theory with the opposite anomaly (e.g., complex
conjugating T ). Given a square grid as shown in Fig. 2,
in each unit cell we arrange a (d − 2)-dimensional theory
TBL ⊗ T TL ⊗ T BR ⊗ TTR. Within each unit cell, the symme-
try Gs acts diagonally on the four theories. By construction,
the unit cell has no Gs anomaly, so it should be possible to
realize the theory in a physical (d − 2) system with on-site Gs

symmetry.
Now we consider the whole grid. The subsystem symmetry

is defined in the standard way. To construct the SSPT state,
we turn on interactions at each square plaquette, coupling
the four neighboring unit cells indicated by the green area
in Fig. 2. Note that the coupling only involves one of the
T or T theory from each of the four unit cells. We require
that the four theories involved in the plaquette interaction can
be gapped out while preserving the subsystem symmetries.
In order to do this, the subsystem symmetries acting on this
green plaquette must be nonanomalous, which is precisely the
condition previously in (9). In fact, it is believed that anomaly
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vanishing is both sufficient and necessary in order to find a
trivially gapped ground state [69]. So there should exist such
an interaction.

Once the appropriate interactions are turned on and drive
the bulk into a fully gapped state, there still exist nontrivial
boundary modes. We assume that the system is terminated
with “smooth” boundaries, as illustrated in Fig. 2. For each
unit cell on the smooth edge, there are two dangling theo-
ries that are not included in the bulk plaquette interactions,
with opposite anomalies (see Fig. 2). Hence we can simply
introduce a coupling (see yellow ellipse in Fig. 2) between
them preserving the subsystem symmetries to gap them out
and obtain a fully gapped boundary. However, for the unit cell
at the corner, there are three dangling theories that are not
included in the bulk plaquette interactions, and two of them
can be gapped by the above boundary couplings, leaving a
dangling corner/hinge theory that carries the desired anomaly.
Therefore this lattice construction gives a symmetric gapped
bulk state with symmetric gapped edges but anomalous corner
modes.

III. EXAMPLES

A. 2D systems with only subsystem symmetry

In this section, we prove the following. There is no nontriv-
ial two-foliated higher-order SSPT phase in (2+1)D without
global symmetry.

Let us think about abelian subsystem symmetry. It is well-
known that any finite Abelian group can be written as a
product of several cyclic groups:

Gs =
N∏

i=1

Zni , ni ∈ Z. (16)

A group element a ∈ Gs can be expressed as

a = (a1, a2, · · ·, aN ), ani ∈ Zni . (17)

The general expression of 2-cocycles in H2[Gs, U(1)] is

ν2(a, b) = exp

⎧⎨
⎩2π i

∑
i< j

pi j

ni j
aib j

⎫⎬
⎭, (18)

where pi j ∈ Z and ni j ∈ Z is the greatest common divi-
sor (GCD) of ni and n j . Substitute this explicit 2-cocycle
into the obstruction-free condition (9), we conclude that
an obstruction-free 2-cocycle corresponding to a nontrivial
(2+1)D higher-order SSPT phase requires the following ex-
pression to be a 2-coboundary of the G2

s group:

ν ′
2[(a, a′), (b, b′)] = exp

⎧⎨
⎩2π i

∑
i< j

pi j

ni j
(aib

′
j + a′

ib j )

⎫⎬
⎭, (19)

where a group element of G2
s is expressed as (a, a′), a, a′ ∈

Gs. To determine if the 2-cocycle (19) is a nontrivial 2-cocycle
in H2[G2

s , U(1)], we should justify that ν ′
2 is not commute for

some (a, a′) and (b, b′) ∈ G2
s as

ν ′
2[(a, a′), (b, b′)] �= ν ′

2[(b, b′), (a, a′)]. (20)

With the explicit form of 2-cocycle in Eq. (19), we have

ν ′
2[(b, b′), (a, a′)] = exp

⎧⎨
⎩2π i

∑
i< j

pi j

ni j
(bia

′
j + b′

ia j )

⎫⎬
⎭,

which is not equal to Eq. (19) if not all ni j = 1 for ∀i, j.
As a consequence, we have proved that all 2-cocycles like
Eq. (18) are obstructed, and there is no nontrivial two-foliated
higher-order SSPT phase in (2+1)D systems without global
symmetry, for all Abelian subsystem symmetries.

Furthermore, we have argued that for non-Abelian subsys-
tem symmetry, it is sufficient to consider its Abelian subgroup
G′

s = Gs/[Gs, Gs], hence even for non-Abelian subsystem
symmetry, there is no (2+1)D higher-order SSPT phase with-
out the aids of some proper global symmetry.

B. 2D bosonic SSPT with both subsystem and global symmetries

The mixed anomaly between Gs and Gg in this case is
classified by ω ∈ H1[Gs,H1[Gg, U(1)]]. Let us write the
2-cocycle down explicitly. ω can be viewed as a group ho-
momorphism between Gs and H1(Gg, U(1)), the latter is the
group of one-dimensional representations on Gg. Thus the
corresponding 2-cocycle can be written as

ν((gs, gg), (hs, hg)) = [ω(gs)](hg). (21)

Here ω(gs) gives a one-dimensional representation of Gg and
evaluating it on hg yields the 2-cocycle. The obstruction is
given by

f (ν)((gs, g′
s, gg), (hs, h′

s, hg))

= ν((gs, gg), (hs, hg))ν((g′
s, gg), (h′

s, hg))

ν((gsg′
s, gg), (hsh′

s, hg))

= [ω(gs)](hg)[ω(g′
s)](hg)

[ω(gsg′
s)](hg)

=
[
ω(gs)ω(g′

s)

ω(gsg′
s)

]
(hg) = 1. (22)

Thus the obstruction vanishes automatically.
Here we present an example to make our construction and

classification of SSPT phases more concrete. Gs = Z2 and
Gg = Z2. There is a two-dimensional projective representa-
tion protected by both Gs and Gg. We will construct a 2D
SSPT phase with the projective representation as the corner
mode.

We use the lattice construction in Fig. 2, where each circle
is a spin-1/2 degree of freedom. The subsystem symmetry is
generated by products of σ z

R along rows and columns, and the
global Z2 symmetry is generated by

∏
R σ x

R. The green plate
in Fig. 2 now includes four spin-1/2’s, and we can introduce
a ring-exchange coupling in each plaquette:

Hr = −
∑

R

σ+
R σ−

R+x̂σ
+
R+x̂+ŷσ

−
R+ŷ + H.c., (23)

where σ± = σ x + iσ y, R labels the lattice sites and x̂/ŷ repre-
sents the unit vector along the x/y direction.
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This Hamiltonian has the unique ground state on the lattice
with periodic boundary condition (PBC) [51]:

|�0〉 =
∏

P

(|↓BL,↑TL,↑BR,↓TR〉P

+|↑BL,↓TL,↓BR,↑TR〉P ), (24)

where the subscript P depicts different plaquettes. For sites
on the edge and corner, we turn on a Heisenberg interaction
σ · σ ′ in each yellow ellipse in Fig. 2, which can gap out a pair
of spin-1/2 degrees of freedom on all edge sites, except one
at the corner. As the consequence, there is only one dangling
spin-1/2 degree of freedom at each corner of the lattice that
remains gapless.

We notice that the Hamiltonian in fact has more symme-
tries. For example, the subsystem symmetry group can be
enlarged to U(1), generated by the total σ z along each row
and column.

C. 3D bosonic SSPT with Gs = Z2

Let us work out the classification of 2nd-order SSPT
phases in 3D for Gs = Z2 and no global symmetry. Since
H3(Z2, U(1)) = Z2, we just need to check whether the ob-
struction vanishes for the nontrivial class. Denote Z2 = {1, g},
and the nontrivial class is

ν(g, g, g) = −1. (25)

The obstruction mapping gives a H3 class f (ν) for the group
Z2 × Z2. We will check the three invariants of the cohomol-
ogy class:

f (ν)((g, 1), (g, 1), (g, 1)) = 1,

f (ν)((1, g), (1, g), (1, g)) = 1,

f (ν)((g, g), (g, g), (g, g)) = ν(g, g, g)2 = 1. (26)

Therefore f (ν) belongs to the trivial class and the obstruction
vanishes. We conclude that the classification is given by Z2.

Below we provide an explicit construction of the SSPT
phase using a coupled wire model. The (1+1)D system as
the building block of the coupled-wire model can only be the
edge theory of the (2+1)D Levin-Gu model [70], which can
be represented in terms of a two-component Luttinger theory:

L0 = 1

2π
∂xφ1∂τφ2 + 1

4π

∑
α,β=1,2

∂xφαVαβ∂xφβ. (27)

The Z2 symmetry is generated by the following action:

φ1 → φ1 + π, φ2 → φ2 + π. (28)

Consider the green plaquette in Fig. 2 including four Luttinger
liquids (27), the overall Lagrangian of these four Luttinger
liquids is

L = 1

4π
∂x�

TK∂τ� + 1

4π
∂x�

TV ∂x�. (29)

where � = (φ1, . . . , φ8)T is the eight-component boson field,
K = (σ x )⊕4 is the K matrix. There are four Z2 subsystem
symmetries Z j

2 ( j = 1, 2, 3, 4) defined in different directions.
Their actions on the bosonic fields, following from, all take

the form � → � + δ�, where

δ�Z1
2 = π (1, 1, 1, 1, 0, 0, 0, 0)T,

δ�Z2
2 = π (0, 0, 0, 0, 1, 1, 1, 1)T,

δ�Z3
2 = π (1, 1, 0, 0, 0, 0, 1, 1)T,

δ�Z4
2 = π (0, 0, 1, 1, 1, 1, 0, 0)T. (30)

We then need to construct gapping terms that gap out the
edge without breaking symmetry, neither explicitly nor spon-
taneously. Consider backscattering terms of the form:

U = U0

∑
k

cos
(
lT
k K�

)
. (31)

Since there are eight bosonic fields, four independent, mutu-
ally commuting gapping terms are needed to completely gap
out the edge. More precisely, the vectors {lk} must satisfy the
“null-vector” conditions [71] for ∀i, j:

lT
i Kl j = 0. (32)

In addition, the interactions must preserve the Z2 symmetries,
which means for each i

lT
i Kδ� = 0, (33)

for each of the δ� in Eq. (30).
We find the following vectors satisfy all the requirements:

lT
1 = (1, 0, 1, 0, 1, 0, 1, 0),

lT
2 = (0, 1, 0,−1, 0,−1, 0, 1),

lT
3 = (1, 0, 0,−1, 1, 0, 0, 1),

lT
4 = (0, 1,−1, 0, 0,−1,−1, 0). (34)

Furthermore, in order to obtain a fully-gapped bulk state, we
should avoid spontaneous symmetry breaking, which would
lead to ground-state degeneracy in each plaquette. Following
the method described in [5,72], we confirm that the gapping
terms leave a unique ground state, thus no spontaneous sym-
metry breaking. To summarize, we find that the Higgs terms
(34) provide a fully-gapped bulk state. We note that all these
Higgs terms are four-body interactions, hence the fully gapped
bulk state does not have any layered structure.

For the sites on the (2+1)D surface, there are two Luttinger
liquids (27) that are not included in the bulk interactions (see
yellow ellipses in Fig. 2). The total Lagrangian of these two
Luttinger liquids is

Ls = (
∂xφ

T
s

) Ks

4π
(∂τφs) + (

∂xφ
T
s

) V s

4π
(∂xφs), (35)

where φT
s = (φ1, φ2, φ3, φ4) is the 4-component chiral boson

field, Ks = (σ x )⊕2 is the K-matrix. The on-site Z2 symmetry
is defined as:

WZ2 = 14×4, δφ = π (1, 1, 1, 1)T. (36)

We can simply gap out these two Luttinger liquids by two
on-site Higgs terms (31) with the following null-vectors:

lT
1 = (1, 0, 1, 0),

lT
2 = (0, 1, 0,−1). (37)

And a fully gapped (2+1)D surface state is obtained.
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For the sites at the hinge of the system, there are three
dangling (1+1)D Luttinger liquids that are not included in
the bulk interactions, where two of them can be gapped by
the Higgs term like Eq. (37). Hence the remaining gapless
Luttinger liquid with the Lagrangian (27) will be the hinge
mode of the constructed coupled-wire model.

We should further investigate the stability of the hinge
mode in order to make sure that the coupled-wire model
we have constructed characterizes a nontrivial (3+1)D SSPT
phase. Consider a potential (2+1)D SSPT phase protected by
Gs adhering at the left surface of the system (see Fig. 2) as
an assembly of (1+1)D Luttinger liquids, each site includes
two Luttinger liquids (see blue rectangles in Fig. 2), each of
them has the Lagrangian (27). On the one hand, they can be
gapped on the on-site stage, by introducing the Higgs terms
corresponding to the null-vectors in Eq. (37). On the other
hand, we prove that the inter-site coupling of the Luttinger
liquids is prohibited by horizontal subsystem symmetry: con-
sider two Luttinger liquids included in a red ellipse in Fig. 2,
there are two subsystem symmetries Z1

2 and Z2
2 defined on

different vertical coordinates along the horizontal direction:

δφZ1
2 = π (1, 1, 0, 0)T,

δφZ2
2 = π (0, 0, 1, 1)T. (38)

We can rigorously prove that these two Luttinger liquids in
a red ellipse cannot be gapped [73]. Thus the (1+1)D hinge
mode as the edge theory of the (2+1)D Levin-Gu state is
robust against adhering a (2+1)D SSPT phase to the edge of
the system, and we have constructed a nontrivial two-foliated
Z2 SSPT phase.

D. 3D bosonic SSPT with Gs = Z2 and Gg = ZT
2

In this section, we explicit construct the coupled-wire
model of (3+1)D second-order SSPT with two-foliated sub-
system symmetry Z2 and a global time-reversal symmetry ZT

2 .
The Luttinger liquid we work on as the building block carries
the mixed anomaly of Z2 and ZT

2 , which is classified by
H1(Z2,H2[ZT

2 ,UT (1)]). The two-component Luttinger liq-
uid takes the form of Eq. (27), with the following symmetry
properties

Z2 : φ1 �→ φ1 + π, φ2 �→ φ2,

ZT
2 : φ1 �→ φ1, φ2 �→ −φ2 + π.

(39)

Again consider the green block in Fig. 2 including four
Luttinger liquids (27), the overall Lagrangian takes the form
of (29). There are four Z2 subsystem symmetries Z j

2 ( j =
1, 2, 3, 4) defined in different directions. These Z2 actions
take the form of � �→ � + δ�, where

δ�Z1
2 = π (1, 0, 1, 0, 0, 0, 0, 0)T,

δ�Z2
2 = π (0, 0, 0, 0, 1, 0, 1, 0)T,

δ�Z3
2 = π (1, 0, 0, 0, 0, 0, 1, 0)T,

δ�Z4
2 = π (0, 0, 1, 0, 1, 0, 0, 0)T,

(40)

and the global time-reversal symmetry acts as
� �→ W T � + δ�T , where W T = (σ z )⊕4 and δ�T =
π (0, 1, 0, 1, 0, 1, 0, 1)T. In order to gap out all eight

components of the boson fields, we need at least four
independent Higgs terms (31) with four null-vectors {lk}. We
find that the following null-vectors satisfy all conditions:

lT
1 = (1, 0, 0, 0, 1, 0, 0, 0),

lT
2 = (1, 0, 1, 0, 0, 0, 0, 0),

lT
3 = (0, 0, 0, 0, 1, 0, 1, 0),

lT
4 = (0, 1, 0, 1, 0, 1, 0, 1),

(41)

which avoids spontaneous symmetry breaking.
For the sites on the (2+1)D surface, there are two Luttinger

liquids (27) that are not included in the bulk interactions
(see yellow ellipses in Fig. 2). The Lagrangian of these two
Luttinger liquids takes the form of Eq. (35). The on-site
Z2 × ZT

2 symmetry is defined as

WZ2 = 14×4, δφZ2 = π (1, 0, 1, 0)T,

WZT
2 = (σ z )⊕2, δφZ2 = π (0, 1, 0, 1)T. (42)

By introducing the following two Higgs terms, we can simply
gap out these Luttinger liquids and obtain a fully-gapped
(2+1)D surface state

lT
1 = (1, 0, 1, 0),

lT
2 = (0, 1, 0, 1). (43)

For the sites at the hinge which include three dangling Lut-
tinger liquids (27), the above two of them can simply be
gapped out by surface Higgs terms. Therefore the remaining
gapless Luttinger liquid should be the second-order hinge
mode of the (3+1)D SSPT phase with two-foliated Z2 subsys-
tem symmetry and a global time-reversal symmetry ZT

2 who
carries their mixed anomaly.

E. 3D fermionic SSPT with Gs = Z f
2 and Gg = Z2

Our arguments can also be generalized to interacting
fermionic systems. We demonstrate this generalization by an
example with Gs = Z f

2 and Gg = Z2. The (1+1)D Luttinger
liquid as the building block of the coupled-wire model is

L0 = 1

4π
∂xφ

Tσ z∂tφ + 1

4π

∑
α,β=1,2

∂xφαVαβ∂xφβ. (44)

The Z2 symmetry is defined as

φ1 �→ φ1, φ2 �→ −φ2 (45)

and Z f
2 fermion parity as

φ1 �→ φ1 + π, φ2 �→ φ2 + π. (46)

Repeatedly consider the green plaquette in Fig. 2 com-
posed of four Luttinger liquids (44), forming the overall
Lagrangian as

L = 1

4π
∂x�

TK∂τ� + 1

4π
∂x�

TV ∂x�, (47)

where � = (φ1, · · ·, φ8)T is the eight-component boson field,
K = (σz )⊕4 is the K matrix. There are four Z f

2 subsystem
symmetries Z f

2, j ( j = 1, 2, 3, 4) in different directions with
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an additional Z2 global symmetry. The fermion parities act on
the boson fields have the form � �→ � + δ�, where

δ�Z f
2,1 = π (1, 1, 1, 1, 0, 0, 0, 0)T,

δ�Z f
2,2 = π (0, 0, 0, 0, 1, 1, 1, 1)T,

δ�Z f
2,3 = π (1, 1, 0, 0, 0, 0, 1, 1)T,

δ�Z f
2,4 = π (0, 0, 1, 1, 1, 1, 0, 0)T

, (48)

and the global Z2 symmetry action takes the form � �→
W �, where W = (σ z )⊕4. In order to gap out all these boson
fields, we need to find four independent Higgs terms like
Eq. (31) while vectors {lk} (k = 1, 2, 3, 4) must be null-
vectors [71]. We find the following null-vectors:

lT
1 = (1, 0, 0, 1, 1, 0, 0, 1),

lT
2 = (0, 1, 1, 0, 0, 1, 1, 0),

lT
3 = (1, 1, 1, 1, 0, 0, 0, 0),

lT
4 = (1, 1, 0, 0, 1, 1, 0, 0),

(49)

and the corresponding gapping terms avoid spontaneous sym-
metry breaking.

For the sites on the (2+1)D surface, there are two Luttinger
liquids (44), as illustrated by yellow ellipses in Fig. 2. These
two Luttinger liquids form the following Lagrangian:

Ls = ∂xφ
T
s

Ks

4π
∂tφs + ∂xφ

T
s

V s

4π
∂xφs, (50)

where φT
s = (φ1, · · ·, φ4) is the four-component boson field

and Ks = (σ z )⊕2 is the K-matrix. The on-site Z2 × Z f
2 is

defined as

WZ2 = (σ z )⊕2, δφZ2 = 0,

WZ f
2 = 14×4, δφZ2 = π (1, 1, 1, 1). (51)

These boson fields can simply be gapped out through two
Higgs terms (31) with the following null-vectors to obtain a
fully gapped (2+1)D surface state:

lT
1 = (1, 0, 0, 1),

lT
2 = (0, 1, 1, 0). (52)

Finally, for the sites at the hinge of the system, there are
three dangling (1+1)D Luttinger liquids (44), where two of
them can be gapped by the surface Higgs terms. Therefore
the remaining gapless Luttinger liquid will be the hinge mode
of the constructed coupled wire model of (3+1)D SSPT
phase with two-foliated Z f

2 fermion parities and a global Z2

symmetry.

IV. THIRD-ORDER SSPT PHASES IN 3D SYSTEMS

Next, we consider the 3d systems with three-foliated sub-
system symmetries and demonstrate the resulting third-order
SSPT phases.

A. Classification using boundary anomaly

We consider systems with homogeneous subsystem sym-
metries and derive a complete classification. For (3+1)D

O(g)

ẑ

ŷ
x̂

A1 A2

A3

A4

A5

A6

Sx(g)

Sy(g)

Sz(g)

Y 1
x0y0z0

(g) Y 2
x1y0z0

(g)

Y 3
x0y1z0

(g) Y 4
x1y1z0

(g)

Y 5
x0y0z1

(g) Y 6
x1y0z1

(g)

Y 7
x0y1z1

(g) Y 8
x1y1z1

(g)

FIG. 3. (3+1)D lattice model with three-foliated subsystem sym-
metries Ux (g), Uy(g), and Uz(g). Yellow plates depict subsystem
symmetries, and the truncated symmetry operator O(g) is depicted
by a red cubic that only creates 0D excitations at the corners as illus-
trated by green balls. Aj ( j = 1, 2, 3, 4, 5, 6) depicts the background
gauge fields of corresponding subsystem symmetries.

systems with three-foliated homogeneous subsystem symme-
tries, there is an on-site symmetry group Gs on each site
(x, y, z) acting as a unitary representation uxyz(g) on the lo-
cal Hilbert space Hxyz, while the total Hilbert space is H =
⊗x,y,zHxyz. The three-foliated subsystem symmetries are de-
fined as

Ux(g) =
∞∏

y=−∞

∞∏
z=−∞

uxyz(g),

Uy(g) =
∞∏

x=−∞

∞∏
z=−∞

uxyz(g), g ∈ Gs,

Uz(g) =
∞∏

x=−∞

∞∏
y=−∞

uxyz(g). (53)

The geometry of the (3+1)D lattice model is illustrated
in Fig. 3.

Consider a 3d system with finite extension along all three
directions. A third-order SSPT can potentially host nontrivial
modes at the corners of the 3d cube. We can view the whole
system as a zero-dimensional system with G×6

s onsite symme-
try. And the symmetry action of G×6

s must be anomaly free.
The consistency conditions from the anomaly-free require-
ment give us the classification of the higher-order SSPT states.

Each of the eight corners can at most be a projective rep-
resentation of the group Gs which are labeled by 2-cocycles
ν i

2 ∈ H2(Gs,U (1)) with i = 1, 2, . . . , 8. We will consider
the anomaly-free condition for the G×6

s symmetry step by
step. First, considering the anomaly-free condition for the
subsystem symmetry on each individual surface gives us a
condition that, on each surface, the four corner projective
representations together form a linear representation. In terms
of the anomaly action, for instance, on the left yz surface, this
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implies

S1[A1] + S3[A1] + S5[A1] + S7[A1] = 0. (54)

Similarly one can write down the other five conditions from
the other five surfaces. It is not sufficient to nail down a
pattern of the projective representation at the eight corners
with these six conditions. However, there is another set of
conditions when considering two surfaces with intersections.
For example, let us take the left yz surface and the bottom xy
surface and turn on the subsystem symmetry gauge field A1

and A4. The anomaly-free condition in this case reads

S1[A1 + A4] + S3[A1 + A4] + S5[A1] + S7[A1]

+ S2[A4] + S4[A4] = 0. (55)

Take a special case where A1 = −A4, we have

S5[A1] + S7[A1] + S2[−A1] + S4[−A1] = 0. (56)

From Eq. (18), we know that the anomaly action is an even
function of the gauge field in the 0+1d case. Therefore we
can ignore the sign of the gauge field in the above equation.
Combining constraint in Eqs. (54) and (56), the eight response
actions have the following relation:

S1[A] = −S2[A] = S3[A] = −S4[A] = S5[A]

= −S6[A] = S7[A] = −S8[A] = S[A]. (57)

Each of the local degrees of freedom at these corners may
carry anomalies of the subsystem symmetry, namely a projec-
tive representation of subsystem symmetry Gs classified by
H2[Gs, U(1)]. And the pattern of the projective representa-
tions on the eight corners is specified by Eq. (57). Now let
us consider the anomaly-free condition for this system. Sup-
pose the background gauge fields of subsystem symmetries on
the six surfaces of the cubic systems are (A1,2, A3,4, A5,6) as
shown in Fig. 3. Let us turn on A1, A3, and A5 (i.e., consider
G(1)

s × G(3)
s × G(5)

s ). The total anomaly action should vanish
for these three gauge fields, which in this case gives us the
following equation:

0 = S[A1] + S[A3] + S[A5] − S[A1 + A3]

− S[A1 + A5] − S[A3 + A5] + S[A1 + A3 + A5]. (58)

Equivalently, we can also rephrase the anomaly-free condition
in terms of algebraic 2-cocycles: we define an “obstruction”
map from H2[Gs, U(1)] to H2[G3

s , U(1)], as

f (ν2)[(g1, g′
1, g′′

1), (g2, g′
2, g′′

2)]

= ν2(g1, g2)ν2(g′
1, g′

2)ν2(g′′
1, g′′

2)ν2(g1g′
1g′′

1, g2g′
2g′′

2)

ν2(g1g′
1, g2g′

2)ν2(g1g′′
1, g2g′′

2)ν2(g′
1g′′

1, g′
2g′′

2)
.

(59)

The anomaly-free condition of the corners [cf. Eq. (58)] re-
quires that the (3+1)D nontrivial SSPT phases with gapless
corner modes are labeled by 2-cocycles that will be mapped to
a 2-coboundary of the G3

s group, B2[G3
s , U(1)], under f -map,

otherwise we call the corresponding 2-cocycle is obstructed.
It is easy to show that considering any other combinations of
gauge fields gives us the same condition.

Next, we turn to the case with an additional global sym-
metry Gg. The anomaly response at a corner (e.g., No. 1) in
the presence of both subsystem background gauge field As

and global background gauge field Ag takes the form of the
following:

S1[As] + S1[As, Ag]. (60)

The first term is the subsystem symmetry anomaly that we
have already discussed above. The second term stresses the
mixed anomaly of subsystem and global symmetries, hence
it can only be nontrivial when both As and Ag are nontrivial.
From the same anomaly vanishing as before, we find that

S1[As, Ag] = −S2[As, Ag] = S3[As, Ag] = −S4[As, Ag]

= S5[As, Ag] = −S6[As, Ag] = S7[As, Ag]

= −S8[As, Ag] = S[As, Ag] (61)

and

0 = S[As,1, Ag] + S[As,3, Ag] + S[As,5, Ag]

− S[As,1 + As,3, Ag] − S[As,1 + As,5, Ag]

− S[As,3 + As,5, Ag] + S[As,1 + As,3 + As,5, Ag]. (62)

Then we turn into the algebraic cocycle expression that
rephrase S[As, Ag] as a 2-cocycle ν in H2[Gs × Gg, U(1)]. De-
fine the obstruction function f from ν to H2[G3

s × Gg, U(1)]
as

f (ν)[(g1, g′
1, g′′

1, h1), (g2, g′
2, g′′

2, h2)]

= ν[(g1, h1), (g2, h2)]ν[(g1, h1), (g2, h2)]ν[(g1, h1), (g2, h2)]ν[(g1g′
1g′′

1, h1), (g2g′
2g′′

2, h2)]

ν[(g1g′
1, h1), (g2g′

2, h2)]ν[(g1g′′
1, h1), (g2g′′

2, h2)]ν[(g′
1g′′

1, h1), (g′
2g′′

2, h2)]
. (63)

Here we have denoted the group elements of G3
s × Gg as

(g, g′, g′′, h). The anomaly-free condition is that f (ν) corre-
sponds to the trivial class in H2[G3

s × Gg, U(1)].

B. Microscopic constructions

We now demonstrate that all obstruction-vanishing anoma-
lies can be realized by exact lattice model construction.
Consider a (3+1)D lattice model in which each site con-

tains four pairs of projective representations of Gs, each
pair includes a projective representation and its inverse (see
each green sphere in Fig. 4). A cubic piece that overlaps
with eight nearby sites (red cubic in Fig. 4) also includes
eight projective representations of subsystem symmetries
defined on different plates. An obstruction-free 2-cocycle
satisfying the Eq. (59) leads to an anomaly-free red cu-
bic in Fig. 4 automatically, hence we can always introduce
some proper interaction to gap out each cubic piece in the
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ẑ

ŷ
x̂̂x

A1 A2

A3

A4

A5

A6

1 2

3 4

5 6

7 8

FIG. 4. Lattice model construction of (3+1)D SSPT phases pro-
tected by three-foliated codimension-1 subsystem symmetries. Each
green sphere depicts a lattice site which is divided into eight equal
pieces (the regime enclosed by yellow segments), and there is a
projective representation of Gs in each of these pieces. Each red
cubic stresses the eight-body interactions in the bulk. A1, A2, A3, A4,
A5, and A6 represent the background gauge fields of the subsystem
symmetries defined on the left, right, behind, front, top, and bottom
surfaces of the red cubic, respectively.

lattice, and a fully gapped bulk has been obtained by our
construction.

For each site on the (2+1)D surfaces, there are two pairs
of dangling modes that are not included in the bulk cubic
interactions, at which we can simply introduce two on-site
two-body couplings to cancel their anomalies pairwise, and
a fully-gapped surface state has been obtained.

For each site on the (1+1)D hinges, there are three pairs
of dangling modes that are not included in the bulk cubic
interactions. Similar to the sites on the surface, we can simply
introduce three on-site two-body couplings to cancel their
anomalies pairwise, and obtain a fully-gapped hinge state.

Finally, for each site at the corners, there are seven
dangling modes that are not included in the bulk cubic interac-
tions, at which six of which can be gapped pairwise, similar to
the arguments on the hinges. Therefore there is a dangling 0D
mode at each corner of the system with OBC, as a projective
representation of the subsystem symmetry Gs.

C. Example

In this section, we present a spin model of a (3+1)D
nontrivial SSPT phase protected by three-foliated subsys-
tem symmetry Gs = Z2 × Z2, without global symmetry, by
commuting-projector Hamiltonians.

Take the ultraviolet (UV) limit of the truncated operator
(53) that is defined in a specific cubic (see Fig. 4), there are
eight spin-1/2 degrees of freedom as projective representa-
tions of the Z2 × Z2 group, on each site (green sphere in

Fig. 4), while each red cubic also includes eight spin-1/2
degrees of freedom S j ( j = 1, . . . , 8) from nearby lattice
sites. We present the following commuting-projector lattice
Hamiltonian:

Hx =
∑

R

(
Sx

R,1Sx
R,2Sx

R,3Sx
R,4 + Sx

R,1Sx
R,4Sx

R,5Sx
R,8

+Sx
R,1Sx

R,2Sx
R,5Sx

R,6 + Sx
R,2Sx

R,4Sx
R,5Sx

R,7

)
, (64)

Hz =
∑

R

(
Sz

R,1Sz
R,2Sz

R,3Sz
R,4 + Sz

R,1Sz
R,4Sz

R,5Sz
R,8

+Sz
R,1Sz

R,2Sz
R,5Sz

R,6 + Sz
R,2Sz

R,4Sz
R,5Sz

R,7

)
. (65)

It is straightforward to check that the total Hamiltonian Hx +
Hz respects the Z2 × Z2 subsystem symmetry, and provides
a nondegenerate ground state. By definition, this spin model
will give a dangling spin-1/2 degree of freedom at each corner
of the system: for the lattice site on the (2+1)D surface,
there are four dangling spin-1/2 degrees of freedom that are
not included in the bulk cubic interactions Hx + Hz, with on-
site Z2 × Z2 symmetry. We can simply introduce a pair of
Heisenberg interaction S · S′ on each of these sites to fully
gap them out. Similar to the sites on the (1+1)D hinges and
corners, there will be a dangling spin-1/2 degree of freedom
on each corner of the open system.

On the other hand, a spin-1/2 degree of freedom corre-
sponds to a projective representation of the Z2 × Z2 group,
which is labeled by a 2-cocycle ν2 ∈ H2[Z2 × Z2, U(1)],
with the following explicit expression:

ν2(a, b) = (−1)a1b2 , (66)

where a = (a1, a2), b = (b1, b2) and a1,2, b1,2 ∈ Z2. Substi-
tute this explicit form of 2-cocycle into Eq. (59), and we
explicitly find that the anomaly-free condition (63) is satisfied
automatically. Hence the nontrivial 2-cocycle (66) of Z2 × Z2

labels a nontrivial third-order SSPT phase protected by three-
foliated Z2 × Z2 subsystem symmetry, which is consistent
with above lattice spin model construction.

V. SUMMARY

In this work, we systematically construct and classify in-
teracting fractonic higher-order topological phases in (2+1)D
and (3+1)D protected by two-foliated and three-foliated sub-
system symmetries and global symmetries.

For two-foliated homogeneous subsystem symmetry Gs

and a global symmetry Gg in (d+1)D systems, a possible
nontrivial SSPT phase is labeled by a d-cocycle νd ∈
Hd [Gs × Gg, U(1)] satisfying an anomaly free conditions
(10) for Gg trivial and (15) for nontrivial global symmetry Gg.
We prove that there is no nontrivial two-foliated SSPT phase
in (2+1)D systems without a proper global symmetry for
Abelian subsystem symmetry Gs. We present several explicit
examples of of two-foliated SSPT phases using coupled-wire
model constructions. In (2+1)D, we construct a spin model
on a square lattice with ring exchange in each plaquette
that realizes a higher-order SSPT protected by Gs = Z2 and
Gg = Z2. In (3+1)D, we first consider a case with Gs = Z2
and no global symmetry. A wire construction lattice model
for a higher-order SSPT using the edge mode of Levin-Gu
state is constructed. Subsequently, we consider Gs = Z2 and
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Gg = ZT
2 and build the coupled-wire model from the Luttinger

liquid carrying the mixed anomaly of Z2 and ZT
2 . Finally, we

consider a fermionic example with Gs = Z f
2 and Gg = Z2,

while the coupled-wire model is constructed from the
Luttinger liquid as the edge mode of fermionic Levin-Gu
state [74].

For three-foliated homogeneous subsystem symmetry Gs

and a global symmetry Gg in (3+1)D systems, a possible
nontrivial SSPT phase is labeled by a 2-cocycle in H2[Gs ×
Gg, U(1)] satisfying the anomaly-free condition (59). We pro-
vide an example of (3+1)D SSPT phase with a spin-1/2
degree of freedom as the concrete third-order topological cor-
ner mode, protected by subsystem symmetry Gs = Z2 × Z2,
by exact solvable lattice model construction in Sec. IV C.

Furthermore, in Appendix B and C, we prove that despite
the dimensionality of the system with any global symmetry
Gg, the inhomogeneous subsystem symmetry will always give
a trivial SSPT phase with a layered structure, which will
always be trivialized by adhering to lower-dimensional SPT
phases protected by subsystem symmetry Gs acting internally,
to the surface or hinge of the open boundary of the system.

Our construction and classification of SSPT phases based
on the anomaly-free condition are well-defined not only in
the bosonic systems but can also be generalized to interacting
fermionic systems, and the fermionic higher-order SSPT
phases might also be characterized by lower-dimensional
group super-cohomological cocycles. Furthermore, with
various higher-order SSPT phases, we can investigate the
possible fracton phases obtained from the higher-order SSPT
phases constructed in this work by gauging the subsystem
symmetry [75].
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APPENDIX A: COMMENT ON 1-FOLIATED SYSTEMS
AND HIGHER-ORDER SSPT

In this section, we comment on one-foliated systems and
higher-order SSPT. We argue that there is no nontrivial
higher-order SPT phase protected by one-foliated subsys-
tem symmetries even with the help of a global symmetry.
In order to achieve a higher-order SSPT phase, we need
to have some modes that are anomalous appearing on the
corners/hinges. We will argue that, with the one-foliated
structure, such anomalous corner modes can be canceled by
attaching a lower dimensional SPT on the boundary of the sys-
tem. We will focus on the case with only subsystem symmetry
first.

Let us consider the 2d case. For reference, we can look
at Fig. 1. But in the current case, we only have subsystem
symmetry along the y direction and no subsystem symmetry
along x. In another word, we only have A1 and A2 background

gauge fields available. Consider a finite 2d system, if there are
nontrivial modes (in this case just projective representations)
on the four corners of the system, all of them combined
together must be anomaly-free in order to have a well-defined
2d system. Analogous arguments similar to the main text give
us anomaly-free conditions where the two projective repre-
sentations on the left edge must be opposite to each other
and the same for the right edge. The crucial difference from
the two-foliated case is that there is no subsystem symme-
try connecting the left and the right edge, i.e., no additional
anomaly-free conditions. Now we can see that we can in-
deed attach a 1d SPT with Gs symmetry, whose boundary
precisely corresponds to the projective representations on the
corner, to cancel the corner modes. This is not possible for the
two-foliated case because the corner modes carry additional
anomalies of the subsystem symmetry from the other foliation
direction.

In 3d, the case for third-order SSPT, namely, an SSPT
with nontrivial modes at the corners of cubic systems, is very
similar to the 2d case we argued above. The same argument
for 2d also shows that there is no nontrivial third-order-2
SSPT. We will not elaborate on it here.

In 3d, the case for second-order SSPT is interesting. Sup-
pose we have a one-foliated subsystem symmetry along the
z direction, namely in each xy plane there is a symmetry group
Gs. Consider a finite cube, there are several possibilities for
second-order SSPT. We can have hinge modes along the x or
y directions. In this case, the anomaly-free condition is simply
that anomalies of the two modes on the same xy plane must
cancel each other. With this, we can just attach a 2d Gs SPT
on the 2d surface to cancel the hinge mode. Again we em-
phasize that this attachment is not possible in the two-foliated
case because the hinge mode also carries an anomaly of the
subsystem symmetry from the orthogonal direction. A more
subtle question is whether we can have nontrivial higher-order
SSPT where the hinge mode runs along the z direction. We
argue that there is no such nontrivial SPT either. Suppose we
have four anomalous hinge modes running along z direction
on the four hinges of the system. A single hinge mode will
carry the anomaly of G×Lz

s where Lz is the length of z direction.
In this case, because each Gs only acts on a single unit cell,
the most general anomaly pattern is just given by a series
of projective representations of Gs along the chain. In order
for the whole system to be anomaly-free, on each xy plane
the four projective representations from the four hinges must
cancel together. This tells us in each xy plane we can attach
1d SPTs on the four boundaries to cancel all the projective
representations on the corners. Again this procedure can be
done because we have no additional symmetry constraints
from other directions.

Now we consider the effect of the addition of a global
symmetry Gg. It is easy to see that, if the corner/hinge modes
carry only Gg anomaly, one can always attach a surface Gg

SPT to cancel that anomaly without doing any bulk modifica-
tions. If the corner/hinge modes carry mixed anomaly of Gs

and Gg, one can show that the anomaly-free condition is still
the anomalous modes from the same foliation edge/surface
cancel together. This in essence means we can attach a lower
dimensional SPT on the edge/surface to cancel all the anoma-
lous corners/hinges.
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APPENDIX B: INHOMOGENEOUS CASES ARE
ALWAYS TRIVIAL

In order to investigate the higher-order SSPT phases, we
suppose the symmetry operators only have nontrivial effects
at the corner of the regime. Hence the symmetry operator (3)
still creates four local excitations at the codimension-2 corners
of the regime.

For bosonic systems in D � 2 with unitary symme-
try Gx

s × Gy
s , each anomaly class is uniquely determined

by the group cohomology class [ν] ∈ HD+2[Gx
s × Gy

s, U(1)].
This cohomology class can be rephrased by the Künneth
formula as

HD+2
[
Gx

s × Gy
s, U(1)

] =
D+2∏
p=0

HD+2−p
(
Gx

s ,Hp
[
Gy

x, U(1)
])

,

(B1)

i.e., the first and last term of Eq. (B1) depict the unique
anomaly of Gx

s and Gy
s , respectively; all other terms depict

the mixed anomaly of Gx
s and Gy

s . The action of anomaly is
formally written as

Sp
anomaly[Ax, Ay] =

∫
L̂y

A∗
xν

p
x , p = 0, . . . , D + 2, (B2)

where Ax is the background gauge field of Gx
s that we view

it as a mapping from the space-time manifold Mp as a sub-
manifold of MD+2, to the classifying space BGx

s , A∗
xν

p
x is the

pullback of Hp(BGx
s ,R/Z), while L̂y is the Poincaré dual

of the cocycle Ly = A∗
yν

D+2−p
y with respect to the space-time

MD+2. Physically, L̂y stresses the codimension-p domain wall
of Gy

s symmetry, and the anomaly action (B2) represents the
topological response theory of a p-dimensional Gx

s -SPT phase
on the codimension-p domain wall of Gy

s .
For the symmetry operator in Fig. 1, the background gauge

fields A1,2,3,4 correspond to the symmetry group (Gx
s × Gy

s )2.
Now we turn on the background gauge field A1 only. Both TL
and BL corner theories are coupled to A1, so the anomaly-free
condition implies

SBL[A1] + STL[A1] = 0. (B3)

Similarly, we have

SBR[A2] + STR[A2] = 0,

STL[A3] + STR[A3] = 0,

SBL[A4] + SBR[A4] = 0. (B4)

We turn on the background gauge fields A1 and A3 (see Fig. 1),
and the anomaly carried by the TL corner should be

d+1∑
p=0

Sp
TL[A1, A3] =

d+1∑
p=0

∫
L̂3

A∗
1ν

p
x . (B5)

The anomaly carried by TR and BL corner are STR[A3] and
SBL[A1], respectively. We notice that only the TL corner car-
ries the mixed anomaly of A1 and A3 [p �= 0 in Eq. (B5)],
hence the anomaly-free condition requires that all mixed
anomalies at the TL corner vanish. Equivalently, the anomaly
carried by a corner (B2) should reduce to the sum of a unique

anomaly of vertical and horizontal subsystem symmetries as

Sanomaly[Ax, Ay] = Sanomaly[Ax] + Sanomaly[Ay]. (B6)

Hence the anomaly-free conditions are exactly highlighted in
Eqs. (B3) and (B4) and all mixed anomalies of subsystem
symmetries should vanish.

Then we consider a codimension-1 SPT phase protected
by Gy

s on the system’s left edge, with the enlarged truncated
symmetry operator applying to the whole system. This SPT
phase leaves codimension-2 modes at the TL and BL cor-
ners, carrying the anomalies of the background gauge field
A1 phrased by the actions S′

BL[A1] and S′
TL[A1], satisfying

S′
BL[A1] + S′

TL[A1] = 0. (B7)

We simply choose S′
BL[A1] = −SBL[A1] and S′

TL[A1] =
−STL[A1], and the bulk anomaly of the background gauge
field A1 is canceled by this codimension-1 SPT phase on the
left boundary. Similarly, the bulk anomaly of the background
gauge field A3 can be canceled by an additional codimension-
1 SPT phase protected by Gx

s symmetry on the top boundary.
As a consequence, there is no higher-order SSPT phase for
two-foliated inhomogeneous subsystem symmetry.

APPENDIX C: INHOMOGENEOUS SUBSYSTEM
SYMMETRIES IN 3D

For inhomogeneous subsystem symmetries, there are sev-
eral possible scenarios.

(1) The subsystem symmetries in all three directions act
respectively that can be different. We denote the subsystem
symmetries defined in yz, xz, and xy planes as Gx, Gy and Gz,
respectively.

(2) The subsystem symmetries in two of three directions
act identically, and the other subsystem symmetry acts sepa-
rately. We denote these subsystem symmetries by two groups
G1

s and G2
s , respectively.

For the first scenario, the three-foliated subsystem symme-
tries should be redefined as

Ux(gx ) =
∞∏

y=−∞

∞∏
z=−∞

ux
xyz(gx )

Uy(gy) =
∞∏

x=−∞

∞∏
z=−∞

uy
xyz(gy)

Uz(gz ) =
∞∏

x=−∞

∞∏
y=−∞

uz
xyz(gz )

,

⎧⎪⎪⎨
⎪⎪⎩

gx ∈ Gx

gy ∈ Gy

gz ∈ Gz

, (C1)

where (ux
xyz(gx ), uy

xyz(gy), uz
xyz(gz )) are linear representations

of the groups (Gx, Gy, Gz ), respectively. The local degrees
of freedom at the corners should be labeled by the pro-
jective representations of Gx × Gy × Gz group, classified by
H2[Gx × Gy × Gz, U(1)]. The action of anomaly is formally
written as

Sp
anomaly[Ai, Aj] =

∫
L̂ j

A∗
i ν

p
i , p = 0, 1, 2, (C2)

where Ai and Aj are background gauge fields of Gi
s and Gj

s

(i, j = x, y, z and i �= j) that we view them as maps from the
space-time manifolds Mp and M2−p as the submanifolds of
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M2 to the classifying spaces BGi
s and BGj

s , and A∗
i, jν

p
i. j is the

pullback of Hp(BGi, j
s ,R/Z), while L̂ j is the Poincaré dual of

the cocycle L j = A∗
jν

2−p
j with respect to the space-time M2.

For the truncated symmetry operator in Fig. 3, the back-
ground gauge fields Aj ( j = 1, . . . , 6) correspond to the
symmetry group (Gx

s × Gy
s × Gz

s )2. We first turn on the back-
ground gauge field A1 only, the anomaly-free condition
implies the following constraints on the anomaly action as

S1[A1] + S3[A1] + S5[A1] + S7[A1] = 0 (C3)

and other five similar constraints from the other five surfaces.
Then we turn on the background gauge fields A1 and A4,

and the total anomaly carried by the corner-1/-4 is phrased by
the following action:

2∑
p=0

Sp
j [A1, A4] =

2∑
p=0

∫
L̂4

A∗
1ν

p
x , j = 1, 4. (C4)

The mixed anomalies carried by corner-1 and corner-4 sat-
isfy the following constraint to ensure the anomaly-free
condition as

S1
1[A1, A4] = −S1

4[A1, A4] (C5)

and similar for all other mixed anomalies. Therefore we al-
ways have some way to find an anomaly-free bulk lattice
model.

Then we consider the possible trivializations of the con-
structed model of three-foliated inhomogeneous SSPT phases.
For the corner mode carrying a unique anomaly of the subsys-
tem symmetry along a specific direction, for instance, in yz
plane with background gauge field A1, which is labeled by
a 2-cocycle ν2 ∈ H2[Gx, U(1)] at the corner-7, consider the
(1+1)D hinge of left and behind surfaces, at which the subsys-
tem symmetries Gx and Gy act as global symmetries. Consider
a (1+1)D SPT phase protected by Gx symmetry while Gy

and Gz act on it trivially, we choose −ν2 ∈ H2[Gx, U(1)] to
characterize this (1+1)D SPT phase, whose dangling edge
mode at corner-7 will annihilate the dangling gapless mode
from bulk lattice model construction, i.e., the corresponding
bulk state is trivialized. Similar to Gy and Gz, all corner modes
carrying the unique anomaly of Gx,y,z can be trivialized by
adhering a (1+1)D SPT phase to the hinge of the cubic.

For the corner mode carrying a mixed anomaly of the
subsystem symmetries along two directions. Without loss of
generality, we consider the (0+1)D dangling mode carrying
the mixed anomaly of Gx and Gy, characterized by a cup
product of two 1-cocycles:

νx
1 (gx ) ∪ ν

y
1 (gy),

{
νx

1 (gx ) ∈ H1[Gx, U(1)]

ν
y
1 (gy) ∈ H1[Gy, U(1)]

. (C6)

Repeatedly consider the (1+1)D hinge of left and behind sur-
faces, at which Gx and Gy act as global symmetries. Consider
a (1+1)D SPT phase protected by Gx × Gy while Gz acts on
it trivially, we choose −νx

1 ∪ ν
y
1 ∈ H1[Gx,H1[Gy, U(1)]] to

characterize this (1+1)D SPT phase, whose dangling edge
mode at corner-7 will annihilate the dangling gapless mode
from bulk lattice model construction, i.e., the correspond-
ing bulk state is also trivialized. Similar for all other mixed
anomalies carried by corner modes.

We conclude that for the scenario of which the subsystem
symmetries in all three directions act respectively, the classi-
fication of third-order SSPT phases should be trivial because
all possible bulk lattice model constructions are trivialized by
adhering a (1+1)D SPT phase to the hinges of the system.

For the second scenario that the subsystem symmetries
in two of three directions act identically, while the sub-
system symmetry in the other direction act separately, the
three-foliated subsystem symmetries should be redefined as
(without loss of generality, we suppose the subsystem sym-
metry on the xz and yz planes is G1

s , while the subsystem
symmetry on the xy plane is G2

s ):

Ux(g1) =
∞∏

y=−∞

∞∏
z=−∞

u1
xyz(g1)

Uy(g1) =
∞∏

x=−∞

∞∏
z=−∞

u1
xyz(g1)

Uz(g2) =
∞∏

x=−∞

∞∏
y=−∞

u2
xyz(g2)

,

{
g1 ∈ G1

s

g2 ∈ G2
s

, (C7)

where u1
xyz(g1) and u2

xyz(g2) are linear representations of the
groups G1

s and G2
s , respectively. The local degrees of freedom

at the corners are projective representations of the group G1
s ×

G2
s , classified by

H2
[
G1

s × G2
s , U(1)

] = H2
[
G1

s , U(1)
]
,

× H2
[
G2

s , U(1)
] × H1

[
G1

s ,H1[G2
s , U(1)

]]
, (C8)

in terms of background gauge fields, the action of the anomaly
of G1

s × G2
s is formally written as

Sp
anomaly[A1,s, A2,s] =

∫
L̂2

A∗
1,sν

p
1 , p = 0, 1, 2, (C9)

where A1 and A2 are background gauge fields of G1
s and G2

s
that we view as maps from the space-time manifolds Mp and
M2−p as the submanifolds of M2 to the classifying spaces BG1

s
and BG2

s , respectively; A∗
j,sν

p
j ( j = 1, 2) is the pullback of

Hp(BGj
s ,R/Z), while L̂2 is the Poincaré dual of the cocycle

L2 = A∗
2,sν

2−p
2 with respect to the space-time M2.

Following the similar arguments with above Gx
s × Gy

s × Gz
s

cases, we conclude that we can always find some fully gapped,
anomaly-free bulk lattice model. Then we focus on some
possible trivializations by sticking some lower-dimensional
SPT phases on the edge/hinge.

Firstly, for corner-7 carrying a projective representation
ν2

2 ∈ H2[G2
s , U(1)], we focus on the hinge of the top and

behind surfaces at which the subsystem symmetry G2
s acts as

a global symmetry: Consider a (1+1)D SPT phase protected
by G2

s adhered to this hinge, while the subsystem symmetry
G1

s acts on this (1+1)D SPT state trivially. We choose −ν2
2 ∈

H2[G2
s , U(1)] to characterize this adhered (1+1)D SPT phase,

whose dangling edge mode at the corner-7 will annihilate the
dangling gapless mode from bulk lattice model construction,
i.e., the corresponding bulk state is trivialized.

Subsequently, for corner-7 carrying a projective represen-
tation ν1

2 ∈ H2[G1
s , U(1)], we focus on the hinge of the left

and behind surfaces at which the subsystem symmetry G1
s
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acts as a global symmetry: Consider a (1+1)D SPT phase
protected by G1

s adhered to this hinge, while the subsys-
tem symmetry G2

s acts on this (1+1)D SPT state trivially.
We choose −ν1

2 ∈ H2[G1
s , U(1)] to characterize this adhered

(1+1)D SPT phase, whose dangling edge mode at the corner-
7 will annihilate the dangling gapless mode from bulk lattice
model construction, i.e., the corresponding bulk state is
trivialized.

Finally, for corner-7 carrying a projective representation
with the mixed anomaly of G1

s and G2
s , we repeatedly fo-

cus on the hinge of the top and behind surfaces at which
the subsystem symmetries defined on the xy plane and
xz plane act as global symmetries: consider a (1+1)D SPT

phase protected by G1
s × G2

s (from the subsystem symme-
tries defined on the xy and xz planes) adhered to this hinge,
while the subsystem symmetry defined on the yz plane acts
on this (1+1)D SPT state trivially. We choose −ν1

1 ∪ ν2
1 ∈

H1[G1
s ,H1[G2

s , U(1)]] to characterize this adhered (1+1)D
SPT phase, whose dangling edge mode at the corner-7
will annihilate the dangling gapless mode from bulk lattice
model construction, i.e., the corresponding bulk state is also
trivialized.

Now we have rigorously proved that for three-foliated
inhomogeneous subsystem symmetries in (3+1)D systems,
there is no nontrivial SSPT phase with a third-order topologi-
cal corner state.
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