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In this paper, we analyze the band structure of two-dimensional (2D) halide perovskites by considering
structures related to the simpler case of the series, (BA)2PbI4, in which PbI4 layers are intercalated with butylam-
monium [BA = CH3(CH2)3NH3] organic ligands. We use density-functional-theory (DFT) based calculations
and tight-binding (TB) models aiming to discover a simple description of the bands within 1 eV below the
valence-band maximum and 2 eV above the conduction-band minimum, which, including the energy gap, is
about a �E = 5 eV energy range. The bands in this �E range are those expected to contribute to the transport
phenomena, photoconductivity, and light emission in the visible spectrum, at room and low temperature. We find
that the atomic orbitals of the butylammonium chains have negligible contribution to the Bloch states which form
the conduction and valence bands in the above defined �E range. Our calculations reveal a rather universal, i.e.,
independent of the intercalating BA, rigid-band picture inside the above �E range characteristic of the layered
perovskite “matrix” (i.e., PbI4 in our example). Besides demonstrating the above conclusion, the main goal of
this paper is to find accurate TB models which capture the essential features of the DFT bands in this �E range.
First, we ignore electron hopping along the c axis and the octahedral distortions and this increased symmetry
(from C2 to C4) halves the Bravais lattice unit cell size and the Brillouin zone unfolds to a 45◦ rotated square and
this allows some analytical handling of the 2D TB Hamiltonian. The Pb 6s and I 5s orbitals are far away from the
above �E range and, thus, we integrate them out to obtain an effective model which only includes hybridized
Pb 6p and I 5p states. Our TB-based treatment (a) provides a good quantitative description of the DFT band
structure, (b) helps us conceptualize the complex electronic structure in the family of these materials in a simple
way, and (c) yields the one-body part to be combined with appropriately screened electron interaction to describe
many-body effects, such as excitonic bound states.
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I. INTRODUCTION

The discovery and production of semiconducting super-
lattices has led to a significant advancement in solid-state
physics and electronic technology. Further development, how-
ever, has been hindered by the infrastructure-demanding
time-consuming fabrication procedure for precisely assem-
bling the nanometer-scale structures in such artificial material
structures. Rather recently, a new class of superlattices
has been discovered, known as Ruddlesden-Popper (RP)
two-dimensional (2D) halide-perovskites, that can be self-
assembled using wet-chemistry synthesis [1,2]. The interest
in this type of materials is not just because of the sim-
plicity of the synthesis process, but more importantly, the
interest is due to the fact that they are clean and main-
tain the periodic structure at the atomic level. These 2D
halide-perovskites are analogues to the oxide perovskites de-
scribed by Ruddlesden and Popper [3], from where they
gain their name, and they form self-assembled superlattice
structures [1,4–6]. Figure 1 illustrates the relationship of
the Ruddlesden-Popper perovskite structures to the three-
dimensional (3D) perovskite ABX3, where A, B, and X
are a small organic cation (such as methylammonium), a
metal cation, and a halogen anion, respectively. The bulk
perovskite ABX 3 is figuratively sliced apart to form a mul-
tilayer sandwich in which amine-terminated organic ligands

A′ (such as, butylammonium) are “inserted” in between ev-
ery m (m = 1, 2,. . . ) adjacent halide-perovskite layers (see
Fig. 1) in the formula A′

2Am−1BmX3m+1. An example of
this series is the family [1,2] (BA)2(MA)m−1PbmI3m+1 with
BA = CH3(CH2)3NH3 and MA = CH3NH3 (m = 1, 2, 3,
4, …). These Ruddlesden-Popper hybrid perovskites come
with inherent low dimensionality and highly ordered pe-
riodic nanostructures. The long amine-terminated organic
ligands essentially cleave the 3D perovskite lattices into two-
dimensional sheets, forming alternating layers of organic and
inorganic supercells along the c-axis crystal orientation. The
formation of such layered structures is thermodynamically
favorable, which makes it possible to obtain Ruddlesden-
Propper hybrid perovskites conveniently using wet-chemistry
synthesis.

The family of 3D organic halide-perovskites has received
tremendous attention during the past decade due to their
promising optoelectronic and solar cell applications. Decreas-
ing the dimensionality from 3D to 2D, more versatile organic
cations can be incorporated as templates to produce new
structures [7]. The properties of these reduced dimension-
ality semiconductors are less widely studied but results of
many such studies have started to appear in the literature
rapidly. Among the many fascinating properties of these ma-
terials is white-light emission [8], where the broad emission
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FIG. 1. Illustration of the relationship of the Ruddlesden-Popper
perovskite structures to the three-dimensional (3D) perovskite ABX3.
See text for details.

comes from the transient photo-excited states generated by
self-trapped excitons. Furthermore, these materials provide a
significant degree of flexibility in tuning their optoelectronic
properties by varying the number of perovskite layers and
by choosing an appropriate organic ligand. This makes them
particularly suitable for several photovoltaic applications [9]
and as light emitters [8,10–13]. Fast pump-probe spectro-
scopies have also revealed useful information about the carrier
dynamics and recombination in these RP perovskite materials
[14–17], as well as effects of excitonic many-body interac-
tions [18].

Examining them from a different view angle, these RP
perovskites can potentially provide a new playground for fun-
damental physics. Namely, these nearly ideal 2D structures
add another interesting family of materials to a growing list
of interesting 2D materials, such as, Graphene and its vari-
ants and its cousin materials, transition metal dichalcogenides,
etc., which can host a variety of interesting phenomena, and
potentially new phases of matter. Understanding the physics
beyond single-electron phenomena, and in order to make fur-
ther progress, requires understanding the band structure of
these materials at a deeper yet simpler level than the complex
multiband picture provided by the DFT calculation. However,
the number of atoms in a single unit cell of the Bravais lattice
is very large. For example, the unit cell of the Bravais lattice
of the m = 1 structure, which is the subject of the present
paper, contains 156 atoms. Therefore the complexity of the
atomic structure of the material, which is reflected in its band
structure, might be a reason for not finding them appealing
for theoretical investigations of potential novel phenomena.
Namely, at first sight, it might seem a hopeless task to try to
find a simple picture to describe the electronic structure.

There are numerous publications where DFT and related
techniques have been applied in order to understand various
aspects of these and related materials. The aim of the present
paper is not to add another such study but rather to analyze the
known complex band structure [19] of (BA)2PbI4 and related
materials and find a simple (and, if possible, analytical) and
accurate way to describe the origin of its features. Interest-
ingly, we find that in the simplest case of (BA)2PbI4, it is
possible to achieve this goal. First, we show that a rigid-band
description is accurate for such materials. For example, we
find that all the bands within 2 eV below the valence-band
maximum (VBM) and 2 eV above the conduction-band min-
imum (CBM) have negligible contribution from the atomic
orbitals contained in the amine-terminated organic ligands.

This is not to say that these larger organic ligands do not play
a significant role in various aspects of the crystal formation.
For example, the choice of these organic spacers is important
in achieving good quality crystallization [20,21] and allows
optimization of the film quality [9], and in achieving the crys-
tal orientation and the stability of the system [4,22] However,
once the structure is formed and the positions of all the metal
and halogen atoms are given, our calculation illustrates that
the Bloch states with energy within 1 eV below the VBM and
2 eV above the CBM, have negligible projection to the atomic
orbitals of these large organic ligands. The role of these larger
butylammonium organic ligands is simply to act as a charge
reservoir which fill completely the highest occupied bands
making the material an insulator.

The second part of the present paper is to uncover a sim-
ple picture of the band structure responsible for most of the
optoelectronic response. We consider a 2D TB model, which
ignores the small octahedra distortions and this allows us to
reduce the size of the unit cell by a factor of two, a fact that
doubles the Brillouin zone (BZ) by unfolding it because of
symmetry. This reduces the TB Hamiltonian to a 12 × 12
matrix for each point in the BZ. The most important con-
duction and valence bands are obtained as a hybridization
of mostly metal-ion p and halogen p orbitals. In the case of
our example, (BA)2PbI4, hybridization occurs between Pb and
I p orbitals. To obtain the correct dispersion of the highest
valence band, we also need to involve the role of the sp
hybridization between the metal-ion s orbital and the p orbital
of the halogen atoms that sit at the octahedra corners. Finally,
we offer a simple analytic description of the band structure
by integrating out this metal-ion s orbital as it is energetically
well below the Fermi energy.

The paper is organized as follows. In Sec. II, we present the
results of our DFT calculation (including the projection of the
Bloch states to atomic orbitals) for those crystalline structures
which we think are relevant for the point to be made. In
Sec. III, we detail our tight-binding model and how it fits with
the DFT results of the bands and the orbital character of the
Bloch wave functions. In Sec. IV, we present the analytical
model that gives a good approximation to the bands near the
Fermi level and we also give the final fit or our TB model to
the DFT bands. In Sec. VII, we present our final remarks and
conclusions of our study.

II. THE CRYSTAL AND BAND STRUCTURE

A. Crystal structure

Figure 2 illustrates the crystal structure of the low-
temperature structure [23] of (BA)2PbI4 layered material.
There are PbI4 perovskite layers which are intercalated by
butylammonium chains. Notice that the atomic positions in
two successive PbI4 perovskite layers are staggered relative
to the atomic positions of the same atoms in their nearest
neighboring layer. As a result the unit cell of the Bravais
lattice is twice as long along the c axis.

B. (BA)2PbI4 band structure

First, we carried out calculations for the (BA)2PbI4 struc-
ture [19] shown in the left panel of Fig. 2 using the QUANTUM
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FIG. 2. (Left) Crystal structure of (BA)2PbI4. Grey (purple) spheres denote the Pb (I) atoms. The gold spheres represent the C atoms bonded
to either each other or to small red (or bluish) hydrogen (or nitrogen) atoms and, thus, form the butylammonium chains which intecalate the
PbI4 layers. (Middle) Halide-perovskite matrix. (Right) The Brillouin zone and the path connecting the specific high-symmetry points used to
compute the band structure.

ESPRESSO [24] (QE) implementation of the density functional
theory (DFT) in the GGA framework. The Perdew-Burke-
Ernzerhof (PBE) exchange correlation functional [25] was
used with Projector Augmented-Wave [26] pseudopotentials
generated with a scalar-relativistic calculation local potential
using the “atomic” code by Dal Corso [27]. Our self-
consistently converged ground-state calculation used a 8 ×
6 × 3 k-point mesh and a 30 Rd energy cutoff. In Appendix A,
a convergence study demonstrates that the k-point mesh and
the energy cutoff used are accurate for the purpose of the
present paper.

Our first objective is to establish that the atomic orbitals of
the butylammonium organic ligands, i.e., the orbitals of C, N,
and H, have negligible contribution to the Bloch states with
energy which falls in the energy window of 1 eV below the
top of the VBM and 2 eV above the CBM, which, including
the gap is about a 5 eV range. Figure 3 illustrates that there is
insignificant projection of each of the Bloch states to the local
orbitals of all C, N, and H.

Using the same exchange correlation functional and pseu-
dopotentials as in the case of (BA)2PbI4, we carried out a
self-consistent-field (SCF) DFT ground state calculation for

the “bare-bone” perovskite atomic matrix illustrated in the
middle panel of Fig. 2, i.e., without the intercalating buty-
lammonium chains. We then computed the bands along the
same crystallographic directions as for the (BA)2PbI4 for com-
parison. These bands are shown in Fig. 4 as blue circles and
are compared with those of the complete material (BA)2PbI4

(shown as red lines).
Notice that the agreement between the bands near the

Fermi level is very good. The position of the Fermi level is
different for the real material (BA)2PbI4 as compared to the
simple PbI4 matrix because the intercalating butylammonium
chains add more electrons to these bands, thus, raising the
Fermi level and making it a band insulator. The important con-
clusion is that the bands near the Fermi level and their Bloch
wave functions, assuming the same atomic positions, are de-
termined by the PbI4 matrix to a good degree of accuracy.

C. Projecting Bloch states near the Fermi
energy to atomic orbitals

Next, we wish to determine the orbital character of the
bands inside the energy window of our interest. Since we
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FIG. 3. Projections of the Bloch states to all atomic orbitals of C (left), N (middle), and H (right) present in the butylammonium ligands.
All the bands are illustrated with both green lines and red (C), blue (N), or magenta (H) symbols. The size of these symbols is proportional to
the magnitude-squared of the projection of each band (for each �k point) on these orbitals. As a result, because for many bands the projection
is negligible, which gives rise to invisibly small size of these symbols, only the lines are visible for these bands. Notice that there is no visible
contribution of these orbitals to the bands within the 5 eV energy range of our focus, i.e., from 2 eV above the CBM to 1 eV below the CBM.
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FIG. 4. Comparison of the band structure between the (BA)2PbI4

material and the PbI4 matrix. Notice that we have shifted the band
energy scale of PbI4 by 3.6919 eV.

have demonstrated in the previous section that these bands
are almost completely determined by the Pb and I atoms we
projected the bands in the orbitals of those atoms only. In
Figs. 5 and 6, the projection of the bands in the atomic orbitals
are shown. The size of the circle is proposal to the contribution
of the particular orbital to the given band. The orbitals chosen
are those that contribute to the bands and lie within ±10 eV

from the Fermi level. These are the Pb outer orbitals, i.e.,
6s, 4 f , 5d , and 6p and the I 5s, 4d, and 5p. Notice that
the projections for the case of (BA)2PbI4 (left panels), and
those of the PbI4 halide-perovskite “matrix” (right panels)
are very similar. In addition, we note that top valence bands
and the lower conduction bands (i.e., with band energy less
than about 5 eV and above 0 eV) are mostly made out of p
(Pb or I) orbitals. There is a very small amount of s orbital
contribution.

D. Removing the organic molecules and adding Cs
at the location of N sites: Cs2PbI4

In order to clearly demonstrate the almost irrelevance of the
butylammonium chains on the band structure near the Fermi
level, we calculated the band structure of the a compound
obtained by removing all the butylammonium chains and by
adding Cs at the N sites of the original (BA)2PbI4 compound.
We choose Cs based on its electronegativity relative to the
Fermi level of the PbI4 matrix, in order to make sure that
the energy level of the outer s Cs level falls above the energy
of the highest occupied band, such that these Cs s states will
be empty inside the compound, thus, resulting in doping the
PbI4 matrix in the same manner as the alkylammonium chains
cause doping. The structure is illustrated in the left panel of
Fig. 7 and the DFT calculated band structure is compared to
the (BA)2PbI4 compound in right panel of Fig. 7.
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FIG. 5. Projections of the Bloch states to local Pb 6s (top) and 6p (bottom) orbitals. See caption of Fig. 3 for explanation of the symbol
and lines in the plots. The panels on the left correspond to the (BA)2PbI4, while those on the right correspond to the PbI4 halide-perovskite
“matrix.” The highest occupied band is the one which starts at the � point at just above 1 eV on this scale.
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FIG. 6. Projections of the Bloch states to local I 5s (top) and I 5p (bottom) orbitals. All the bands are illustrated with both lines and blue
or magenta symbols. See caption of Fig. 3 for explanation of the symbol and lines in the plots. The panels on the left row correspond to the
(BA)2PbI4, while those on the right correspond to the PbI4 halide-perovskite “matrix.” The highest occupied band is the one which starts at the
� point at just above 1 eV on this scale.
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FIG. 7. (Left) The structure of a compound obtained by removing all the butylammonium chains and by adding Cs at the N sites of the
original (BA)2PbI4 compound. (Right) We compare the bands of the PbI4 (which are very close to those of (BA)2PbI4 as demonstrated in Fig. 4)
with the bands of Cs2PbI4 obtained by a DFT calculation for this compound, shifting the energy of all the bands of PbI4 by a constant amount
of 2.4749 eV.
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FIG. 8. (Left) The pure two-dimensional structure. (Right) A sin-
gle layer with all the Pb and I atoms but with undistorted octahedra.

This compound exists in nature but with different lattice
constants than those used in this calculation: we wish to keep
them the same as in the (BA)2PbI4 for direct comparison of
the bands. Notice that after shifting the energy of all the bands
of PbI4 by the same amount of 2.4749 eV there is very good
agreement between the bands near the Fermi energy. This
finding strengthens our conclusion and makes transparent our
statement that the bands of the PbI4 matrix almost solely
determine the band structure within 1 eV below the VBM
and 2 eV above the bottom of the CBM, which, including the
energy gap, is about a 5 eV energy range.

III. TIGHT-BINDING MODEL

From the previous comparison, we conclude that it makes
sense to derive a TB model to describe these rigid-band
features. In this model, the role of all the interlayer butylam-
monium chains is to create the structure, and their role in the
electronic structure is to provide one additional electron per
Pb atom. Therefore, in our TB model which aims at describing
these rigid band features for only the bands in the energy
window of our interest discussed previously, the intercalating
organic chains will be ignored.

We start from a symmetric system without any octahedra
distortions and we choose the a and b axes to be of the same
length, i.e., the a-b lattice has the symmetry of the square
lattice. In the real material, the a and b axes are very close
to each other, namely, |�b|/|�a| ∼ 0.98.

First, we ignore the interplane coupling, which reduces the
effective unit cell to one with half the number of atoms. Notice
that the bands obtained by the DFT calculation have different
bandwidths along the c axis. The bands that are mostly made
of hydrogen atomic orbitals, i.e., from the butylammonium
chains have significant bandwidth of the order of 0.1 eV. The
bands of our interest, however, i.e., those within the region
of 5 eV near the Fermi level, have remarkably negligible
dispersion along the c axis. The bandwidth of these bands is
less than 0.01 eV. This justifies our treatment of these bands
as two-dimensional.

In addition, as a first step, we are going to ignore the role of
the I atoms which are off the plane which reduces the problem
to the 2D unit cell shown on the left panel of Fig. 8. We will
also discuss how to include these off-planar atoms displayed
on the right panel of Fig. 8 as a second stage.

Next, we are going to consider matrix elements of the
Hamiltonian between the following twelve (12) states inside

FIG. 9. (Left) Matrix elements of Ĥ between a px orbital and
an s-type orbital. The green (yellow) regions of the p orbitals denote
negative (positive) sign. As a result these matrix elements can be zero
or they can have opposite sign. (Right) The σ - and π -type matrix
elements between p orbitals of neighboring atoms. σ (Vppσ ) bonds
form when the orbital orientation is along the line connecting the
atoms, while π (Vppπ ) bonds form when the orbital orientation is
perpendicular to the line connecting the atoms. When two orbitals
have perpendicular orientations they do not yield a nonzero matrix
element.

the unit cell of the reduced Bravais lattice: |s(i)〉 |p(i)
x 〉, |p(i)

y 〉
and |p(i)

z 〉, where i = 1, 2, 3 for the three atoms in the reduced
unit cell, i.e., the Pb atom at the origin (0, 0, 0), the I atom
at (a/2, /a/2, 0), and the I atom at (−a/2, a/2, 0). We note
that throughout the rest of the paper, our x and y axes are with
respect to the 45◦ rotated coordinate system, not the original
unit cell. The state |s(i)〉 for i = 1 is the Pb 6s orbital and
for i = 2, 3 it is the 5s I orbital. The states |p(i)

x 〉 and |p(i)
y 〉

where i = 1 corresponds to the Pb 6p orbitals, whereas when
i = 2, 3 it corresponds to the I 5p orbitals.

Matrix elements of the form 〈s(i)|Ĥ |s( j)〉 when i = j are
the on-site energies, which are E (1)

s , E (2)
s = E (3)

s , while off-
diagonal matrix elements are nonzero only if the atoms are
nearest neighbors, in which case they are Vss ≡ 〈s(1)|Ĥ |s(2)〉 =
〈s(1)|Ĥ |s(3)〉.

Matrix elements between a 6s orbital of a Pb atom and a
5p-type orbital of any of its nearest neighbor I atoms or vice
versa, when nonzero, are given by Vsp or Vps. Because of the
negative eigenvalue of the px orbital with respect to reflections
about a plane perpendicular to the x axis, some of these matrix
elements are zero and others have a relative minus sign as
illustrated in the left panel of Fig. 9.

There two kinds of matrix elements of H between the same
type of p orbitals as illustrated in the right panel of Fig. 9.
As explained in the figure caption of this figure, they can be
either of σ type, i.e., Vppσ or of π type, i.e., Vppπ . One has
to be careful about their relative sign and when these matrix
elements are zero.

First, instead of using the unit cell illustrated in the left
panel of Fig. 8 by the ABCD square, which is the one that is
necessary to use when the symmetry is broken by the octahe-
dra tilting, we use as unit cell the smaller size square EBFC
which is rotated by 45◦ with respect to the original. This unit
cell contains only one Pb and two I atoms and, therefore,
12 states. This doubles the size of the BZ from the orange
ABCD square of Fig. 10 to the square labeled A′B′C′D′, which
is rotated by 45◦ with respect to the x axis. Therefore, for
our convenience, we will solve the problem in this larger BZ
(where we have only 12 states for each k) and in order to
compare with the results of the original BZ, we will need to
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FIG. 10. The Brillouin zones of the original and the reduced
simpler structure.

fold this BZ to the smaller size one. This folding will increase
the number of bands by a factor of two and, therefore, we will
be able to recover the total number of 24 bands, which were
present in the original unit cell of the Bravais lattice.

If we include the matrix elements illustrated in Fig. 9
and we transform our Hamiltonian in momentum space, the
Hamiltonian matrix becomes momentum-diagonal, i.e.,

Ĥ =
∑
�k∈BZ

H̃�k, (1)

where the sum is over the entire Brillouin zone (blue square
of Fig. 10) and H̃�k is a 12 × 12 matrix given in Table I, where

dx = 2 cos

(
(kx + ky)a

4

)
, dy = 2 cos

(
(kx − ky)a

4

)
, (2)

d ′
x = 2i sin

(
(kx + ky)a

4

)
, d ′

y = 2i sin

(
(kx − ky)a

4

)
. (3)

The subscripts x and y in the above �k-dependent coefficients
are labeled according to our x and y axes which are with
respect to the 45◦ rotated coordinate system, not the original
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FIG. 11. Comparison of the results obtained by TB with those by
DFT for the symmetric PbI4 matrix.

unit cell. The kx and ky, however, are the x and y projections of
�k on the corresponding x and y axes of the original unrotated
unit cell. We use the latter for making comparison with the
bands obtained by DFT. A numerical diagonalization of the
above 12 × 12 at every �k point leads to the results illustrated in
Fig. 11 which are compared to the results of the DFT of a 3D
PbI4 crystal without octahedral distortions and with |�a| = |�b|.
The results of the fitting parameters is given in Table II. We
note that the disagreement for the highest energy bands is due
to the fact that these bands are at positive (unbound) energy
and, therefore, the DFT calculation has included the effects
of unbound electronic states. The DFT calculation involves
more states because it includes the off-plane I atoms (see
structure illustrated in the right panel of Fig. 8). The TB
matrix (a 20 × 20 matrix) which includes the s and p orbital
of these atoms is given in Appendix B. There are several more
fitting parameters to use in this case and the agreement can
be improved by introducing some of the missing bands away
from the Fermi level. Such an approach, however, would lead
to significant complication which works against our goal of
simplifying the problem and leaving the description near the
Fermi energy as accurate as possible. We have implemented
this more complex TB Hamiltonian but the fact that it yields

TABLE I. Tight-binding matrix for the truncated 2D case.

|s(1)〉 |p(1)
x 〉 |p(1)

y 〉 |p(1)
z 〉 |s(2)〉 |p(2)

x 〉 |p(2)
y 〉 |p(2)

z 〉 |s(3)〉 |p(3)
x 〉 |p(3)

y 〉 |p(3)
z 〉

〈s(1)| E (1)
s 0 0 0 Vssdx Vspd ′

x 0 0 Vssdy 0 Vspd ′
y 0

〈p(1)
x | 0 E (1)

pxy
0 0 −Vpsd ′

x Vppσ dx 0 0 0 Vppπ dy 0 0
〈p(1)

y | 0 0 E (1)
pxy

0 0 0 Vppπ dx 0 −Vpsd ′
y 0 Vppσ dy 0

〈p(1)
z | 0 0 0 E (1)

pz
0 0 0 Vppπ dx 0 0 0 Vppπ dy

〈s(2)| Vssdx Vpsd ′
x 0 0 E (2)

s 0 0 0 0 0 0 0
〈p(2)

x | −Vspd ′
x Vppσ dx 0 0 0 E (2)

pxy
0 0 0 0 0 0

〈p(2)
y | 0 0 Vppπ dx 0 0 0 E (2)

pxy
0 0 0 0 0

〈p(2)
z | 0 0 0 Vppπ dx 0 0 0 E (2)

pxy
0 0 0 0

〈s(3)| Vssdy 0 Vpsd ′
y 0 0 0 0 0 E (2)

s 0 0 0
〈p(3)

x | 0 Vppπ dy 0 0 0 0 0 0 0 E (2)
pxy

0 0
〈p(3)

y | −Vspd ′
y 0 Vppσ dy 0 0 0 0 0 0 0 E (2)

pxy
0

〈p(3)
z | 0 0 0 Vppπ dy 0 0 0 0 0 0 0 E (2)

pz
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TABLE II. Tight-binding parameters after fitting the DFT bands
of the x − y symmetric untilted PbI4 matrix. The fit is shown in
Fig. 11.

E (1)
s E (1)

pxy
E (1)

pz
E (2)

s E (2)
pxy

E (2)
pz

Vppσ Vppπ Vsp Vss Vps

−9.3 −0.2 −0.2 −13.05 −2.8 −3.0 −2.5 0.8 1.2 −0.6 0.8

16 additional bands (when we fold the BZ) leads to a fitting
procedure which does not have a unique and simple solution.
For completeness, however, we provide this more complex TB
Hamiltonian matrix in the table of Appendix B and we leave
out from this paper the ambiguous results of such a fit.

In Sec. IV C, we will use our TB model to fit the results of
the actual 3D (BA)2PbI4 crystal, where we find that the quality
of the fit is equally good. First, however, we would like to
discuss an analytical treatment of the problem, which we do
in the next section.

IV. ANALYTICAL DESCRIPTION

Here, we describe a simplified analytical treatment of the
problem which contains all the essential elements of the orig-
inal system near the Fermi level.

A. Noninteracting s and p orbitals

First, we define the model subspace, which is all the or-
bitals that fall inside the energy range of our interest which is
1 eV below the VBM and 2 eV above the CBM. These states
are the Pb 6p and the I 5p orbitals. The Hamiltonian acting
inside this model subspace is the following:

ĤM = Ĥs + Ĥpx + Ĥpy + Ĥpz , (4)

where Ĥs corresponds to the orbital |s(1)〉, i.e., the Pb 6s
orbital, i.e.,

Ĥs = E (1)
s |s(1)〉〈s(1)|, (5)

and

Ĥpα =

⎛
⎜⎜⎝

E (1)
pα V (α)

1 V (α)
2

V (α)∗
1 E (2)

pα
0

V (α)∗
2 0 E (2)

pα

⎞
⎟⎟⎠ (6)

in the basis |p(1)
α 〉, |p(2)

α 〉, |p(3)
α 〉, where 1, 2, 3 stand for the Pb

and the two pα (α = x, y, z) orbitals of its neighboring I atoms.
Here

E (1,2)
px

= E (1,2)
pxy

, V (x)
1 = dxVppσ , V (x)

2 = dyVppπ , (7)

E (1,2)
py

= E (1,2)
pxy

, V (y)
1 = dxVppπ , V (y)

2 = dyVppσ , (8)

E (1,2)
pz

= E (1,2)
pz

, V (z)
1 = d ′

xVppπ , V (z)
2 = d ′

yVppπ . (9)

Next, we will include the coupling of this subspace to the
states which are outside this energy range but not too far away.
For example, we will include the coupling between the Pb 6s
and the I 5p because the latter falls inside the subspace of our
interest, but we will ignore the coupling Vps between Pb 6p
and the I 6s states as the latter state is too far below (13 eV)
the VBM and Vps is only 0.8 eV, namely, Vps/(E (1)

p − E (2)
s )

FIG. 12. The bands of the simple analytical 2D tight-binding
model along some high symmetry directions without including the
coupling between Pb 6s and I 5p.

∼ 0.06. We will consider Vss = 0 as this couples the Pb 6s
and I 5s orbitals which are far from the above energy range
and both states fall outside the energy domain of our interest.
The resulting Hamiltonian is given by

Ĥ = ĤM + Ĥsp. (10)

The Ĥsp couples the Pb s (i.e., |s(1)〉) with |p(2)
x 〉 and |p(3)

y 〉.

Ĥsp =

⎛
⎜⎜⎝

E (1)
s Vspd ′

x Vspd ′
y

−Vspd ′
x E (2)

pxy
0

−Vspd ′
y 0 E (2)

pxy

⎞
⎟⎟⎠, (11)

Diagonalization of the 3 × 3 matrices Ĥpx , Ĥpy , Ĥpz , of the
model subspace yields the following eigenvalues:

Eα
±(�k) = E (1)

pα
+ E (2)

pα

2
± Rα Eα

0 (�k) = E (2)
pα

, (12)

Rα ≡

√√√√(
E (1)

pα
− E (2)

pα

2

)2

+ |V (α)
1 |2 + |V (α)

2 |2. (13)

The corresponding eigenstates for each of the above cases are
given by the following form:

|ψ (α)
± 〉 = 1

ξα±

[(
E (2)

pα
− E (α)

±
)∣∣p(1)

α

〉
+V (α)

1

∣∣p(2)
α

〉 + V (α)
2

∣∣p(3)
α

〉]
, (14)

|ψ (α)
0 〉 = V (α)

2 |p(2)
α 〉 − V (α)

1 |p(3)
α 〉

η(α)
, (15)

ξ
(α)
± =

√(
E (2)

pα
− Eα±

)2 + |V (α)
1 |2 + |V (α)

2 |2, (16)

ηα) ≡
√

|V (α)
1 |2 + |V (α)

2 |2. (17)

The unit cell doubling and 45◦ rotation leads to the fold-
ing of the BZ which doubles the number of eigenvalues to
18 (some of which are degenerate in this higher symmetry
Hamiltonian). They are illustrated in Fig. 12 and are compared
to the DFT calculation in Fig. 13 using the same values of the
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FIG. 13. Comparison with the DFT results of the 2D PbI4 crystal
with the results of our analytical 2D tight-binding model without
including the coupling between Pb 6s and I 5p.

parameters of Table II but ignoring the s orbitals completely,
i.e., Vss = Vsp = Vps = 0. Notice that the occupied bands are
described well, notice, however, that the top of the valence
band (i.e., the I 5p state) is flat and the model does not describe
its dispersion. The main reason for this discrepancy is its
coupling to the Pb 6s and it is corrected in the next section.

B. Integrating out the Pb s orbitals

The I 5p bands E0
x or E0

y are flat in this approximation.
Next we include the role of the Pb 6s and I 5p hybridization
which will account for the dispersion of the top valence band
(which corresponds to the flat band illustrated by the green
line in Fig. 12. The hybridization of the Pb 6s orbital with the
I 5p, i.e., the matrix element Vsp, couples the |s(1)〉 and the
|p(2)

x 〉 and |p(2)
y 〉 as in Eq. (11).

This interaction is crucial when there is an exact or almost
degeneracy at specific �k points between the Eα

±(�k) and Eα
0 (�k)

bands given by Eq. (13). This happens at the � point for
the four bands Eα

−(�k) and E0(�k) when they are folded at
(kx, ky) = (2π/a, 0). If we include the state |s(1)〉 this
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FIG. 14. Comparison of the bands with the DFT results after
including the role of the Vsp interaction in our simple model.

TABLE III. TB parameters after fitting the DFT bands of the
(BA)2PbI4. The fit is shown in Fig. 15.

E (1)
s E (1)

pxy
E (1)

pz
E (2)

s E (2)
pxy

E (2)
pz

Vppσ Vppπ Vsp Vss Vps

−6.0 −3.3 −4.9 −10.0 1.1 −0.5 −1.8 0.5 1.8 0.6 0.8

becomes a 5 × 5 matrix, which cannot be analytically diag-
onalized. However, because the state |s(1)〉 is well below the
Fermi level such that Vsp/(E (2)

pxy
− E (1)

s ) ∼ 0.1, we can apply
perturbation theory in Vsp. More precisely, we will apply
quasi-degenerate stationary perturbation theory [28] to inte-
grate out the s orbital in second order. Using Eq. (17) for
the eigenstates, the second-order-corrected diagonal matrix
elements (i.e., which include the effect of the virtual transition
from the |ψ (−)〉 state to |S(1)〉 state and back) are given as
follows:

E (x)
− (�k) = E (x)

− (�k) +
∣∣V (x)

1 Vspd ′
x

∣∣2

|ξ (x)
− |2(E (x)

− − E (1)
s

) , (18)

E (y)
− (�k) = E (y)

− (�k) +
∣∣V (y)

1 Vspd ′
y

∣∣2

|ξ (y)
− |2(E (y)

− − E (1)
s

) , (19)

E (x)
0 (�k) = E (x)

0 (�k) +
∣∣V (x)

1 Vspd ′
x

∣∣2

|η(x)|2(E (x)
0 − E (1)

s
) , (20)

E (y)
0 (�k) = E (y)

0 (�k) +
∣∣V (y)

1 Vspd ′
y

∣∣2

|η(y)|2(E (y)
0 − E (1)

s
) . (21)

The off-diagonal matrix elements vanish along the
high-symmetry directions � → Z → T → U → � → X →
U → � in our plot of Fig. 14. Along other directions, the
off-diagonal elements do not necessarily vanish. In this case,
we would need to diagonalize the 4 × 4 matrix. However,
this cannot be done analytically, and if we need to resort to a
numerical diagonalization we might as well diagonalize the
full matrix to obtain the more exact nonperturbative solution.
The purpose of this subsection was to demonstrate that the
origin of the dispersion of the upper valence band is from the
Vsp coupling which, we feel, has been achieved.

C. Fitting the full crystal with the same tight-binding model

Now that we have an analytical understanding of the origin
of the band character near the Fermi level, we can proceed
and modify the parameters of our TB model (Table I) listed in
Table II in order to provide a good fit of the material of our
focus, i.e., (BA)2PbI4.

The result of the fit is illustrated in Fig. 15 and the values of
the parameters that produce this TB fit are given in Table III.
We notice that the TB model describes very well all the bands
which are due to the orbitals in PbI4. However, these orbitals
are the only ones that have non-negligible contribution to the
bands in the energy rangeof out interest, which is discussed in
the abstract.

V. SPIN-ORBIT COUPLING

Once we have established our TB model, it is straightfor-
ward to include the contribution of spin-orbit coupling (SOC).
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FIG. 15. Comparison of the bands of the real material (BA)2PbI4

obtained with the DFT (green solid lines) with the result of the fit
using our TB model (open circles).

The 6s orbitals of Pb and the 5s orbital of the two I atoms in
the unit cell give no contribution. The nonzero contribution
comes from the 6p Pb orbital and the 5p orbital of the two
I atoms (atoms 2 and 3 in our unit cell). We need to add
the following part to the TB Hamiltonian and carry out the
diagonalization in a space of double dimension.

ĤSOC = JPb �σ1 · �l1 + JI �σ2 · �l2 + JI �σ3 · �l3, (22)

where JPb (and JI) is the SOC of the Pb 6p (and of the I 5p)
orbital with the electron spin. Each of the three terms above
in the basis |p(i)

x ↑〉, |p(i)
y ↑〉, |p(i)

z ↑〉, |p(i)
x ↓〉, |p(i)

y ↓〉, |p(i)
z ↓〉,

for i = 1, 2, and 3 is given in Table IV in units of Ji (J1 = JPb,
J2 = JI, J3 = JI).

In order to add the SOC in the DFT calculation we need
fully relativistic pseudopotentials (FRP) and we will utilize
those provided in Ref. [29]. First, we carry out a SCF cal-
culation on the same size k-point mesh as in our previous
calculations and the highest energy-cutoff suggested in the
pseudopotential files. In Fig. 16, we illustrate that our TB
model fits with the same level of accuracy the results us-
ing these FRP without SOC. We need this step in order to
carry out the fit of the calculation with SOC. We note that
the values of the TB parameters are only slightly off using
this FRP. Next, without changing any of these TB parame-
ters, we simply add the SOC Hamiltonian described in the
previous paragraph and we fit the results by using only the

TABLE IV. The SOC Hamiltonian in units of Ji.

|p(i)
x ↑〉 |p(i)

y ↑〉 |p(i)
z ↑〉 |p(i)

x ↓〉 |p(i)
y ↓〉 |p(i)

z ↓〉
〈p(i)

x ↑ | 0 −i 0 0 0 1
〈p(i)

y ↑ | i 0 0 0 0 −i
〈p(i)

z ↑ | 0 0 0 −1 i 0
〈p(i)

x ↓ | 0 0 −1 0 i 0
〈p(i)

y ↓ | 0 0 −i −i 0 0
〈p(i)

z ↓ | 1 i 0 0 0 0
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FIG. 16. Calculation with fully relativistic pseudopotentials pro-
vided in Ref. [29] but without SOC.

two fitting parameters JPb and JI. The results are shown in
Fig. 17. The effect of the SOC coupling is large as expected
for Pb and I, however, we also know from previous work that
DFT tends to overestimate the effects of the SOC (see related
discussion in Refs. [30,31]). However, the goal of the present
paper is to provide a reasonable starting one-electron model
Hamiltonian without the inclusion of SOC and other effects,
such as the effects of correlations. As discussed, the model
can be the starting point for calculations to include these
effects more accurately. For example, the effect of the SOC
could be more accurately included by fitting the value of the
SOC (using the above model independent form) to the results
of a quasi-particle self-consistent GW calculation [32] or to
the experimental results for the gap or other experimentally
determined parameters.

The simple calculation presented above demonstrates the
value of the present paper where the TB and the effec-
tive models were determined. Namely, without changing the
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FIG. 17. Calculation with fully relativistic pseudopotentials pro-
vided in Ref. [29] and with SOC. The red lines are the fit using
the TB model without changing the values of the parameter used
in Fig. 16, i.e., the parameters used without SOC, and h̄J1 = 0.9 eV
and h̄J2 = 0.7 eV.
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FIG. 18. Demonstration of convergence with k-point mesh size.
The red open circles are the results obtained on a 8 × 8 × 3 k-point
mesh while the solid lines are the results using the QE default 4 ×
3 × 1 size.

parameters of the TB Hamiltonian, i.e., using their values
determined without the inclusion of the SOC, we were able to
accurately include the effects of the SOC by simply adding the
SOC to our model. Similarly, other effects, such as the effects
of correlations, the Jahn-Teller effect, optical response, etc.,
can be included starting from the present model.

VI. OTHER TERMS

There are other important physical effects which yield
corrections to the above treatment, such as the octahedra dis-
tortions.

The octahedral distortions break the C4 symmetry and that
folds the BZ back to its observed form. In addition, they
open gaps at high-symmetry points and lift band-degeneracies
along high-symmetry directions.

Depending on the problem at hand to address, these terms
can be important to include, which can be added on top the
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FIG. 19. Demonstration of convergence with respect to the en-
ergy cutoff Ec. The red-open circles are the results obtained on a
8 × 8 × 3 k-point mesh using Ec = 30 Rd while the solid lines are
the results using Ec = 40 Rd.

TB Hamiltonian considered in the present work. There are
problems, however, where the TB-treatment of the present
paper can be a good starting point [33]. For example, and this
is one of our future projects, starting from this TB model we
can include the role of electron interactions to study exciton
bound states. These involve bound states of electron/hole
pairs excited from near the VBM to near the CBM where the
TB description is reasonably good.

The goal of the present paper was to provide an as simple
as possible and yet accurate analytic and semianalytic descrip-
tion of the complex band structure of the simplest member
of the series of the 2D halide-perovskite materials. Future
work should extend this treatment to m > 1 members of this
family and should include the role of the above smaller effects.
Another direction should be to include the role of electron
interactions in many-body phenomena, such as the role of
excitons in these systems.

VII. DISCUSSION AND SUMMARY

Simplifying the very complex band structure of the 2D
Ruddlesden-Popper perovskite materials and providing a sim-
ple model which accurately reproduces its main features and,
which quantitatively describes it, is the main goal of the
present paper. Such a simplified picture, not only allows us to
grasp the physics of the electronic structure of these materials,
which might help our thinking forward, but it can also provide
a simple description of the one-body part of an effective many-
body Hamiltonian to use to carry out many-body calculations.

First, we have illustrated that, in the simplest case of the se-
ries (BA)2(MA)m−1PbmI3m+1 with m = 1, i.e., for (BA)2PbI4,
the bands in the energy range: 1 eV below the VBM to 2 eV
above the CBM, a 5 eV range covering the range of the
photoelectric response, have negligible contribution from the
atomic orbitals contained in the BA ligands. This conclusion
is not to diminish the significance of organic chains in general.
As an example of their significance, we would like to mention
that the small organic chains, such as the MA, (which are
absent in the m = 1 case) reduce dielectric screening within
a monolayer of RP perovskite materials, which helps generate
stable excitons at room temperature with binding energies of
the order of hundreds of meV [6,34,35]. In addition, their
physical properties are influenced by the number of layers
that affects the exciton binding energy. However, in the m = 1
case, the role of the atoms of these BA chains is solely
to stabilize the structure and to act as a charge reservoir
which fills completely the highest occupied bands making
the material an insulator. We demonstrate that other materi-
als, which share the same halide-perovskite core matrix or
even just the “matrix” formed by the same halide-perovskite
layer (keeping the structure and all the atomic distances the
same) have very similar band structure in the above defined
energy range.

Further, we analyzed the complex band structure of this
class of materials for m = 1 and found a simple 2D TB model
which can accurately reproduce the band structure as obtained
by DFT in the above energy window. We were also able
to simplify this TB model in such a way that it allows an
analytical, transparent, and accurate way to describe the origin
of all the features of the band structure. As a consequence,
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TABLE V. TB matrix when the pair off-the-plane I atoms are included.

s(1) p(1)
x p(1)

y p(1)
z s(2) p(2)

x p(2)
y p(2)

z s(3) p(3)
x p(3)

y p(3)
z s(4) p(4)

x p(4)
y p(4)

z s(5) p(5)
x p(5)

y p(5)
z

s(1) E (1)
s 0 0 0 Vssdx Vspd ′

x 0 0 Vssdy 0 Vspd ′
y 0 Vss 0 0 Vsp Vss 0 0 Vsp

p(1)
x 0 E (1)

pxy 0 0 −Vpsd ′
x Vppσ dx 0 0 0 Vppπ dy 0 0 0 Vppπ 0 0 0 Vppπ 0 0

p(1)
y 0 0 E (1)

pxy 0 0 0 Vppπ dx 0 −Vpsd ′
y 0 Vppσ dy 0 0 0 Vppπ 0 0 0 Vppπ 0

p(1)
z 0 0 0 E (1)

pz 0 0 0 Vppπ dx 0 0 0 Vppπ dy -Vps 0 0 Vppσ -Vps 0 0 Vppσ

s(2) Vssdx Vpsd ′
x 0 0 E (2)

s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p(2)

x −Vspd ′
x Vppσ dx 0 0 0 E (2)

pxy 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p(2)

y 0 0 Vppπ dx 0 0 0 E (2)
pxy 0 0 0 0 0 0 0 0 0 0 0 0 0

p(2)
z 0 0 0 Vppπ dx 0 0 0 E (2)

pz 0 0 0 0 0 0 0 0 0 0 0 0
s(3) Vssdy 0 Vpsd ′

y 0 0 0 0 0 E (2)
s 0 0 0 0 0 0 0 0 0 0 0

p(3)
x 0 Vppπ dy 0 0 0 0 0 0 0 E (2)

pxy 0 0 0 0 0 0 0 0 0 0
p(3)

y −Vspd ′
y 0 Vppσ dy 0 0 0 0 0 0 0 E (2)

pxy 0 0 0 0 0 0 0 0 0
p(3)

z 0 0 0 Vppπ dy 0 0 0 0 0 0 0 E (2)
pz 0 0 0 0 0 0 0 0

s(4) Vss 0 0 Vps 0 0 0 0 0 0 0 0 E (2)
s 0 0 0 0 0 0 0

p(4)
x 0 Vppπ 0 0 0 0 0 0 0 0 0 0 0 E (2)

pxy 0 0 0 0 0 0
p(4)

y 0 0 Vppσ 0 0 0 0 0 0 0 0 0 0 0 E (2)
pxy 0 0 0 0 0

p(4)
z −Vsp 0 0 Vppπ 0 0 0 0 0 0 0 0 0 0 0 E (2)

pz 0 0 0 0
s(5) Vss 0 0 Vps 0 0 0 0 0 0 0 0 0 0 0 0 E (2)

s 0 0 0
p(5)

x 0 Vppπ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E (2)
pxy 0 0

p(5)
y 0 0 Vppσ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E (2)

pxy 0
p(5)

z −Vsp 0 0 Vppπ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E (2)
pz

a simple band picture emerges out of the complexity of the
bands as obtained by straightforward application of DFT. By
considering a two-dimensional TB model, which ignores the
small octahedra distortions, it allows us to reduce the size
of the unit cell by a factor of two, a fact that doubles the
Brillouin zone by unfolding it because of symmetry. This
reduces the TB Hamiltonian to a smaller matrix. The most
important conduction and relevant conduction and valence
bands are obtained as a hybridization of mostly Pb 6p and
I 5p orbitals in the case of our example (BA)2PbI4. To obtain
the correct dispersion of the highest valence band, we also
needed to involve the role of the sp hybridization between
the Pb 6s orbital and the 5p orbital of the I atoms that form
the octahedra corners. Finally, we offer a simple analytic
description of the band structure by integrating out this Pb 6s
orbital as it sits energetically well below the above mentioned
energy range.

As already discussed in the previous section, there are
several directions where the results of the present work can
be useful and also ways in which other effects can be in-
corporated depending on the problem at hand. For example,
the simple TB model uncovered in this paper will be useful
in carrying out many-body calculations to describe excitonic
properties of these materials [36] which is our future goal.
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APPENDIX A: DFT CONVERGENCE STUDY

Our self-consistently converged ground-state calculation
used a 4 × 3 × 1 and a 8 × 4 × 3k-point-mesh size. The re-
sults are compared in Fig. 18 and we conclude that the 8 ×
6 × 3 size is large enough for the purpose of the present paper.
In Fig. 19, we compare the results of our DFT calculation for
8 × 6 × 3 size for energy cutoff of 30 Rd (red circles) and
40 Rd (solid lines) to show that using 30 Rd as the energy
cutoff is large enough for the purpose of the present paper.

APPENDIX B: MORE COMPLEX TIGHT-BINDING
MATRIX

Generalization of our TB model of Table I for the model
complete 2d-halide-perovskite illustrated in the right panel of
Fig. 8 leads to the 20 × 20 TB matrix given in Table V. This
model includes the pair of I atoms per Pb atom which are off
the plane and complete the octahedra.
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