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We study transport and relaxation of spinless fermions with long-range Coulomb interactions at high temper-
atures through numerical simulations of out-of-equilibrium dynamics. We find that the transport and relaxation
are continuously slowing down for increasing coupling V, and that there is a transition in the type of transport.
For intermediate couplings, the system exhibits normal diffusive transport, but the timescale for the onset of
that is long. For large couplings, it exhibits subdiffusive transport, while at the same time, the relaxation time
diverges exponentially with system lengths, featuring a many-body-localization (MBL)-like phase. We attribute
the slow transport to formation of slow bound states and stable clusters of particles. For few-particle systems, we
prove the existence, visualize the slowness, and analyze the collision properties of the bound states. For many
particles at high densities, there should be a hierarchy of clusters of particles on many different length scales.
We argue that at large couplings, the average maximal size of the stable clusters should scale linearly with the
length of the lattice, which is in accordance with the MBL-like behavior.

DOLI: 10.1103/PhysRevB.108.045131

I. INTRODUCTION

Understanding how macroscopic hydrodynamics emerges
from microscopic laws is an important question that is gener-
ally too difficult to be tractable. However, in recent years, a
breakthrough has been made for integrable systems, which is
coined generalized hydrodynamics (GHD) [1,2]. It has been
established in GHD that integrable systems can support bal-
listic transport at finite temperatures due to the existence of
infinitely many conserved charges. Various transport quan-
tities for many one-dimensional (1D) quantum integrable
models have been calculated [3]. In particular, it has been
applied to the XXZ model for its ballistic [4], diffusion [5],
and superdiffusion [6,7] regimes.

Although GHD is successful for integrable systems, inte-
grability is rare in the real world and there are always various
perturbations to break it. On the one hand, some groups have
attempted to incorporate (weak) integrability-breaking terms
into GHD [8,9] since one can always use the Bethe ansatz
vectors as a base for generic models, whether or not they are
integrable. On the other hand, transport of many nonintegrable
models has been studied numerically. These include the XXZ
model with dimerization and frustration [10], staggered field
[11], and spin ladders [12,13], just to name a few. Although,
in the majority of cases, transport becomes diffusive, as ex-
pected, there are other cases where transport is anomalous
[5,11,14]. Our understanding of transport of nonintegrable
models is still far from complete.

In the previous numerical studies, the integrability-
breaking terms are mostly short range and the transport
quantities are extracted from dynamics in the linear response
regime for relatively short timescales, so that normal diffusive
transport is usually found. In this paper, we study transport
and relaxation of a 1D fermion model with translation-
invariant long-range interactions through numerical
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simulations of out-of-equilibrium dynamics, for longer
timescales and a wide range of coupling strengths. We found
that the transport and relaxation are continuously slowing
down for increasing coupling V, and there is even a transition
of the type of transport: For intermediate couplings, the
relevant quantities in the dynamics would attain the values
signaling normal diffusive transport or thermalization, but the
processes for reaching those values are logarithmically slow
in time. For large couplings, the system displays subdiffusive
transport and, at the same time, the relaxation time diverges
exponentially with the system sizes, showing a lack of
thermalization in the thermodynamic limit.

To understand the slow transport, we studied certain few-
body problems of the model. We find that there are various
n-particle bound states because of the limited band width (~)
of the lattice model, as well as the long-range interactions.
And the group velocities of the bound states can be expo-
nentially slow in n when V 2 A. Then, for many particles
with high densities and at large couplings, there should be
slow-moving clusters of particles on different length scales.
The exponential divergence of the relaxation time is explained
by possible giant immobile clusters, whose sizes may be pro-
portional to the length of the lattice.

Several works have already discovered divergence of re-
laxation times in certain disorder-free models [15-24], which
was dubbed quasi-MBL states [20] or asymptotic localiza-
tion [16,22]. Some of these works manually introduced two
components of fast and slow particles to realize such states,
while we take the above point of view that there can be
self-generated slow bound states or clusters [15], which is
more natural and closer to realizable physical systems such as
carbon nanotube or cold-atom systems [25,26]. Besides, there
has been ambiguity about the nature of the quasi-MBL states
[27]. We elucidate that the quasi-MBL states can coincide
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with subdiffusion transport, and that a possible structure of
the quasi-MBL states could be a hierarchy of stable clusters
of particles but with internal resonant dynamics. Since slow
bound states widely exist in quantum lattice models, we ex-
pect that they should play an important role in formulating a
general theory of transport for these models, especially in the
large-coupling regime.

The rest of the paper is organized as follows: Section II in-
troduces the model Hamiltonian and observables. Section III
presents numerical results demonstrating the slow transport
and relaxation properties. Section IV delivers a systematic
study of the bound states of the model, including properties
of their spectra, group velocities, and scatterings, based on
which the transport and relaxation processes are interpreted.
Finally, conclusions are drawn in Sec. V.

II. MODEL AND OBSERVABLES

The model considered here consists of a chain with L sites,

H=-1) (¢féir+He)

M f”a (i —1/2G; —1/2, (1)
i<j
where éj (¢;) is creation (annihilation) operator of a spin-
less fermion, and 7; is a fermion density operator at site
i. The interactions decay in power laws governed by an
exponent «. This model can be rewritten via the Jordan-
Wigner transformation as a quantum spin model, H =
—E 0 S+ 88N )+ AN 1 — i Te8ESS, after the
identification of / = 2A and V = A. In particular, at & = o0,
it reduces to the XXZ model (since the sign of J is unimpor-
tant). By virtue of this, the languages for fermion and spin
systems will be used interchangeably, and charge transport
can be rephrased as spin transport. In the language of spins,
the total magnetization S5, = > S'f is conserved. When there
is an inhomogeneity in spin densities, spins are transported,
which can be quantified by measuring the spin current opera-
tor ji = JSF87, — 8§85 ).

The ground-state properties of this model have been stud-
ied in Refs. [28-31]. Here we investigate its transport and
relaxation dynamics at high temperatures. We fix o = 1 if
not otherwise specified, which corresponds to the unscreened
Coulomb potential. And we focus on the range of V 2> 2,
where, as we will see, the transport is slow due to formation
of slow bound states. The unit A = /i =1 is used, which
also sets the unit of time to be /A = 1. Next we introduce
two quantities to characterize transport and relaxation of the
model, both of which are extracted from out-of-equilibrium
dynamics.

The first quantity is a transport exponent extracted from a
bipartite quench dynamics. The initial state of the dynamics is
a mixed-type domain-wall state [32],

p(t = 0) o (1 4+ 10927 @ (1 — puo®)®3, @)

where p induces an initial imbalance of magnetization be-
tween the left and right halves of the chain: (S;_, 2imL /2) =

:i:% ©. When p = 0, the system is in the maximally mixed

state, corresponding to infinite temperature. A small p will
be used, which implies that the system is weakly polarized
and at a high temperature. The time-evolved density matrix is
given by p(t) = e~ p(0)e'" as usual, which can be solved
numerically by using, e.g., matrix product state (MPS)-based
algorithms (see below).

Once p(t) is obtained, one can characterize the trans-
port properties by the evolution of magnetization, m(i, t) =
twlp@)S71/telp()], and by the current ji(t) = trlp(t)jil/
tr[p(?)]. It is expected that at large time, the magnetization
will have a scaling form, m(i, t) = ¢ (&), with the scaling vari-
able & = (i — L/2)/t%, and that the current across the center
cut should behave as j,» ~ t*~!. Then the type of transport
can be classified by the dynamical exponent z: it is ballistic
if z = 1, diffusive if z = 0.5, and subdiffusive if z < 0.5. In
practice, z is time dependent before reaching its asymptotic
value, which may provide extra valuable information about
the dynamics. A convenient way to extract the time-dependent
transport exponent is first to calculate the accumulation of
spins transported through the center cut of the chain,

L/2 L
AM(t) = Z [% — m(i, r)] = Z |:m(i, 1)+ %]
i=1 i=L/2+1
:/ JL@)Hdt ot 3)
0 2

and then to take a logarithmic derivative, that is,
z(t) = dIn(AM)/d In(t). 4)

The second quantity is extracted from the relaxation of spa-
tial inhomogeneities of particle densities, which can be used
to probe possible localized phases. Specifically, starting from
an initial state |4 (0)) which is a random classical state, such
as |01001 - - - 010), its relaxation process can be measured by
[19]

1 L
Apy () = 7 D LW Ol @) = AP, )
i=1

where [ (1)) = eiflt [ (0)) is the time-evolved state. Since
we are interested in the dynamics at infinite temperature, an
average value (Api(r)) is taken for [¢(0)) drawn from a
sector with a fixed filling factor v (number of particles divided
by L). After normalizing it with its initial value, one arrives at

(Ap; @)

1) = .
f@ 2p20)

(6)

Then one asserts that the system is localized if f remains finite
for infinite time, otherwise it thermalizes.

Based on the time dependences of the two quantities z
and f, we also define two important timescales for each of
them: a timescale T for when z reaches 0.5, signaling diffusive
transport, and a relaxation time t; for when f reaches O,
provided they do reach these values.
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FIG. 1. Time evolution of the spin density u~'m(i,t) at V =4
(left panel) and V = 16 (right panel) on a chain with L = 256 sites.
The origins of the i axes are shifted to L/2.

III. NUMERICAL RESULTS

A. Transport exponent z(¢)

We use a two-site version of the MPS-based time-
dependent variation principle (TDVP) algorithm [33] to
simulate the time-evolved density matrix po(#). This algo-
rithm can deal with Hamiltonians with long-range interactions
through a matrix product operator (MPO) technique [34]. The
parameter u for the initial p(0) is set to be 0.01. The density
matrix p(t) is evaluated for ¢ up to 1000. The system size L
ranges from 128 to 384, depending on the coupling V. Larger
L is needed for smaller V to avoid boundary effects. The
largest bond dimension of the MPS used is 320.

We first show the evolution of the magnetization m(i, t)
for two couplings V =4 and 16 in Fig. 1. Slowing down
of transport with increasing V' can be intuitively seen from
this figure. It is also due to this fact that we can simulate
the quench dynamics for relatively long times with moderate
costs. It is cumbersome to extract the transport exponent z
from the scaling form of m(i, ¢), and even more difficult to
obtain its time dependence in this way. So we extract the
time-dependent exponent z(¢) using Egs. (3) and (4) instead.

The upper panel of Fig. 2 shows z(r) for several
intermediate-coupling strengths. For each V, there are mul-
tiple stages in the dynamics: (i) z drops from a superballistic
value around 2 at r & 0 to around the ballistic value of 1 at
t = 1 (see the inset panel). (ii) z continues dropping for ¢ > 1,
then reaches a minimum value, and then it may fluctuate until
t ~ 10-100, which depends on V. This is a transient period
connecting (i) and the next stage. (iii) z increases very slowly
with time, which can be approximately fitted by a logarithmic
function,

z(t) = kIn(t) + b, @)

with two fitting parameters k and b. This logarithmic process
terminates when z reaches 0.5. After that, the system enters
a steady state, i.e., stage (iv). This final stage is clearly seen
only for V = 2, due to restrictions in the simulation time. But
we expect that the transport should become diffusive for other
values of V in the figure, although the timescale t for that to
happen is much longer for larger V.

It is worthwhile to obtain a quantitative relationship be-
tween T and V. Then a quantified value of 7 is needed. To this
end, we use Eq. (7) and the fitting parameters k and b to obtain

0.9
2 v
— 2
N 14 3
0.7 1 -
0 ; 4
1071 100 10! — 8

0.4
1 \S\S‘g\s\q
0.2 1

10° 4 —— b= —-0.079InV +0.413
2.0 —m—m
10° 10!
~ 10° | 14
~ —— k=0.023
—Ba8——
103 4
0.0 + ”
10 10
—— T7=238.62V356 Vv
102 4
10° 10!

4

FIG. 2. Upper panel: Dependence of the dynamical exponent z
on time for different coupling strengths. The inset panel shows the
details at early times. The z values are expected to reach 0.5 (the
horizontal solid line) at large times. The dashed lines are fittings to
Eq. (7). Lower panel: The timescale T (and the fitting parameters b
and k in the two inset panels) as a function of V. The values of t are
determined through Eq. (8). Symbols are data, while solid lines are
fitting functions as indicated in the legends.

an estimated value of 7, namely, by solving z(t) = 0.5, which
yields

T = oO05-b)/k 8)

The result is shown in the lower panel of Fig. 2. It turns out
that the estimated value of 7 scales with V in a power law,

T x V¥, 9)

with an exponent k & 3.56. Since the dependence of T on V
comes from that of k and b on V/, it is beneficial to also look
at the latter ones. One can see in the two inset panels that b
decreases with V, which can be fitted in the formb =AInV +
B, while k seems to be a constant; these lead to a refined form
of Eq. (7),

zt)=kIn(t) +AlnV + B, (10)
with the constant coefficients k = 0.023, A = —0.079, and
B = 0.413.

In the above, we have shown that for intermediate cou-
plings, the system should enter a steady state with normal
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FIG. 3. Time dependence of the dynamical exponent z for
V =32. The exponent oscillates around z = 0.32 (red dashed line) at
late times. Inset: The current flowing through the center cut, which
can be fitted by a power function (red solid line) at late times.

1000

diffusive transport, but the timescale t for the onset of it can
be very long. In fact, for large couplings, the system may never
reach diffusion, and Eqgs. (7) and (9) are no longer valid. We
illustrate this in Fig. 3 for the coupling V = 32. One can see
that z keeps oscillating around a constant value at late times
that is below 0.5 [the oscillation may come from numerical
errors when taking the logarithmic derivative in Eq. (4)]. This
indicates that the transport is further slowed down at large V
and a dynamical phase transition to subdiffusion occurs.

Note that the above quantities drawn from the bipartite
quench dynamics are essentially the thermodynamic limit
results. In practice, we find that it is harder to simulate the
dynamics for even larger V using the TDVP algorithm. Next
we study the other quantity f(¢) for short finite systems, but
for much larger couplings and longer timescales.

B. Relaxation quantity f(¢)

We use an exact-diagonalization (ED) algorithrr} [35] to
calculate the time-evolution problem |y (¢)) = e~ |4(0)),
where periodic boundary conditions (PBCs) are used. Each
of the data points of f shown below are obtained by using 300
realizations of [{/(0)) in the sector of v = %

Figure 4 shows relaxation of the inhomogeneity f for sev-
eral (L, V) pairs with L € [12,22] and V € [8, 96], and for ¢
up to 10*. For each (L, V) pair, there are multiple stages in the
dynamics: (i) For ¢t € [0, 1], f decays fast, whose rate depends
mainly on V but barely on L. (ii) A transient period connects
(i) and the next stage. This period lasts until ¢+ ~ O(1) for
smaller V, and longer until  ~ O(10) for larger V. (iii) A
slow, approximately logarithmic decay occurs, which can be
fitted by

f(@)=—kiInt 4 by, (11

with two fitting parameters k; and b;. The decay rate depends
mainly on L, but only slightly on V. This stage terminates
when f has dropped to a low level, for example, to f ~ 0.1 at

(20,32)
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(16,32)
(14,32)
(12,32)
(18,16 )
(22,8)

(12,8)

FIG. 4. Relaxation of spatial density inhomogeneity for several
pairs of coupling strengths and system sizes. Solid lines are fittings
to Eq. (11).

t =~ 80 for (L, V) = (18, 16). Then the final stage (iv) starts,
during which f decays even slower and finally approaches
zero. The final stage is only visible for small L and V in the
figure due to limitations in the time of the simulations, but
we assume that there is still such a stage for other cases. That
is to say, the system is expected to thermalize for all finite L
and V.

Since qualitatively the relaxation time t; for f approaching
0 increases with larger L, an intriguing question is then the
following: Would the relaxation time diverge in the thermo-
dynamic limit? Then a quantitative value of 7; is needed. To
this end, we utilize the fitting function given by Eq. (11) of
stage (iii) to obtain an estimated value of t; (or a lower bound
of it). Namely, for each (L, V) pair, it is determined by the
fitting parameters,

— (12)

Then we study how this estimated relaxation time changes
with L and V.

The left panel of Fig. 5 shows the dependence of t; on
L with fixed couplings. For intermediate V, say V =38, 1|

Y
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16 4.25
14 4.08
12 2.92

Ooo

10!

12 14 16 18 20 223x10! 4x10! 6x10! 102

L |4

FIG. 5. Left panel: Dependence of relaxation time on the system
size, with fixed couplings. Solid lines are fittings to Eq. (13), with
the exponents o shown in the legend. The dashed line is a guide for
the eye. Right panel: Dependence of relaxation time on the coupling
strength, with fixed lattice lengths. Lines are fittings to Eq. (14), with
the exponents y shown in the legend.
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FIG. 6. Dependences of the fitting parameters b; (circles) and
ki (triangles) on the coupling strength V, for fixed L = 18 (left
panel), and dependences of them on the inverse system size 1/L, at
fixed V = 32 (right panel). Solid lines represent fitting functions, as
indicated in the legend; the dashed line is a guide for the eye.

saturates with increasing L, which means that the system
thermalizes in the thermodynamic limit. For each large V, 1
grows exponentially with L,

7] o L, (13)

with an exponent o possibly depending on V. This relation
means a lack of thermalization and corresponds to a quasi-
MBL phase introduced in Ref. [20]. So there is a transition
between the intermediate- and large-coupling regimes. How-
ever, we are not meant to precisely locate a transition point V..
in this paper. Next, the dependence of 7; on V for each lattice
size in the large-coupling regime is shown in the right panel.
For each L, 7| grows with V in a power law,

71 x V7, (14)

with an exponent y possibly depending on L.

It is tempting to obtain a full function relation 7;(L, V') in
the regime V > V,. In fact, since 1 is determined by the two
parameters b; and kj, it can be partially achieved by studying
how the two parameters depend on L and V. First, we fix an L,
say L = 18, and look at how they depend on V. One can see
from the left panel of Fig. 6 that k; obviously does not depend
on V, while b, increases logarithmically with V. The latter can
be fitted in the form b; = CInV + D, where the coefficients
C and D may be L dependent. Next, we fix a V, say V = 32,
and look at how they depend on L. One can see from the right
panel that &, is proportional to the inverse system size, as k; =
u/L, where the coefficient u ~ 1.17 (note that u should be a
constant, not depending on V). From these, we obtain a refined
form of Eq. (11),

f(t) = —%ln(t)+Can 4D, (15)

and then
7 (L, V) — e(Can+D)L/u (16)

for the regime of V > V..

The problem that remains is to determine the function
relations C(L) and D(L). In fact, to make Eq. (16) consis-
tent with Eq. (13), the only possibility is C(L) = Cr— +
E/L + O(1/L?) (E being a coefficient); D(L) should have a
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FIG. 7. Rescaled relaxation time rl“/ L'vs the coupling strength

for different system sizes. The solid line represents the function
7" = VP withu = 1.17,C = 0.37, and D = —0.67. The near
collapse of data to this line for each L validates this function.

similar form for the same reason. Therefore, C and D can
be taken as constants for large L. We also note that when
CIn(V) + D = 0, 7; will be finite in the thermodynamic limit.
Thus this gives a way to locate the transition point by V, =
exp(—Dr—x/CL=x), provided the two parameters can be ac-
curately determined. Now we make a crude approximation
taking C and D as constants and simply using the results at
L = 18 as their values, namely, C = 0.37 and D = —0.67.
Then we plot the u/L-th root of t; versus V for each L in
Fig. 7. The near collapse of the data for each L indicates that
Eq. (16) is plausible.

IV. SLOW BOUND STATES UNDER
LONG-RANGE INTERACTIONS

A. Content of bound states

For quantum integrable systems, the existence of bound
states as quasiparticles is well established [36,37]. The suc-
cess of GHD just relies on identifying those quasiparticles as
charge carriers. In particular, for the XXZ model, a bound
state is referred to as an n-string, which corresponds to a
sequence of n flipped spins (with the 1-string reduced to a
single magnon). It has a group velocity ~ A="=1 [38] and
scatters forwardly with one another. Note that at large A and
n, its velocity is so slow that it resembles a contiguous block
of n localized spins [39].

For generic quantum lattice models, bound states should
also exist, which does not rely on integrability, but on a limited
band width. We expect that they should also play an essential
role in transport, especially in the strong-coupling regime. For
n = 2 particles, the existence of bound states can be proven
for general interaction potentials, whether they are attractive
or repulsive [15,40,41]. For n > 2 particles, there is still a lack
of a general theory [15,42—44]. However, their existence may
be anticipated from a simple energy conservation perspective:
when the potential energy of a compact n-particle cluster is
much greater than n times the band width, it cannot decay
into spatially far-separated smaller pieces. These arguments
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FIG. 8. Top panel: Two-particle spectrum of the Hamiltonian (1)
at V = 32 on alattice of size L = 64. The horizontal axis represents
the momentum k of the states; the vertical axis represents the energy
¢. Middle panel: Distributions of two-particle separations P(r) for
five states in the k = 0 sector, whose energies are shown in the
legend and marked by blue dots in the top panel. Bottom panel:
Three-particle spectrum for the same V and L as the top panel.

should also hold for lattice models with long-range interac-
tions [41]. In the following, we show direct evidence for this
for the Hamiltonian (1) by numerically diagonalizing it for a
system of n particles on a ring lattice, for only small n’s.
First, the top panel of Fig. 8 shows the two-particle spec-
trum on a lattice with L = 64 sites at a coupling strength
V =32. The few branches of energy bands on the top are
bound states, while the continuum of states beneath are

scattering states. To prove this, we measure the two-point
correlation functions C(i, j) = (¥ |A:A;|y) for the eigen-
states |/)’s, based on which the probability of finding the two
fermions with a distance r is P(r) = Zf‘zl COU,i+r)=
LCP (1,1 + r). The second equality holds because of trans-
lation invariance. Note that all possible different r values are
1,2,...,L/2 on the ring lattice and Zr L2 P(r) = 1. Under
these deﬁmtlons an eigenstate |) should be a bound state
if P(r) is nonzero for only relatively small r; otherwise, it
is a scattering state. Here we show P(r) in the middle panel
of Fig. 8 for only five representative states, which are all in
the zero momentum sector and indicated by blue dots in the
top panel. For the first three states in the top bands, P(r) has
pronounced peaks at r = 1,2, and 3, respectively, while it
is depressed for large r. This shows that they are all bound
states, and that the main contributions in the two-particle
configurations are, respectively, 11, 101, and 1001 (here, 1
represents an occupied site, O for an empty site, and trailing
0’s are omitted for clarity). In contrast, for the two states in
the continuum region, P(r) is nonzero for a wide range of r,
so they are scattering states.

Next we consider the system with three fermions. Three-
particle states are more cumbersome to characterize, for
which the three-point correlation functions C 3, J, k)=
(Y|a7a i) are needed. Besides that, we introduce some
notations and terminologies to better describe these states.
We still use strings made up of 1’s and 0’s to denote particle
configurations (up to translations on the ring lattice): 111
means they occupy three contiguous sites, 1101 means two of
them are nearest neighbors and the other one is to the right of
them but separated by 1 site, and so forth. Then the probability
P(s) for a configuration s found in a state |¢) is determined by
the three-point function, for example, P(111) = LC 31,2,3)
and P(1101) = LC®(1,2,4). A configuration with a signif-
icant probability will be called a primary configuration. Two
configurations which are energetically equivalent, e.g., 1101
and 1011, are called resonant configurations [16,19].

The three-fermion spectrum is shown in the bottom panel
of Fig. 8, where the system parameters are the same as the
case of n = 2. It suffices to consider only the zero momentum
sector because the contents of bound states in different sectors
will be similar. There are 561 states in all in that sector. For
each state, we have measured the probability of occurrence of
every configuration. Table I lists only the primary configura-
tions for certain states, which are marked by blue dots in the
bottom panel. For the first state at ¢ = 1761.92, there is only
one primary configuration, with its probability equal to 0.996.
For the second state at ¢ = 1741.61, there are two primary
configurations, 1101 and 1011, which are in resonance, and
their probabilities are both equal to 0.494. The third state at
& = 1739.63 is nearly degenerate with the second state. It has
the same primary configurations as the former, only that the
probability goes down slightly to 0.487. As a matter of fact,
the main difference between the second state and the third
state is that the former is of odd parity, while the latter is of
even parity. Likewise, the fourth and fifth states are nearly
degenerate and have the same primary configurations, but
differ in parities. It is easy to see that these states are all bound
states, so should be the rest states in the table.
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TABLE I. An (incomplete) list of three-particle bound states in
the zero momentum sector. The four columns, from left to right,
are state numbers (numbered from highest to lowest energy in that
sector), energies (¢) of the states, strings (s) representing particle
configurations, and the probabilities for each configurations P(s),
respectively. For each state, only configurations whose probability
is larger than 0.4 are listed.

State number £ s P(s)
1761.92 111 0.996

2 1741.61 1011 0.494
1101 0.494

3 1739.64 1101 0.487
1011 0.487

4 1732.83 11001 0.461
10011 0.461

5 1732.66 10011 0.469
11001 0.469

6 1728.49 110001 0.416
100011 0.416

7 1728.49 100011 0.418
110001 0418

14 1721.82 10101 0.941
52 1716.00 101001 0.470
100101 0.470

64 1714.07 100101 0.423
101001 0.423

From the above results, we see that not only do bound
states exist under long-range interactions, but their types are
much richer than that of the short-range XXZ model. We will
not study the general cases of n > 3, but one may appreciate
that at large couplings, for every compact particle configu-
ration (up to resonances), there should be a corresponding
bound state. We also note that in an n-particle spectrum the
high-energy states are bound states, while the states in the
bottom are scattering states (in the middle, the states hybridize
bound states and scattering states). The high-energy bound
states move slowly, while the latter move fast. Details of this
point are explained next.

B. Velocities of bound states, and duality between bound states
and localized particle blocks

The single-particle states (singletons, or magnons in the
language of spins) have the dispersion e(k) = —2 cos(k).
Therefore, the maximal value of their group velocities, de-
noted by vgmax, equals 2, which does not depend on the
coupling strength. For bound states with n > 2, their maximal
group velocities, loosely speaking, behave like

Ugmax ™~ y-=h 17)

in nth order of perturbation theory, so they can be very slow at
large V or n. And n can be seen as an effective mass of a quasi-
particle. A more concrete and precise form of vgmax should
nevertheless also depend on the primary configurations of the
bound states. In particular, when a primary configuration is
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FIG. 9. Time evolution of localized blocks of particles. The ini-
tial states are product states |0...0s0...0), where s is (a) 111,
(b) 11, (c) 1101, and (d) 11101. The time evolution is obtained
by using ED with PBCs; the system sizes are all L = 30 and the
coupling strengths V = 32. The color map encodes the densities
of the particles. In (a) and (b), the dashed lines are fittings of
the peak positions of the densities in the wave fronts to a linear
function, i = Fvy max? + const, with vy . being 1/247.3 and 1/8.7,
respectively.

resonant, there can be internal dynamics, which will be made
clearer in the following discussions.

At large couplings, there is one kind of duality between
n-particle bound states and localized n-particle blocks when
they have corresponding configurations. By duality, we mean
that they are approximately connected by Fourier transfor-
mation, as they are, respectively, eigenstates of momentum
and position operators, and the connection is sharpened with
increasing V. This can be seen as a generalization for that of
the XXZ model [38,39,45]. Based on the duality, one may
visualize the motion of the bound states by looking at the
evolution of the corresponding localized blocks. Here, the
time evolution of four simplest configurations at V = 32 is
illustrated in Fig. 9. Each of the four blocks delocalizes with
time due to the moving of its dual bound states and other states
(contributions from the other states are, however, negligibly
small at large V). The wave fronts of the fastest modes form
linear light cones, which can be clearly seen for the two
nonresonant configurations 111 and 11 [see Figs. 9(a) and
9(b)]. The vgmax of them can be determined by measuring
the slopes of the light cones, which are 1/247.3 and 1/8.7,
respectively, differing by a factor about V and in agreement
with Eq. (17). The other two configurations, 1101 and 11101,
are both resonant, whose time evolution is a bit more compli-
cated [see Figs. 9(c) and 9(d)]. As a whole, they also move
slowly, but they can contain faster internal dynamics. The
two resonant configurations are of first and second order,
respectively. Here, the order p of a resonant configuration is
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FIG. 10. Collisions between quasiparticle wave packets: (a) A

Gaussian wave packet of a singleton colliding with two-particle wave
packets, the latter being decomposed from a localized two-particle
block. (b) The evolution of two initially localized blocks, 11 and 111,
with a separation of 70 lattice sites. The dynamics are obtained by
using TDVP for V = 32, L = 160 and PBCs. The color map encodes
the densities of the particles.

defined as the number of displacements required to change
it to its resonant counterpart [19]. Then, quantitatively, the
speed of the internal particles in it should scale as ~V ~*~D,
In particular, the central particle in the first-order resonance
has a velocity 1.5, which is fast and does not depend on V.

Note that the duality approximately holds for only large
V. When V is reduced, a localized n-particle block will re-
ceive more and more contributions from lighter and faster
m-particle states, for all m < n. This is similar to the results
of the XXZ model [45], and we will not show numerical
evidence for this for the present model. So delocalization of
a block of localized particles is quickened by a smaller V
for dual reasons: it is decomposed more into lighter types of
quasiparticles, and the velocities of each type of quasiparticles
scale faster [through Eq. (17)]. This point is crucial for under-
standing the result in the last section that a thermalization to a
quasi-MBL transition occurs when varying V.

C. Interpretations of the relaxation processes

At a large coupling, the only fast modes are the singletons
and the first-order resonant processes, while the other modes
are all slow and differ in orders of magnitude of V. Given
the existence of slow quasiparticles, to account for the macro-
scopic transport and relaxation processes, one still needs to
know how these quasiparticles interact with one another,
which we discuss next. The discussions are first restricted to
the large-coupling regime, where the physical picture is sim-
pler and the above-stated duality can be utilized. Depending
on the density of particles on the lattice, the physical pictures
can be very different.

For very low particle densities, the physical picture is this:
far-apart quasiparticles are moving on the lattice, and faster
ones are jammed by slower ones. We illustrate this point by
two examples of few-body dynamics. The first example is a
right-moving Gaussian wave packet of a singleton colliding
with a two-particle wave packet, the latter being decomposed
from a localized two-particle block (the detailed definition of
the initial state is given in the Appendix). It turns out that
they are backscattered before approaching very close to each
other, as shown in Fig. 10(a). This is in stark contrast to the

0.0

L]
101 I i
0

15 200 5 10 15 20
1 I

FIG. 11. Time evolution for certain product state initial
states: (a), (b) The particle configurations are 1110000011 and
11100000110000111, respectively, both on a lattice with 30 sites.
(c), (d) Both are 10 particles on a lattice with 20 sites, where the
initial particle configurations can be read from the graphs. The color
map encodes the densities of the particles. The dynamics are obtained
by using ED with PBCs; the coupling strength V = 32 for all cases.

XXZ model [45,46], where the nearest-neighbor interactions
lead to only forward scatterings. The second example is a
two-particle block interacting with a three-particle block. The
quasiparticles decomposed from the two-particle block are
also backscattered by the more stable three-particle block, so
that the motion of the former is constrained [see Fig. 10(b)].
From these two simple examples, we infer that two quasi-
particles of general types may always be backscattered by
each other under the long-range Coulomb potentials, provided
they are initially far apart. We will, however, not delve deeper
for the low-particle densities, as the macroscopic relaxation
processes presented in Sec. III B are at half filling, which is
discussed next.

At or close to half filling, the crowdedness of the par-
ticles leads to two competing effects. On the one hand, it
reinforces the stability of small particle blocks and localizes
the particles. For example, when two localized blocks, 111
and 11, are placed nearby, say five sites away, their stabilities
are both reinforced [see Fig. 11(a)]. This can potentially lead
to a large and stable cluster, when more particles are added
nearby. But, on the other hand, the crowdedness also leads
to numerous resonant configurations that tend to delocalize
certain particles. For example, if another 111 block is added to
four sites to the right of the previous five-particle system, then
the two fermions in the middle move faster due to resonance
[see Fig. 11(b)]. We note that the former effect dominates at
large length scales, whereby large and stable clusters may
form, while the latter is constrained to be in small length
scales, inside the clusters; but eventually the clusters thermal-
ize locally through the resonances.

The timescales for local thermalization of the clusters vary
significantly and depend on specific configurations. For ex-
ample, comparing the two configurations of Figs. 11(c) and
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11(d), both being a cluster of 10 particles on a lattice with
20 sites, the former thermalizes faster than the latter. Usually,
for a given coupling strength, the clusters with high-energy
densities (i.e., containing long contiguously occupied sites) or
containing resonances at only high orders thermalize slower.
Now imagine a system with more particles on a larger lattice
than the examples of Figs. 11(c) and 11(d). Then, in some
regions, the clusters will thermalize fast and in some other
regions they do so slowly. The point is that the motion of the
thermalized (or “delocalized”) regions is still constrained by
surrounding more stable clusters, which prevents the entire
system from thermalizing. In other words, local thermaliza-
tion can be embedded in global quasilocalization. One may
continue this thought and consider the system just stated to be
on an even larger lattice, and on and on. These descriptions
would, in the end, lead to the picture of a hierarchy of stable
clusters of particles on many different length scales.

Each length scale ¢ of the stable clusters determines a local
thermalization timescale, while the most important is the one
with the maximal size ¢,,,x, Which determines the relaxation
time of the entire system. For a system described by an en-
semble at a certain high temperature, the relevant quantity is
an ensemble-averaged value (€;,,x). We expect that when V is
large, this value should be proportional to the system length,
(€max) o L, so that this, together with Eq. (17), is roughly in
accordance with the exponential scaling of r; with L and the
power-law scaling of it with V [i.e., Egs. (13) and (14)]. As
V decreases, the clusters of particles are less stable due to the
reasons stated in the final paragraph of the last subsection.
Then we expect that when V' is smaller than some threshold,
(€max) should saturate as L increases, and the stable clusters
are all relatively small sized. So these arguments provide a
microscopic mechanism for the quasi-MBL to thermalization
transition.

Whether or not the average maximal size of the stable
clusters grows linearly with L, for any finite L, clusters on
all length scales will gradually delocalize, starting from the
lowest-order resonances. The intermediate timescales in the
transport and relaxation processes are related to different sizes
of clusters (quasiparticles) and different orders of resonances.
Specifically, the fast decay of f for t < 1 [i.e., stage (i)] is
completely due to the motion of the first-order resonances
and the singletons. The velocities of these fast modes do not
depend on V, but the densities of them do; that is why f drops
to lower values for smaller V. These facts are also consistent
with z &~ 1 at t = 1. The transient periods [stages (ii)] for
both f(¢) and z(¢) should be because of further relaxations
related to these fast modes. The slow change of f and z with
time in stages (iii) should be caused by successive relaxation
of each intermediate-size cluster, through each higher-order
resonance. However, a quantitative explanation of why they
are approximately in logarithmic forms needs further investi-
gation.

V. CONCLUSION

We studied transport and relaxation of the fermion model
with long-range Coulomb interactions for a wide range of cou-

plings. By extracting two time-dependent quantities z(¢) and
f (@) from out-of-equilibrium dynamics, we showed that when
tuning the coupling strength of the long-range interactions,
there is a dynamical phase transition at high temperatures. For
large couplings, the system exhibits anomalous subdiffusive
transport (through the behavior of z) and, at the same time,
quasilocalization (through f), whereby a correspondence be-
tween the two descriptions is established. For intermediate
couplings, the system exhibits normal diffusive transport and
thermalization after certain timescales. However, even in this
“normal” regime, both z and f change slowly with time before
reaching those timescales, which can be fitted by logarithmic
functions. This shows that the usual assumption of rapid lo-
cal chaotic thermalization of hydrodynamics is false for the
present nonintegrable model.

We have tried to interpret the macroscopic transport and
relaxation processes by studying few-particle problems on the
lattice. We found that there is a richness of types of bound
states under the long-range Coulomb force. And the motion
of all quasiparticles slows down, except the singletons and
first-order resonances, when the coupling strength increases.
In addition, for many particles at large densities, the long-
range interactions tend to bind localized blocks together to
form large clusters, but at the same time, they also lead to
various internal resonant processes. In the end, there should
be a hierarchy of clusters on different length scales. We ar-
gue that at large couplings, there should be giant immobile
clusters, which gives an interpretation of the structure of the
quasi-MBL states.

Every quantum lattice model, integrable or not, should be
able to produce bound states, and the bound states are slow
moving. But not every model supports slow transport at large
couplings and high temperatures. Another decisive factor yet
required is the formation of large and stable clusters of parti-
cles. This depends on specific forms of interactions. It appears
that long-range power-law interactions usually suffice for this
requirement, where slow relaxation dynamics are found in the
present model and in previous works [15,19,24]. Neverthe-
less, we expect that similar slow transport may be found in a
much wider range of models. It would be interesting to deter-
mine the minimal conditions for the slow dynamics in future
work.

APPENDIX: INITIAL STATE FOR
THE COLLISION DYNAMICS

Following Refs. [46] and [47], the initial state |1/ (0)) of the
dynamics is created by acting the operator (up to normaliza-
tion)

)2
Z exp(—(sz);())) exp [i(x — xo)kolc] (Al)

on a product state |0...0110...0) for a block of two local-
ized particles. This operator creates a right-going Gaussian
wave packet with momentum ko = —m /2, width o = 4, and
center position xp, as depicted in Fig. 10(a).
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