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We investigate the ground states of spin-S Kitaev ladders using exact analytical solutions (for S = 1/2),
perturbation theory, and the density matrix renormalization group method. We find an even-odd effect: in the
case of half-integer S, we find phases with spontaneous symmetry breaking (SSB) and symmetry-protected
topological (SPT) order; for integer S, we find SSB and trivial paramagnetic phases. We also study the transitions
between the various phases; notably, for half-integer S we find a transition between two distinct SPT orders, and
for integer S we find unnecessary first-order phase transitions within a trivial phase.
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I. INTRODUCTION

Quantum spin liquids (QSL) are highly entangled phases
of matter with no magnetic order [1–3]. Despite decades of
study, many mysteries remain, including theoretical questions
about the classification of phases and their properties, as well
as whether and where QSLs will arise in simple microscopic
models or indeed in real materials. Kitaev spin liquids (KSLs)
[4–7] provide a particularly promising avenue of study, due
to the exact solvability of the spin-1/2 Kitaev honeycomb
model and the existence of possible experimental realizations
of Kitaev interactions due to spin-orbit coupling [8–12] in
materials such as α-Li2IrO3 [13–15] and α-RuCl3 [16–23].

Recently, studies have also focused on higher-spin analogs
of KSLs. Spin-1 and spin-3/2 Kitaev honeycomb models
have been found [24–30] to provide microscopic descriptions
of materials such as NiI2, Li3Ni2BiO6 [31], CrGeTe3, CrI3

[32,33], and CrSiTe3 [34]. However, in contrast to spin-1/2,
the higher-spin Kitaev honeycomb models are not exactly
solvable, and it is necessary to turn to numerical simulation.
Furthermore, such simulations become exponentially more
computationally expensive as the spin, and thus the dimension
of the local Hilbert space, increases. Consequently, despite
numerical studies using methods such as exact diagonaliza-
tion [35], parton mean-field theory [27], and tensor networks
[36,37], many questions remain.

To make progress on this difficult problem, we consider
the Kitaev model on a two-leg ladder, with S = 1/2, 1, 3/2,
and 2. By understanding the correspondence between our
results for the spin-1/2 ladder and the known behavior of
the spin-1/2 honeycomb model, we may use the results for
higher-spin models on the ladder to gain insight by anal-
ogy into the higher-spin honeycomb models, while solving a
more numerically approachable problem. The major benefit,
numerically, of studying two-leg ladders rather than the full
honeycomb model is the applicability of the density matrix
renormalization group (DMRG) technique [38,39]; DMRG
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is a variational algorithm optimizing one-dimensional (1D)
quantum states within the class of matrix product states
(MPSs) [40]. MPSs can provide approximations of mildly
entangled states in 1D with high accuracy due to efficient
truncation over the high-dimensional Hilbert space, while
guaranteeing a low computational cost. It is common to use
DMRG to simulate 1D or quasi-1D quantum systems on either
finite, open chains (fDMRG) or infinite, translationally invari-
ant chains (iDMRG); we use both approaches in this work.
While DMRG is most effective for studying gapped ground
states, for which the area law guarantees low entanglement,

FIG. 1. (a) Definition of the Kitaev model on a honeycomb lattice
and a two-leg ladder: solid, double, and dashed lines indicate spin
interactions as shown in the key, with respective strengths Kz, Kx ,
and Ky. There is a local symmetry for each plaquette given by a
product of local operators X = eiπSx

, etc. along the interior of each
plaquette. (b) Phase diagram of half-integer spin Kitaev ladders; red
lines indicate the critical points. (c) Phase diagram of integer spin
Kitaev ladders. Dashed lines indicate the first-order phase transition
lines of spin-1 ladders. For higher spins, the unnecessary phase
transition locations may change.
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even for gapless regimes, where the ground states have long-
range correlations, DMRG still provides precise results via
scaling with the MPS bond dimension, a tunable parameter.

We summarize our main results in Fig. 1. For half-integer
spin-S Kitaev ladders, the phase diagram is composed of three
regimes, a spontaneous symmetry breaking (SSB) phase and
two symmetry-protected topological (SPT) phases. For inte-
ger spin-S Kitaev ladders, there is an SSB phase around the
isotropic point, surrounded by a trivial phase.

The layout of the remainder of the paper is as follows. In
Sec. II we define the Kitaev model and discuss the generaliza-
tion of symmetries of the spin-1/2 model to arbitrary spin-S
Kitaev ladders. We also present the results of perturbation
theory in two distinct anisotropic limits and for integer and
half-integer spins. In Sec. III, we show detailed results of both
analytical calculation and DMRG simulations for spin-1/2,
spin-1, spin-3/2, and spin-2 Kitaev ladders; for each case,
we demonstrate consistency between perturbation theory and
numerical results. In Sec. IV, we summarize our findings and
discuss the significance of the results.

II. THE MODEL

We study the Kitaev model on a two-leg ladder. For any
spin size, S, the Hamiltonian is

H (K) =
∑
〈i j〉

Kγ Sγ

i Sγ

j , (1)

where the parameter K has three components, K =
(Kx, Ky, Kz ), and each nearest-neighbor bond 〈i j〉 has a single
spin component γ = x, y, or z as shown in Fig. 1(a). The
ladder model on the right of Fig. 1(a) is derived from the stan-
dard Kitaev honeycomb model simply by applying periodic
boundary conditions (in the vertical direction) on the width-2
strip of the honeycomb model on the left of Fig. 1(a).

A. Global and local symmetries

For higher spin, the spin-1/2 anticommutation relations,
{Sα, Sβ} = δαβ , do not directly generalize. Instead, we have
{Sα, eiπSβ } = 0,∀α �= β, and [Sα, eiπSα

] = 0 [41–43]; in other
words, conjugation by, for example, eiπSx

acts as a π rotation
around x, thus transforming Sx �→ Sx, Sy �→ −Sy, and Sz �→
−Sz. It follows immediately that

[eiπSα ⊗ eiπSα

, Sβ ⊗ Sβ] = 0 (2)

∀ α, β and for any size spin. Using this relation, we can deter-
mine the global and local symmetries of our Hamiltonian.

We first consider the global symmetries. Every term in the
model is of the form Sγ

i Sγ
j for γ ∈ {x, y, z}, and by Eq. (2),

each such term commutes with eiπSγ ′
i eiπSγ ′

j for all γ ′. As
a result, the Hamiltonian is invariant under conjugation by
the global on-site symmetry operators �γ = ∏

n eiπSγ
n ,∀γ ∈

{x, y, z}. Furthermore, for the two-leg Kitaev ladder in par-
ticular, the product of eiπSz

along each individual leg of the
ladder is an extra global symmetry, which we denote by �Z

u
for the upper leg and �Z

l for the lower leg.
There are also local symmetries. On a lattice with coordina-

tion number 3, any self-avoiding closed loop � will cover two
of the three bonds connected to each site on the loop; letting

γi be the spin-component (x, y, or z) for the bond on site i that
is not covered by the loop, the operator W� = ∏

i eiπS
γi
i com-

mutes with H ; this follows from a generalization of Eq. (2),
that [eiπSi ⊗ eiπS j , Sk ⊗ Sk] = 0 if i �= k and j �= k. Each such
W� is thus a local symmetry of the Hamiltonian, but many
are redundant with each other. A nonredundant set of local
symmetries is given by taking all paths � that are individual
lattice plaquettes.

On the honeycomb lattice, this construction gives the usual
local symmetry operators on each hexagonal plaquette, as
illustrated in Fig. 1(a). Each W has eigenvalues ±1, and a
Hamiltonian with 2N spins will have N hexagonal plaque-
ttes, so the Hamiltonian can be block-diagonalized into 2N

eigenspaces given by fixing the value of each W ; each block
has dimension (2S + 1)2N/2N .

On the ladder, the same construction gives an indepen-
dent local symmetry on each square plaquette, each of the
form D = eiπSx

eiπSx
eiπSy

eiπSy
, where the x rotations act on

the sites linked by a y bond and vice versa, as shown in
Fig. 1(a). There are still two spins per plaquette, so fixing
the value of each D again divides the Hamiltonian into 2N

blocks of dimension (2S + 1)2N/2N . This analogous behavior
of local symmetries on the ladder and the honeycomb is a
strong reason to believe that our present study of higher-spin
ladder models will also provide insight into the higher-spin
honeycomb.

We summarize the symmetries of spin-S ladders as
follows:

1. Global symmetries

The global symmetry group is generated by �X , �Y , and
�Z

u . They generate a Z2 × Z2 × Z2 group on ladders of 4N
spins. To be explicit, the full symmetry group is

G = {
Id, �X , �Y , �Z , �Z

u , �Z
l , �X

u �Y
l , �X

l �Y
u

}
, (3)

where �X
u �Y

l is defined by acting with eiπSx
on all sites of the

upper leg and eiπSy
on the lower leg, and likewise for �X

l �Y
u .

2. Local symmetries

The loop operators Dn defined on the smallest square pla-
quettes are the local symmetries. For a periodic ladder of 4N
spins, there will be 2N independent local symmetries Dn. Each
has eigenvalues ±1, so when we fix the value of each one, the
dimension of Hilbert space will be reduced by 22N .

B. Perturbation theory in anisotropic limits

The spin-1/2 Kitaev honeycomb model is exactly solvable,
and the same is true of the spin-1/2 ladder [44]. However, the
higher-spin models, both on the honeycomb and on the ladder,
are no longer exactly solvable. Furthermore, for higher-spin-S
the local Hilbert space dimension is larger, while the local
symmetries discussed above provide only the same reduction
as in the spin-1/2 case. However, we can use perturbation the-
ory to find simpler effective models in the anisotropic limits
Kx � Ky, Kz > 0 and Kz � Kx, Ky > 0. (The case of large Ky

is equivalent to large Kx by symmetry.)
To find an effective model using perturbation theory, a

Hamiltonian H is split as H = H0 + H ′, with H ′ small. The
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FIG. 2. Dimer illustration in both anisotropic limits. Here we de-
fine |↑〉 and |↓〉 to be the eigenstates of Sz s.t. Sz|↑〉 = S|↑〉, Sz|↓〉 =
−S|↓〉, and |±〉 the corresponding eigenstates of Sx .

degrees of freedom for the effective model are given by the
(often highly degenerate) ground-state subspace of H0, HGS,
while the interactions are determined by matrix elements of
powers of H ′. For Kitaev ladders in the limits where either
Kz (“Z-limit”) or Kx (“X -limit”) dominates, the correspond-
ing term serves as H0 and the other two terms serve as the
perturbation:

H0,Z = Kzh
z, H ′

Z = Kxhx + Kyhy, (4)

H0,X = Kxhx, H ′
X = Kzh

z + Kyhy, (5)

where hγ = ∑
〈i, j〉γ Sγ

i Sγ

j .
In either limit, the ground subspace of H0 defines an

effective spin-1/2 chain. H0 acts independently on dimers
corresponding to the strongest bond, and as depicted in
the shaded boxes of Fig. 2, there are two degenerate local
ground states for each dimer, defining the effective spin-1/2
degree of freedom: |0〉k = |Sk = +S〉|Sk = −S〉, and |1〉k =
|Sk = −S〉|Sk = +S〉; k = x, z corresponds to the limit taken,
and |Sk = ±S〉 are the ±S eigenstates of Sk . The Hamiltonian
for this effective spin-1/2 chain is then determined by the
powers of H ′ that act nontrivially in HGS; we present the pro-
cedure for finding the effective model in detail in Appendix B.
In practice, we find distinct effective models in four cases: in
the X - and Z-limits with half-integer and integer spin.

We denote the Pauli operators for the effective model as
τ , with the usual definitions, e.g., τ z|0〉 = |0〉, τ z|1〉 = −|1〉.
Since the Hilbert space dimension for each dimer is reduced
from (2S + 1)2 to 2, in general there are many operators in
the original model corresponding to each Pauli operator in the
effective model. Representations in which the operator in the
original model acts as eiπSk

on each spin, presented in Table I,
are particularly useful, as they make clear the relationship
between the τ operators and the symmetries of the original
model. Indeed, all global and local symmetries take a simple
form in the effective model in each of the four cases, as we
summarize in Table II.

We now present the derived effective spin-chain models
in the two limits and with integer and half-integer spin, also
summarized in Table II. We will see that the effective models
are essentially given by a summation of the local symmetries.
We comment on this surprising correspondence in Sec. II B 3.

As we can see from Table II, in the half-integer-spin case
(Z-limit) the effective operator τ y anticommutes with most

TABLE I. Mapping from the original local operators to the effec-
tive model. Some spaces are left blank since there is no simple way to
represent those effective operators in terms of eiπSx

, eiπSy
, and eiπSz

.
For the Z-limit of the integer system, −eiπSx ⊗ eiπSy

and eiπSx ⊗ eiπSx

both map to τ x .

Half-Integer Integer

X -lim Z-lim X -lim Z-lim

τ x eiπSz ⊗ eiπSz
eiπSx ⊗ eiπSx

eiπSz ⊗ eiπSz −eiπSx ⊗ eiπSy

τ y eiπSz ⊗ eiπSy
eiπSx ⊗ eiπSy

τ z eiπSx ⊗ Id eiπSz ⊗ Id

of the global symmetries, and thus it can serve as an or-
der parameter for SSB. In other words, 〈eiπSx ⊗ eiπSy〉 on
a Z-bond as shown in the inset of Fig. 3(a) is a good or-
der parameter. On the other hand, the operator eiπSx ⊗ eiπSy

commutes with all global symmetries in the integer-spin case
and thus cannot be used as an order parameter. Instead, we
can use 〈SxSy〉, which anticommutes with global symmetry
operators.

1. Half-integer spin-S

X-limit. When Kx dominates, the ground subspace is com-
posed of dimers on the original X -bonds as indicated in the
right part of Fig. 2, and

Heff(K ) = αS,x(K )
2N∑
i=1

τ z
i τ

x
i+1τ

z
i+2, (6)

where α is a coefficient depending on S and K .
This Hamiltonian is the cluster model [45], a prototyp-

ical model of symmetry-protected topological (SPT) order
[46–48]. The symmetry group protecting it is Z2 × Z2, with
the two copies of Z2 given by Xeven = ∏

i τ
x
2i and Xodd =∏

i τ
x
2i+1.

Recall that the original model has a symmetry group Z2 ×
Z2 × Z2 generated by �X , �Y , and �Z

u . The full symmetry
group is given in Eq. (3). Several Z2 × Z2 subgroups of the
full symmetry group map to Xeven × Xodd, the protecting sym-
metry of the effective cluster model. One obvious candidate
Z2 × Z2 subgroup is �Z

u × �Z
l , as �Z

u and �Z
l act in the

effective model as Xeven and Xodd, respectively. However, �Y

TABLE II. Effective Hamiltonian and effective symmetries given
by perturbation theory. X and Z are the global on-site operators in the
effective model, e.g., X = ⊗iτ

x
i .

Half-Integer Integer

X -lim Z-lim X -lim Z-lim

heff τ zτ xτ z τ yτ y τ x τ x + τ xτ x

Dn τ zτ xτ z τ yτ y τ x τ xτ x

�X −Id X Id X
�Y X X X X
�Z X −Id X Id
�Z

l Xodd Z X Id
�Z

u Xeven −Z X Id
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acts in the effective model as the global X symmetry, so
�X

u �Y
l also acts as Xodd and �X

l �Y
u acts as Xeven. Thus two

additional candidate Z2 × Z2 subgroups are �X
u �Y

l × �Z
u and

�X
l �Y

u × �Z
l . (These two Z2 × Z2 subgroups are equivalent

up to a glide symmetry of the Hamiltonian.) As noted above,
the large Ky limit is equivalent to this large Kx limit by sym-
metry, but it is worth briefly commenting on the difference
in the mapping of symmetries from the original model to the
effective model. In this case, the roles of �X and �Y in the
effective model are swapped—the former acts as the global
X symmetry, while the latter acts as the identity. Addition-
ally, the images of �Z

u and �Z
l are swapped: �Z

u × �Z
l �→

Xodd × Xeven. [More precisely, the mapping from (u, l ) to
(even, odd) versus (odd, even) depends on how we choose our
unit cell, but for any consistent choice, the X - and Y -limits
will map in opposite ways.] Most importantly, the candidate
protecting Z2 × Z2 symmetry groups for the cluster model in
this limit are �Z

u × �Z
l , �X

l �Y
u × �Z

u , and �X
u �Y

l × �Z
l . To

summarize, the SPT order in the effective model, and hence in
the extreme anisotropic limit of the original Kitaev ladder, is
protected in both X - and Y -limits by �Z

u × �Z
l . In the X -limit,

�X
u �Y

l × �Z
u and �X

l �Y
u × �Z

l also protect the SPT. In the
Y -limit, the latter subgroups are replaced by �X

l �Y
u × �Z

u and
�X

u �Y
l × �Z

l . In Sec. III below, we show that the latter sym-
metry groups protect SPT order even away from the extreme
anisotropic limit; since the protecting symmetry groups are
different, we conclude that there are two distinct SPT phases
in the X - and Y -limits.

Z-limit. When Kz dominates, the ground subspace is com-
posed of dimers on the original Z-bonds as indicated in the left
part of Fig. 2, and

Heff(K ) = αS,z(K )
2N∑
i=1

τ
y
i τ

y
i+1. (7)

This Hamiltonian is an Ising model whose ground states have
an order parameter τ y, corresponding to the operator eiπSx ⊗
eiπSy

and breaking the symmetries �X , �Y , �Z
u , and �Z

l in the
original model.

2. Integer spin-S

X-limit. The configuration of the ground subspace does
not change with S, so it again consists of dimers on the orig-
inal X -bonds. However, the effective Hamiltonian is different
from that of the half-integer case,

Heff(K ) = αS,x(K )
2N∑
i=1

τ x
i , (8)

which gives rise to a trivial ground state connected to a prod-
uct state of dimers.

Z-limit. In the final case,

Heff(K ) =
2N∑
i=1

αS,z(K )τ x
i + βS,z(K )τ x

i τ x
i+1. (9)

There are two different terms in this effective Hamiltonian,
with independent coefficients, allowing for first-order phase
transitions between product states, as will be discussed later.

SSB. In both limits for integer S, there is no term favor-
ing spontaneous symmetry breaking. Note, however, that as
reported below we find from numerical simulation that an

SSB phase does appear for integer S when away from the
anisotropic limits.

3. Effective models and local symmetries

Comparing the first two rows in Table II, we see that in
each case the lowest-order effective model is given by a sum-
mation of the local symmetries (with an extra commuting term
in one case). This correspondence is very useful from a practi-
cal perspective: by solving a simple commuting Hamiltonian
in the effective model, we immediately get the ground-state
flux configuration in the original model even in higher-spin
cases where Lieb’s theorem [49] may not apply [50].

If the perturbation theory produces a unique ground state
by selecting a flux configuration, it must also be the case that
the ground subspace of H0, HGS, contains only one state for
any given flux configuration. In other words, the intersection
of HGS with the subspace of H corresponding to each diagonal
block of H must be one-dimensional, i.e., consist of a single
state. This is indeed correct in the X -limit for both integer and
half-integer spins. In the Z-limit, only flux configurations with
an even number of D = +1 appear in the effective model, so
in fact the intersection of HGS with each allowed fixed-flux
subspace is two-dimensional; in the half-integer case, there
are consequently two ground states of the perturbative model,
giving rise to the Z2 SSB order, while in the integer case
the unique ground state in the two-dimensional intersection
is selected by the extra τ x in the effective model.

4. Comparison with honeycomb lattice perturbation theory

Similar perturbation theory analysis has been carried out
for the Kitaev honeycomb model, both with spin-1/2 [4] and
higher spin [44]. On the honeycomb, there is only one pertur-
bative limit to consider, since the cases of large Kx, large Ky,
and large Kz are related by symmetry. In any of these limits,
the half-integer-spin model reduces to the toric code, while the
integer-spin model reduces to a disconnected spins in a mag-
netic field, giving a trivial ground state [44]. Evidently, these
results on the spin-S honeycomb model match up well with
our X -limit results: the cluster model is a one-dimensional
analog of the toric code model, while for integer spin we also
find the effective Hamiltonian to be a trivial paramagnet. On
the other hand, the Z-limit in our perturbation theory does
not appear to correspond with any known behavior on the
honeycomb lattice. Later, in Sec. IV, we further discuss the
correspondence between the ladder and honeycomb models.

III. RESULTS

A. Phase diagram of spin-1/2 Kitaev ladder

For the case of spin-1/2, we employ both analytical and
numerical approaches to conclusively determine the phase
diagram. Our results are consistent with previous works
[51–55]. However, we also go beyond them, providing a more
detailed classification of phases.

The spin-1/2 Kitaev ladder can be solved analytically
via Jordan-Wigner transformation, which takes a 1D spin-
1/2 system to a (Majorana) fermionic system by a specific
nonlocal transformation. A further Fourier analysis gives the
energy spectrum and predicts the energy gap to close at
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FIG. 3. Results for the spin-1/2 Kitaev ladder. The phase di-
agrams are found using a four-site iMPS with χ = 64. (a) Order
parameter 〈eiπSx

eiπSy 〉 measured on the sites of a Z-bond as shown
in the inset, indicating SSB order. The axes show the parame-
ter K = (Kx, Ky, Kz ) in spherical coordinates, i.e., Kz = sin θ, Kx =
cos θ cos φ, Ky = cos θ sin φ. (b) Pollmann-Turner order parameter
of SPT order [56]. (c) Correlation length on the line Kx + Ky =
2, Kz = 1 to locate the critical point. (d) Ground-state energies
and the first and second derivatives, indicating second-order phase
transitions.

||Kx| − |Ky|| = |Kz|. The gap closing corresponds to a second-
order phase transition as confirmed by computing derivatives
of the energy. Details on the Jordan-Wigner transformation
and energy spectrum derivation can be found in Appendix A.

Although the analytical solution for spin-1/2 ladders
gives efficient access to the ground-state energy, numerical
simulations with DMRG provide more efficient access to en-
tanglement entropy, expectation values of operators such as
the order parameter 〈eiπSx

eiπSy〉 illustrated in Fig. 3(a), and the
detection of SPT order. Additionally, numerical simulations
help us compare the spin-1/2 Kitaev ladder with its higher-
spin counterparts.

1. Phase classification

The gap-closings found analytically suggest that there are
just three phases for Kx, Ky, Kz > 0, each including one of the
perturbative limits of large Kz, large Kx, and large Ky. Using
DMRG simulations directly in the thermodynamic limit, we
confirm the presence of exactly three distinct phases, and we
determine the nature of the phases and the transitions between
them. In particular, we look for an SSB phase corresponding
to the half-integer Z-limit perturbation theory by numerically
evaluating the order parameter 〈τ y〉 = 〈eiπSx

eiπSy〉 and for SPT
order protected by �Z

l × �Z
u using both the method of Poll-

mann and Turner [56] (see also Appendix C) and string order
parameters (SOPs).

Measurements of the order parameter 〈eiπSx
eiπSy〉 show the

existence of a large SSB phase. This phase starts from the
large-Z limit as we have predicted in the perturbation theory,
with the expectation value of the order parameter very close

to 1 just like in the Ising model. The computed value of the
SSB order parameter throughout parameter space is presented
in Fig. 3(a).

The two SPT phases are found around the large-Kx and
large-Ky limits, confirmed by directly extracting the projective
representation of symmetries from the MPS. The MPS state is
an SPT if the projective measurement is −1, and is a trivial
symmetric state if it is +1. The symmetries of interest are
broken if it is 0. The results of the projective representation
measurement are presented in Fig. 3(b).

This conventional technique to detect SPT order, however,
fails to distinguish between the two SPT phases in the half-
integer spin Kitaev ladder, as it maps the two-leg ladders
into 1D chains, compressing some information and losing
the distinction between SPT-x and SPT-y. We now show that
they are, in fact, distinct phases. Considering just the effective
cluster model derived in the X - and Y -limits using perturba-
tion theory, H ∝ τ zτ xτ z, the protecting symmetry group is
Z2 × Z2 and the corresponding SPT classification is Z2; in
other words, there is one SPT phase and one trivial phase
[57]. Then how can there be two different SPT phases, in
addition to a trivial phase? The answer lies in the mapping
from the original spin ladder to the effective cluster model, as
discussed in Sec. II B 1. Although the effective model is the
same in each case, the protecting Z2 × Z2 symmetry groups
are not. Or, more precisely, some preimages of Z2 × Z2 in
the X -limit are different from some preimages in the Y -limit,
and we can show using SOPs that these different symmetry
groups do indeed protect the respective SPT phases. In par-
ticular, one candidate Z2 × Z2 symmetry group that could
protect the SPT-x phase is �X

u �Y
l × �Z

u , with a corresponding
SOP Ox = eiπSx

1 (
∏N

n=1 eiπSz
4n−2 eiπSz

4n−1 )eiπSx
4N , illustrated in the

inset of Fig. 4(a). As shown in the figure, this SOP identifies
SPT-x as an SPT phase and SPT-y as trivial. On the other
hand, a corresponding candidate Z2 × Z2 group that could
protect SPT-y is �X

u �Y
l × �Z

l , with a corresponding SOP
Oy = eiπSy

2 (
∏N

n=1 eiπSz
4n−3 eiπSz

4n )eiπSy
4N−1 . As we again show in

Fig. 4, this SOP identifies the SPT-y phase as an SPT and
the SPT-x phase as trivial. We provide further insights into
the construction process of such SOPs, in particular into am-
biguity in defining them due to the local symmetries of the
Hamiltonian, in Appendix D.

As an additional perspective, note that the local Hilbert
space here is spin-1/2, which is in the projective representa-
tion of any global symmetry; notably, on a single site the two
generators of the protecting symmetry group �X

u �Y
l × �Z

u an-
ticommute. To relate to the physics of a known SPT phase, two
spin-1/2 must be combined into a linear representation, also
guaranteeing that the symmetry group generators commute.
Specifically, spins on the x-bond (y-bond) can be combined
into X -dimers (Y -dimers), transforming SPT-x (SPT-y) into
a topological phase while SPT-y (SPT-x) becomes topolog-
ically trivial. In the phase diagram, there is a single point
Kz = 0, Kx = Ky where the two phases meet, and two simulta-
neous phase transitions occur: X dimers transition from trivial
to SPT, and Y dimers transition from SPT to trivial. This
could be interpreted as two coexisting c = 0.5 gapless phase
transitions, together resulting in the observed c = 1 gapless
phase transition [see Fig. 4(c)].
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FIG. 4. (a) Distinction between two SPT orders along the line
Kx + Ky = 2, Kz = 1. The x-axis labels the value of Kx and Ky =
2 − Kx . In the inset, we depict the distinction between the two SOPs
for the two SPT phases. (b) Using finite-entanglement scaling to
estimate the central charge c = 0.5 of the transition point at K =
(1.5, 0.5, 1.0). (c) Using finite-entanglement scaling to estimate the
central charge c = 1.0 of the transition point at K = (1.0, 1.0, 0).

2. Phase transitions

The exact solvability of the spin-1/2 Kitaev ladder allows
us to determine the nature of the phase transitions by study-
ing the ground-state energy and its derivatives as a function
of K. We show the analytically computed first and second
derivatives across the SSB-SPT transition in Fig. 3(d); we also
show in the same figure the energy derivatives computed from
DMRG, which agree precisely with the exact results, thus
confirming the accuracy of our numerical simulations.

The SSB-SPT transition is evidently second-order, as we
see both from the discontinuity of second-order energy deriva-
tives and from the diverging correlation length [Fig. 3(c)]. The
nature of the transition can be determined more precisely by
fitting the central charge according to the finite-entanglement
scaling formula S = c

6 log ξ + a [58]. As shown in Fig. 4(b),
we find c = 0.5.

As discussed before, the transition between SPT-x and
SPT-y is also continuous, but c = 1 since it should be regarded
as a superposition of two c = 0.5 transitions.

B. Phase diagram of spin-1 Kitaev ladder

For spin-1 Kitaev ladders, we find a very different phase
diagram. As shown in Fig. 5, there are only SSB and trivial
paramagnetic phases. These numerical results are consistent
with the prediction of perturbation theory, namely that there
are only trivial phases in the anisotropic limits.

1. Phase classification

Recall from Eq. (9) that we have concluded that the
effective Hamiltonian in the large-Z limit is given by the

FIG. 5. Phase diagram of spin-1 Kitaev ladder. The phase di-
agrams are found using a four-site iMPS with χ = 64. (a) SSB
phase indicated by the order parameter 〈SxSy〉. (b) The value of
〈eiπSx

eiπSy 〉 in the phase diagram. (c) Using finite-entanglement scal-
ing to estimate the central charge of the phase-transition point near
K = (1.4, 1.4, 1.0) between the SSB and trivial phases. (d) Overlaps
between GS and two different dimer product states change suddenly
at the first-order phase transition around φ = 0.6 with tan φ = 0.69
as predicted.

combination of τ x
i and τ x

i τ x
i+1 along with coefficients α and

β, respectively; by explicit calculation of all contributions up
to fourth-order terms, we find that the coefficients for spin-1
are α = −(K4

x − 18
7 K2

x K2
y + K4

y )/K3
z and β = −5K2

x K2
y /K3

z .
This predicts a first-order transition between different product
states, |+〉⊗N

x ↔ |−〉⊗N
x , where |+〉x and |−〉x are the ±1

eigenstates of τ x, respectively. The transition occurs when

α(K ) changes sign, at tan φ = Kx/Ky =
√

1
7 (9 ± 4

√
2) =

1.44 and 0.69. Converting τ x back to the original model,
we get the operator eiπSx

0 eiπSx
1 or equivalently −eiπSx

0 eiπSy
1 ; we

show the expectation value of the latter operator in Fig. 5(b),
and the first-order transition is immediately apparent in
the Z-limit, at θ ≈ π

2 [59]. Alternatively, we can observe the
transition by computing the overlap, f± = |〈ψ |dz,±〉|, of the
MPS ground state from DMRG with two dimer states,

|dz,±〉 = ⊗〈i j〉z
1
2 (|+S〉i|−S〉 j ± |−S〉i|+S〉 j ), (10)

which are precisely the product states |+〉⊗N
x and |−〉⊗N

x in
the effective model from perturbation theory. The overlaps are
shown in Fig. 5(d).

Unlike in the case of spin-1/2, for spin-1 we also find a
phase that is not present in the effective models from per-
turbation theory. As shown in Fig. 5(a), the order parameter
〈Sx

0Sy
1〉 reveals an SSB phase around the isotropic point. We

note that, while this is the same operator used to detect SSB
in the spin-1/2 case, there it also corresponded to τ y in the
perturbative model in the Z-limit, whereas here it becomes
the zero operator in any anisotropic limit.
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FIG. 6. Phase diagram of spin-3/2 ladders. The phase diagrams
are given by a four-site iMPS with χ = 128. (a) Order parameter
〈eiπSx

eiπSy 〉. (b) Pollmann-Turner order parameter for SPT order [56].
(c) Central charge estimation at a critical point θ = 2

9 π, φ = 0.55,
giving c ≈ 0.5. (d) Correlation length ξ and second derivative of
energy d2E/dφ2 along θ = 2

9 π .

2. Phase transitions

The unnecessary phase transition between trivial phases is
first-order, as verified by directly measuring the expectation
value of τ x as in Fig. 5.

In contrast, the critical points between SSB and trivial
phases are second-order and Ising-like, with c = 0.5.

C. Phase diagram of spin-3/2 Kitaev ladder

1. Phase classification

As predicted in the perturbation theory for arbitrary half-
integer spin-S Kitaev ladder, the phase diagram for spin-3/2
is quite similar to that of spin-1/2: we again have SSB, SPT-x,
and SPT-y phases.

To detect the SSB order, we again use the order parame-
ter 〈τ y〉. For spin-1/2 this order operator happens to be the
simple SxSy, but for spin-3/2 it is eiπSx

eiπSy
. Order parameter

measurements are summarized in Fig. 6(a).
The SPT phases look the same in the perturbative limits for

all half-integer spin-S cases. Thus projective representations
are detected by exactly the same technique on the same set of
symmetries as in the spin-1/2 case. SPT order measurement
results are summarized in Fig. 6(b).

2. Phase transitions

In comparison with the spin-1/2 phase diagram, now
the critical lines between SSB and SPT sit much closer to
each other and the SSB phase is smaller when approaching
the point Kz = 0, Kx = Ky. From Fig. 6(d) we can see that
the correlation length peaks near the critical point, and that
there is a discontinuity of the second-order energy derivative
as for spin-1/2. Together, these show that the transition is

FIG. 7. Phase diagram of spin-2 Kitaev ladder. The phase dia-
grams are given by a four-site iMPS with χ = 128. (a) The phase
diagram given by the order parameter 〈SxSy〉. (b) The value of
〈eiπSx

eiπSy 〉 in the phase diagram. (c) Central charge estimation at a
transition point. (d) Overlaps between GS and two different dimer
product states change suddenly at the first-order phase-transition
points around φ = 0.53 and 0.70.

again second-order. As shown in Fig. 6(c), both iDMRG and
fDMRG give the same fitting of central charge, c = 0.5.

D. Phase diagram of spin-2 Kitaev ladder

Similar to the case of spin-1, there are different trivial
phases smoothly connected to product states of dimers, again
with first-order unnecessary phase transitions. Also, the same
SSB phase as in the spin-1 case exists in the central region,
although the phase is much smaller for spin-2. The computed
SSB order parameter and observable indicating the unnec-
essary phase transitions are shown in Figs. 7(a) and 7(b),
respectively. The unnecessary phase transitions are also ob-
servable from the overlap with different dimer product states,
shown in Fig. 7(d).

Additionally, the transition between the trivial phases and
the SSB phase again has central charge c = 0.5, as in the case
of spin-1. The finite-entanglement scaling to determine c is
shown in Fig. 7(c).

We note the interesting fact that Figs. 6(a) and 7(b) are
quite visually similar, even though in the former the dividing
line between red and white regions shows a distinct phase
transition between SSB and SPT order and in the latter it
shows a smooth (albeit steep) change in an expectation value
within a single phase. The apparent correspondence may be
due to the expected convergence of integer and half-integer
behavior in the classical large-S limit.

IV. DISCUSSION

In this work, we have analyzed the general behaviors of
higher-spin Kitaev ladders and concluded that for half-integer
spins they have phases with SSB and SPT order with an
Ising-like transition between them, and that for integer spins

045124-7



YUSHAO CHEN, YIN-CHEN HE, AND AARON SZASZ PHYSICAL REVIEW B 108, 045124 (2023)

there are SSB and trivial phases in the phase diagram. The
phases in the half-integer case can be understood through
perturbation theory, as can the trivial phase in the integer
case. Numerical results from analytical solutions and DMRG
simulations on finite and infinite ladders confirm the results
of perturbation theory, find the SSB phase for integer spins,
and identify further detailed properties of the phase diagrams.
With this combination of different theoretical and numerical
methods, we provide a thorough and conclusive analysis on
general features of spin-S Kitaev ladders.

For several values of S, we investigate the transitions be-
tween different phases by finite-entanglement scaling, and we
identify both first-order and second-order phase transitions:
the transitions between trivial phases are first-order and the
transitions between SSB and SPT/trivial are second-order.
Most of the second-order phase-transition points are Ising-like
with central charge c = 0.5. The exception is the transition
between distinct SPT phases, distinguished by SOPs, which
has c = 1.

Finally, we turn to the question of what our results imply
for the full 2D Kitaev honeycomb model with higher spin. We
work by analogy: we relate the spin-1/2 ladder and spin-1/2
honeycomb, and we hypothesize an analogous relationship
between higher-spin ladders and higher-spin honeycombs, al-
lowing us to predict the behavior of the latter from the former.

We first note that perturbation theory in the anisotropic
limits of the spin-1/2 Kitaev honeycomb gives the toric code
model, as shown by Kitaev in the original paper [4] and
recently demonstrated on the spin-S honeycomb [44]. In fact,
the toric code is the 2D analog of the cluster model we found
in the half-integer-spin ladders in the X -limit, thus suggesting
that the behavior in the X -limit of our model carries over to 2D
while the Z-limit behavior does not. We find that on the ladder,
the spin-3/2 case exhibits the same cluster model SPT phases
as in spin-1/2, and in fact they are stabilized by the higher
spin, covering a larger portion of the phase diagram. We thus
surmise that on the full honeycomb, phases with gapped Z2

topological order will be present in the anisotropic limits for
higher half-integer spin just as for spin-1/2, and indeed they
will reach farther towards the isotropic point. On the other
hand, since the SSB phase appears in the spin-1/2 ladder
but does not appear at all in the spin-1/2 honeycomb model,
there is no good reason to think it would appear in higher-spin
honeycomb models either. We cannot make a clear prediction
for the isotropic point itself, as there is no clear analog for the
ladder.

For integer spin, if we again assume that the X -limit
of the ladder is analogous to the anisotropic limits of the
honeycomb, we can predict trivial phases in all anisotropic
limits, smoothly connected to product states of dimers along
the corresponding strongest bonds. Unlike for half-integer
spin, we find an SSB phase distinct from any anisotropic
limit in a small region around the isotropic point on both
spin-1 and spin-2 ladders. We also confirmed that the
SSB at the isotropic point survives in the large-S limit by
computing up to spin-4 and observing convergence of the
SSB order parameter with increasing spin. For more de-
tails, please check Appendix E. It is not clear whether this
SSB phase would carry over to the integer-spin honeycomb
models.
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APPENDIX A: ANALYTIC SOLUTION TO THE SPIN-1/2
KITAEV LADDER

To analytically solve the Kitaev ladder, we need to express
the original model in 1D order. In the “snake” ordering, the
original Kitaev ladder with 4N spins is mapped to a 1D chain
with the bulk Hamiltonian

H (K ) =
2N∑

n=1

Kzσ
z
2n−1σ

z
2n + Kxσ

x
2nσ

x
2n+1 + Kyσ

y
2n−1σ

y
2n+2,

(A1)
where we denote the operators as σ to emphasize the differ-
ence from higher spin-S counterparts. Such a snake ordering
exploits the translation symmetry T2 over two sites instead of
four sites. For periodic boundary conditions (PBCs) we can
take ∀m > 0, σ4N+m = σm and for open boundary conditions
(OBCs) σ4N+m = 0. Therefore, the difference between OBCs
and PBCs lies in the fact that a PBC Hamiltonian has two
more terms at the boundary: Kxσ

x
4Nσ x

1 and Kyσ
y
4N−1σ

y
2 .

1. Jordan-Wigner transformation

Jordan-Wigner transformation (JWT) is a frequently used
technique for analytically solving some 1D spin-1/2 chains by
nonlocally mapping the Pauli matrices to fermionic operators
(see Fig. 8). Here we use the following transformation:

ηa
2n = Q2n−1σ

z
2n,

ηb
2n = Q2n−1σ

x
2n,

ηa
2n+1 = Q2nσ

x
2n+1,

ηb
2n+1 = Q2nσ

z
2n+1,

(A2)

where Qn := ∏n
k=1 σ

y
k , Q0 = 1 is a string operator. The an-

ticommutation relations between the Majorana fermions are
also straightforward, {ηα

i , η
β
j } = 2δα,βδi, j .

In this way, the three types of interactions in the snake-
order Kitaev ladder can be reformulated as

σ x
2nσ

x
2n+1 = iηa

2nη
a
2n+1,

σ z
2n−1σ

z
2n = −iηa

2n−1η
a
2n,

σ
y
2n−1σ

y
2n+2 = (

iηa
2n−1η

a
2n+2

)(
iηb

2n−1η
b
2n+2

)
. (A3)
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FIG. 8. Jordan-Wigner transformation for spin-1/2 Kitaev lad-
der. The upper panel represents the original spin model with the
definition of the JWT, and the lower panel shows the Hamiltonian
in the Majorana representation. Note that in this representation, the
specific transformation we chose makes the local symmetries Dn live
only on the bonds between Ky pairs.

After JWT, the bulk Hamiltonian is

H (K ) = − Kz

2N∑
n=1

iηa
2n−1η

a
2n + Kx

2N−1∑
n=1

iηa
2nη

a
2n+1

+ Ky

2N−1∑
n=1

(
iηa

2n−1η
a
2n+2

)(
iηb

2n−1η
b
2n+2

)
, (A4)

where apparently there are many terms (iηb
2n−1η

b
2n+2) com-

muting with the Hamiltonian, which turn out to be just the
local symmetries,

Dn = (
iηb

2n−1η
b
2n+2

) = σ x
2n−1σ

y
2nσ

y
2n+1σ

x
2n+2, (A5)

as defined in Sec. II A. Since each Dn is the product of two
Majorana fermions, each of them controls a subspace of di-
mension 2. Intuitively, the local symmetries can be viewed as
“Z2-fluxes” attached to pairs of Majorana fermions.

JWT usually introduces many “cluster” terms in the
Majorana representation for generic spin chains, but here
fortunately the two-body interactions get transformed to two-
body interactions. The only exceptions are the σ yσ y terms,
but they also have a convenient form: two-body interactions
multiplied by local symmetries.

Since the local symmetries commute with the Hamiltonian
and each other, we can divide the Hilbert space into a direct
sum of subspaces, each a simultaneous eigenspace of all the
Dn. Within each such subspace, specified by the list of eigen-
values (D1, D2, . . . , D2N ), Dn ∈ ±1, each Dn can be treated
as a constant in Eq. (A4). Thus the Hamiltonian within each
block is effectively quadratic and can be solved efficiently.

2. Thermodynamic limit

Assuming the states of interest live in a subspace such that
Dn = D = ±1, i.e., the flux configuration is translationally
invariant, the fermionic Hamiltonian can not only be solved
efficiently as a single-body problem, but in fact can be solved
analytically by Fourier transform. The Hamiltonian in mo-
mentum space is

H = i
∑

k

αkβ
†
k (Kz + Kxeik + (DKy)e−ik ), (A6)

where ηa
2n−1 = ∑

k einkαk and ηa
2n = ∑

k einkβk, k ∈
{π (2m+1)

2N | − N,−N + 1, . . . , N − 1}. The corresponding
spectrum

ε(k; K, D) =
√

(Kz + P+ cos k)2 + P2− sin2 k, (A7)

where P± = Kx ± DKy.
Integrating over the momentum space gives the energy per

site, and D = ±1 give different energies

E (K, D) = −
∫ 2π

0
dk ε(k; K, D). (A8)

This is the energy function we used in Fig. 3(d), where the
critical points are evident from the singularity of d2E

dλ2 , with λ

the linear parameter controlling the change on a specific curve
in parameter space for K.

3. Finite size: OBC and PBC

For finite-size ladders with either OBC or PBC, with a fixed
choice of the {Dn}, as noted above we can analyze the system
by efficiently solving a quadratic (single-body) Hamiltonian.

The procedure is as follows: let L = 2N be the number
of two-site unit cells where 2L = 4N is the total number of
spins, along with a fixed flux configuration D = (Dn), n =
1, . . . , L. The Hamiltonian can be rewritten as H = i 1

2η†Mη,
where η† := (ηa

1, . . . , η
a
4N ) and M is a skew-symmetric ma-

trix depending on Kx, Ky, Kz, and D. Schur decomposition
over M gives a transformation M = OT NO, where N =⊕L

n=1 εn[ 0 1
−1 0], εn � 0 is the spectrum, and O is the corre-

sponding orthogonal matrix linearly combining the Majorana
fermions. Then H = i 1

2ζ †Nζ , where ζ = Oη and eventually
the Hamiltonian is decomposed as H = ∑L

n=1 iεnζ2n−1ζ2n.
Recalling the JWT relationship between spin two-body

interactions and Majorana two-body interactions in Eq. (A3),
we can see that now the whole system can be transformed to a
new spin-1/2 system (denoted by ρ) with only L noninteract-
ing dimers, H = ∑L

n=1 εnρ
z
2n−1ρ

z
2n. Note that these spins are

different from those of the original model; the total number of
spins is reduced from 2L to L since we fixed the Dn.

This method can be used to calculate the exact ground-state
energy of finite spin chains by simply summing over the
spectrum E = −∑L

n=1 εn. Note that, starting from the finite
OBC/PBC calculation, some analysis on the appearance of
zero modes εn = 0 with L → ∞ gives the degeneracy of the
original systems in the thermodynamic limit.

APPENDIX B: PERTURBATION THEORY

1. Brief review of perturbation theory

In perturbation theory, we divide the full Hamiltonian into
the unperturbed Hamiltonian and perturbing Hamiltonian, i.e.,

H = H0 + H ′, (B1)

where H0 is usually simple, so that its ground subspace (or
even all the eigensubspaces, which is the case for Kitaev
ladders) is easy to identify. In this way, the full Hilbert space
H is also partitioned into H = HGS

⊕
HES determined by H0,

and there is no component of H0 connecting HGS and HES
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(i.e., off-diagonal components of H0 are zero). Usually HGS

is highly degenerate, e.g., 2N/2-dimensional in N-spin-1/2
Kitaev ladders. Our goal is to find how H ′ helps split the
degeneracy of HGS and thus to find the effective Hamiltonian
of H projected to HGS.

In particular, the degeneracy is split by “virtual” (or “off-
shell”) processes in which repeated applications of H ′ “pump
out” states from HGS to HES and eventually back to HGS.
In other words, second and higher orders of H ′ can produce
nontrivial matrix elements within HGS, creating nontrivial
dynamics and lifting the degeneracy.

The resulting effective Hamiltonian is

Heff = E0 +
∞∑

n=1

PGS(H ′P̃ES)n−1H ′PGS, (B2)

where the projection operators are PGS = ∑
ψ∈HGS

|ψ〉〈ψ |,
P̃ES = ∑

ψ∈HES

1
E0−Eψ

|ψ〉〈ψ |.

2. Application to Kitaev ladders

As discussed in Sec. II, the ground subspace HGS and
the perturbing Hamiltonian H ′ are determined by the limit
we consider. In the limit of large Kx, HGS is effectively a
chain of spin-1/2 sites corresponding to dimers on the SxSx

bonds, and H ′ is given by the summation over SySy and SzSz.
Correspondingly, in the large Kz limit, dimers are on the ZZ
bonds, and the perturbing Hamiltonian comes from XX and
YY .

To change the state of one dimer from |0〉 = |+S〉|−S〉 to
|1〉 = |−S〉|+S〉, each of the two spins must be raised or low-
ered 2S times. Recalling the definition for the ladder operators
of spins S± = Sx ± iSy, the perturbing terms can implement
the transition between distinct states in HGS with a minimum
order 4S.

We now explicitly describe how to carry out the pertur-
bation theory in each of the four cases: X - and Z-limits
with integer and half-integer spin. Recall the Hamiltonian for
Kitaev ladders to find the fundamental difference between Z-
limit and X -limit: the former maps to a spin-1/2 chain where
each spin has two neighbors, and the latter to a chain where
each spin has four neighbors.

a. Half-integer S in Z-limit

In this case, perturbation terms of the lowest order (4S, e.g.,
second order for spin-1/2) involve two connecting dimers.
Diagrams showing terms that may contribute are listed in
Fig. 9.

For the simplest example, we can explicitly write down the
two-dimer Hamiltonian for spin-1/2 as H = σ z

1 ⊗ σ z
2 + σ z

3 ⊗
σ z

4 + Kxσ
x
1 ⊗ σ x

3 + Kyσ
y
2 ⊗ σ

y
4 , 0 < Kx, Ky � 1. The lowest

nonzero order of perturbation theory is 4S = 2; in Fig. 9(b)
we present two diagrams showing representative second-
order contributions. The coefficients K2

x and KxKy show
which terms in H ′ were applied for each diagram. The re-
sulting effective Hamiltonian is 1

4 (K2
x + K2

y )Id + 1
2 KxKyτ

y ⊗
τ y with eigenvalues 1

4 (Kx ± Ky)2, each with a twofold de-
generacy. An exact diagonalization of H indicates the true
ground energy to be −√

4 + (Kx + Ky)2 = −2 − 1
4 (Kx +

FIG. 9. Diagrams that contribute to the perturbation theory of
Kitaev ladders in the Z-limit.

Ky)2 + O((Kx + Ky)4); the −2 is the energy contribution from
H0. For any higher half-integer spin, it is likewise the case that
4S-order perturbations make nontrivial contributions.

b. Integer S in the Z-limit

In this case, the lowest-order perturbation terms involve
three connecting dimers. Still the lowest order of perturbation
terms with nontrivial effective contribution is 4S.

For example, for spin-1 Kitaev ladders, the fourth-order
terms with nonzero effect are presented in Fig. 9(c): the first
one makes a τ x contribution, the third makes both τ x and τ xτ x

contributions, and the second only brings effective identity
operators. Therefore, we can guess that there may be a compe-
tition between τ x and τ xτ x; in fact, they do not compete with
each other since the final coefficient for τ xτ x is negative and
therefore only an effective ferromagnetic phase is preferred.
However, in the spin-1 case the coefficient of the τ x term
itself can take either sign depending on the precise values of
Kx and Ky as specified in Sec. III B, leading to a first-order
transition between different orientations of effective spins. As
shown in Fig. 7, a similar transition also exists for spin-2. For
higher-integer spin cases, we expect the same behavior, but
we have not checked explicitly.

c. Half-integer S in the X-limit

In this case, the lowest-order perturbation terms involve
three dimers. To see this, consider the right panel of Fig. 10(a).
Here we label the five dimers that may be involved as in the
right part of Fig. 10(a) from n − 2 to n + 2.

First of all, unlike the Z-limit, the perturbation theory fails
if we only consider two adjacent dimers, either the dimer pair
(n − 1, n) or the pair (n − 1, n + 1). The reason lies in the fact
that they are only connected by one bond, of either Z-type or
Y -type, which hits only one of the two spins in each dimer.
Therefore, in each dimer, the other spin cannot be affected,
so there is no chance to go back to HGS, and all off-diagonal
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FIG. 10. Diagrams that contribute to the perturbation theory of
Kitaev ladders in the X -limit.

matrix elements in the effective Hamiltonian vanish. The only
nonzero contribution made by only considering two dimers
comes from applying a single bond an even number of times
[e.g., the left part of Fig. 10(b)], which turns out to give a
trivial energy shift for all states in HGS.

On the other hand, a nonzero off-diagonal matrix element
is possible when (at least) three dimers are included. For
example, for spin-1/2, the bonds shown on the right part of
Fig. 10(b) flip both spins of dimer n, and the matrix element
connecting |0〉X,n and |1〉X,n is nonzero; for an arbitrary S,
we need 2S for each site and 4S in total. Note that when S
is half-integer, 2S is an odd integer, so for dimers n ± 1 one
spin site is flipped an odd number of times and an extra bond
connecting them is required. Therefore, the lowest order of
nontrivial terms in perturbation theory will be 4S + 1. Such
a bond configuration gives a term τ z

n−1τ
x
n τ z

n+1 in the effective
Hamiltonian; dimers n ± 1 are not transformed as 1n±1 be-
cause one spin is acted on by an odd number (2S) of Sz and
an odd number (1) of Sy, causing a phase distinction between
|+S〉 and |−S〉 on the spin sites of the original model, and
hence also distinguishing between |0〉 and |1〉 in the effective
model.

For spin-1/2, where (4S + 1) = 3, the diagram on the right
of Fig. 10(b) is the only one allowed at order (4S + 1). For
higher half-integer spin, a term at order (4S + 1) could in prin-
ciple involve more than three dimers. One could imagine, for
example, a seventh-order term that includes the three bonds
from the right of Fig. 10(b) and the four bonds from one of
the diagrams in Fig. 10(c). However, such terms cannot act
nontrivially on dimer n. Ultimately, the only nontrivial term at
order (4S + 1) for any half-integer spin is τ z

n−1τ
x
n τ z

n+1 coming
from the three-dimer configuration as on the right of Fig. 10(b)
but with 2S vertical bonds on each side.

d. Integer S in the X-limit

In this case, the lowest-order nontrivial perturbation terms
require five connecting dimers. This case involves many
different configurations, but all of them correspond to the
same τ x effective term. Note that even though both the

FIG. 11. Brief illustration of the detection of SPT order. (a) iMPS
and its transfer matrix T . The corresponding leading eigenvector
is the identity matrix, denoted by “1.” (b) iMPS transformed by
a symmetry �a and the corresponding generalized transfer matrix
T a, which is given in terms of the original transfer matrix by a
unitary transformation U a as shown. (c) The leading eigenvector of
T a is U a. For two different elements a and b in the symmetry group
G = Z2 × Z2, we can calculate U aU bU a†U b† to determine whether
the iMPS belongs to an SPT phase.

Z-limit and the X -limit for integer spins are effectively τ x,
because HGS is different, τ x in the two cases represents
different “orientations” of the original model. Despite this
distinction, the perturbative ground states are both trivial
phases, |�〉γ = ⊗〈i, j〉γ (|+S〉i|−S〉 j + |−S〉i|+S〉 j ), where
γ = X, Z . Indeed, they are part of the same phase since,
as we show in Secs. III B and III D, they can be connected
without crossing a phase boundary.

APPENDIX C: SPT DETECTION IN MPS

The now standard technique for detecting SPT order in an
MPS was given by Pollmann and Turner [56]. We review their
method, then explain how it can be modified for the present
case, where the SPT order occurs in the effective model in the
reduced Hilbert space HGS.

For a given iMPS |ψ〉 and corresponding symmetry group,
e.g., a G = Z2 × Z2 group and ga, gb ∈ G the Z2 generators,
we first apply the corresponding operators �a, �b onto |ψ〉
to get the generalized transfer matrices T a, T b; then with T a

and T b we calculate their largest eigenvalues ηa, ηb and corre-
sponding eigenvectors U a,U b. If |ηa| = |ηb| = 1, the iMPS
indeed respects the symmetry G. Furthermore, if U aU b =
−U bU a, then |ψ〉 realizes a projective representation of the
symmetry group; in contrast, |ψ〉 realizes a linear representa-
tion if U a commutes with U b. The method is summarized in
Fig. 11.

Note that the above description takes for granted that the
local symmetry applies on the system site by site. However,
we are often interested in systems where such translational
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FIG. 12. Modification of symmetry action on iMPS for the
model with two-site symmetries. (a) A usual translation-invariant
iMPS under the transformation of its on-site group G = {�}. (b) Ac-
tion of symmetries on the ground state of the cluster model H =∑

σ xσ zσ x , invariant under the translation by two sites.

symmetry is only partly respected. For example, in the cluster
model H = ∑

i σ
x
i σ z

i+1σ
x
i+2, the symmetry G = Z2 × Z2 is

implemented by two generators Zodd = ∏
k σ z

2k+1 and Zeven =∏
k σ z

2k . We should therefore view each pair of neighboring
sites together as a single unit cell, then apply the method dis-
cussed before. Either of the two distinct groupings, 2k + 1 and
2k + 2 as a single unit cell or 2k and 2k + 1 as a single unit
cell, is equally valid. The effect of a symmetry transformation
on an iMPS in this more general case is illustrated in Fig. 12.

The case of the Kitaev ladder has further complications.
As established in Appendix A, we can order the sites so that
the Hamiltonian appears to be translation-invariant with a
two-site unit cell; let the corresponding two-site translation
symmetry be T2. However, the global symmetries �Z

u and
�Z

l then act differently on even and odd unit cells. Explic-
itly, �Z

u T2 = T2�
Z
l , or intuitively T2 swaps �Z

u and �Z
l . We

conclude that, although the Hamiltonian appears to have a

FIG. 13. (a),(b) An intuitive choice of unit cell inspired by per-
turbation theory. (c),(d) With this choice of unit cell, �Z

l and �Z
u act,

respectively, on the first two sites and the last two sites.

FIG. 14. (a) An improperly selected translationally invariant
block for the same iMPS, and (b) the corresponding local operators
for the symmetry �Z

l .

two-site translation symmetry, in fact a four-site unit cell is
needed when considering the action of symmetries.

We then want to use the original iMPS, with a four-site
unit cell, to detect the SPT order of the effective cluster model
from perturbation theory. In the X -limit or Y -limit where the
cluster model arises, it seems natural to pick a unit cell that
does not cut the dimers that form effective sites. Such a choice
is illustrated in the Y -limit in Figs. 13(a) and 13(b).

What goes wrong if we shift the unit cell by one site,
as in Fig. 14, so that the unit-cell boundary cuts across a
dimer? This does not affect our measurement of the projec-
tive representation of �z

u × �z
l . However, if we perform the

same measurement for the global symmetries �X and �Y , we
also naively find a signal of a projective representation, even
though we know from perturbation theory that both symme-
tries map to the identity in the effective model and thus do not
act nontrivially in the SPT phase.

APPENDIX D: SOPs AND SPT DISTINCTION

Here we explain the construction of the SOPs of Fig. 4,
used to distinguish the SPT-x and SPT-y phases of the Kitaev
ladder.

In earlier explorations of string orders for distinguishing
SPT phases and trivial phases [56,62], researchers defined
decorated SOPs for detecting SPT phases. The string bulk is

TABLE III. Preimages in the original model of the Xeven and Xodd

symmetries of the effective cluster model from perturbation theory in
the X - and Y -limits for half-integer spin. “rep1” and “rep2” columns
give two different elements of the original Z2 × Z2 × Z2 symmetry
group, each of which maps to Xeven or Xodd in the specified anisotropic
limit.

Xeven Xodd

rep1 rep2 rep1 rep2

X -limit �Z
u �X

l �Y
u �Z

l �X
u �Y

l

Y -limit �Z
l �X

l �Y
u �Z

u �X
u �Y

l
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FIG. 15. Illustration of the string order parameters and their
equivalent definition after multiplication with the local symmetries.
Two SOPs in different limits map to effective SOPs of cluster model
in different ways, which highlights the phase distinction. Note that
the capitalized X and Z in the lower part indicate the operators in the
effective models.

given by (a local portion of) one of the symmetry operators,
while two decorating operators that anticommute with the
symmetry are added at the end points. For Kitaev ladders, the
construction of SOPs is more intricate because the local Dn

symmetries (see Sec. II A) constrain the allowed SOPs that
can be constructed.

To be more precise, following the same procedure of con-
structing SOPs for the cluster model, where one puts operators
on even/odd positions, for the Kitaev ladder we can put eiπSz

(see Table III) on either the upper leg or the lower leg [56].
However, using only eiπSz

, at the two ends of each string there
emerges anticommutation with Dn which enforces the pure
Z-strings (on a single leg) to have zero expectation value.
Therefore, it is necessary to decorate the end points of such
Z-strings with either eiπSx

or eiπSy
. The SOPs from Fig. 4 are

Ox = eiπSx
1

(
N∏

n=1

eiπSz
4n−2 eiπSz

4n−1

)
eiπSx

4N , (D1)

Oy = eiπSy
2

(
N∏

n=1

eiπSz
4n−3 eiπSz

4n

)
eiπSy

4N−1 . (D2)

Ox has a bulk built from �Z
u := ∏N

n=1 eiπSz
4n−2 eiπSz

4n−1 that
commutes with all the symmetries, while the end-point opera-
tors anticommute with �Z

l := ∏N
n=1 eiπSz

4n−3 eiπSz
4n and �X

u �Y
l .

Ox can also be mapped by a two-site translation along the
snake order to get an equivalent SOP built from �Z

l and with
end points anticommuting with �Z

u and �X
l �Y

u ; this shifted
SOP is shown in Fig. 15. Likewise, Oy has end points that
anticommute with �Z

u and �X
u �Y

l (and has an equivalent two-
site shifted version interchanging the roles of the upper and
lower legs of the ladder).

FIG. 16. SSB order parameter 〈Sx ⊗ Sy〉/S2 of different spin-S
Kitaev ladders at the isotropic point (Kx = Ky = Kz). Evidently, the
order parameter converges with increasing S, indicating that the SSB
phase survives in the large-S limit.

Note that, by multiplying local symmetries D2, D4, . . .

with such SOPs, we can get the same X -strings or Y -strings
as in [51]. For an illustration, see Fig. 15.

APPENDIX E: SSB IN ISOTROPIC LIMITS

For all spin-S values we consider, in the isotropic limit
we find an SSB phase. As we show here, our results strongly
suggest the existence of SSB at the isotropic point even in the
large-S limit.

One possible challenge in taking the large-S limit is that,
to find a smooth limit of the SSB order as S increases, we
would like to use the same order parameter in both cases,
but the natural order parameter is different for half-integer
and integer spins. Specifically, for half-integer spins it is most
natural to detect the SSB phase using the operator from the
Z-limit perturbation theory, 〈eiπSx ⊗ eiπSy〉 (with the tensor
product taken over the two sites in a rung of the ladder), but
for integer spins that operator commutes with all symmetries
and we instead use Oxy = 〈Sx ⊗ Sy〉.

Fortunately, the latter expectation value, Oxy, actually
works in both cases. The SSB phase breaks all the global
symmetries except for �Z , and indeed Oxy commutes with �Z

and anticommutes with the remaining global symmetries, and
thus it is a valid order parameter for half-integer as well as
integer spin.

In Fig. 16, we plot the measured values for Oxy for different
spins ranging from S = 1/2 to 4. We divide by the maximum
possible value of Oxy, which is S2, so that for any given
S a maximally symmetry-broken state would have value 1,
and so that Oxy will converge to a finite value in the limit
S → ∞.

Evidently, the degree of symmetry breaking, as measured
by Oxy/S2, converges as S increases, indicating that indeed the
SSB phase will survive to all larger spin-S, beyond those we
explicitly studied using DMRG.
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