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The pseudogap metal phase of hole-doped cuprates can be described by small Fermi surfaces of electronlike
quasiparticles, which enclose a volume violating the Luttinger relation. This violation requires the existence
of additional fractionalized excitations which can be viewed as fractionalized remnants of the paramagnon. We
fractionalize the paramagnon into the bosonic spinons of the spin liquid described by the CP 1 U(1) gauge theory,
and we present a gauge theory of the bosonic spinons, a Higgs field, and an ancilla layer of fermions coupled
to the original electrons. Along with the small Fermi surface pseudogap metal, this theory displays conventional
phases: the large Fermi surface Fermi liquid with a low-energy paramagnon mode, and phases with spin density
wave order. We describe the evolution of the electronic photoemission spectrum across these quantum phase
transitions. We consider both the two-sublattice Néel and incommensurate spin density wave phases, and we
find that the latter has spiral spin correlations.
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I. INTRODUCTION

Paramagnons are central actors in the theory of magnetism
in Fermi liquids [1,2]: they are collective spin excitations
with spin S = 1, Landau-damped by their coupling to gapless
particle-hole excitations across the Fermi surface. Exchange
of ferromagnetic paramagnons is believed to lead to su-
perfluidity in 3He [3], and exchange of antiferromagnetic
paramagnons is argued to lead to superconductivity with
unconventional spin-singlet pairing in numerous correlated
electron compounds [4,5].

The application of the paramagnon theory to hole-doped
cuprates faces a challenge from the experimentally observed
pseudogap metal regime at low hole doping away from the
insulating antiferromagnet at half-filling. This is a metallic
phase with no long-range magnetic order in which the con-
ventional Luttinger-volume Fermi surface is partially gapped,
displaying only “Fermi arcs” in the photoemission spectrum
[6–10]. In many theoretical approaches, including the one
followed in the present paper, the pseudogap metal is postu-
lated to have small “hole pocket” Fermi surfaces of size p,
where p is the hole-doping density (there is photoemission
[11] and angle-dependent magnetoresistance [12] evidence
for such pockets). Such a pseudogap metal appeared early
on in Ref. [13], in a theory of fluctuating paramagnons in
a doped antiferromagnet. This metallic state, if continued to
zero temperature (T ), does not obey the Luttinger theorem on
the volume enclosed by the Fermi surface, which states that
the Fermi surface of holes must have size 1 + p (or a Fermi
surface of electrons must have size 1 − p). It was argued
[14,15] that violations of the Luttinger theorem in such a
metal, hereafter called FL* in this paper, require the presence

of fractionalization and emergent gauge fields: in particular,
any such metallic state must have deconfined, charge 0, spin
S = 1/2 excitations (“spinons”). These spinons are distinct
from the quasiparticle excitations around the Fermi surface
of holes, which have charge +e and spin 1/2. The theory of
Ref. [13] was extended to a complete theory of the FL* metal
in Refs. [16–19] by fractionalizing the O(3) paramagnon field
n ≡ na (a = x, y, z is a spin index) in a CP 1 representation
[20,21] by

n = w∗
α σα

β wβ. (1.1)

Here wβ are the required bosonic spinons, with α, β =↑,↓
S = 1/2 spin indices, and σ are the Pauli matrices (we
also note a theory of the FL* state using fermionic spinons
[22]). Note that (1.1) introduces a U(1) gauge invariance,
and the resulting U(1) photon is the emergent photon of
the FL* metal. The monopoles in this U(1) gauge field
carry Berry phases [20,21], and this extends the range of
deconfinement [23,24]. In this paper, we will obtain our
effective theory of paramagnons and spinons by employ-
ing the recently developed ancilla qubit method to describe
the FL* metal and the phases in its vicinity [25–28]. (We
note the approach of Ref. [19] in which the electron is not
fractionalized, and the pseudogap metal is obtained by in-
teractions between electrons and bosonic spinons—we will
connect here to this approach in Sec. IV C. We also note
other approaches [29–32] using ancilla degrees of freedom.)
An earlier paper [28] has shown that the ancilla method
provides a good fit to the photoemission spectrum in the
hole-doped cuprates in both the nodal and antinodal regions of
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FIG. 1. Schematic illustration of the ancilla theory of the single-band Hubbard model [25–28]. A canonical transformation, which can be
carried out order-by-order in J⊥, maps free electrons (cα) coupled to a bilayer antiferromagnet (with S = 1/2 spins S1, S2 in the two layers,
respectively) to a Hubbard model for cα with on-site repulsion U . In the present paper, we employ fermionic spinons to describe the S1 spins,
and bosonic spinons to describe the S2 spins.

the Brillouin zone, including a description of the momentum
and energy dependence of the line shapes in the antinodal
region.

The ancilla method can be viewed as a simple and
foolproof way of obtaining an effective low-energy theory
consistent with all symmetries, anomalies, and Luttinger re-
lations. The basic idea of this method is recalled in Fig. 1.
First, as shown in Appendix A of Ref. [27], we use an inverse
Schrieffer-Wolff transformation to transform the single-band
Hubbard model to a model of noninteracting electrons cou-
pled via Kondo coupling JK to a bilayer antiferromagnet of
ancilla spins with rung-exchange J⊥: at large J⊥, the ancilla
spins form rung singlets, and accounting for the virtual rung
triplet excitations leads to a Hubbard model for the electrons
with U ∼ J2

K/J⊥. The first ancilla layer has an antiferromag-
netic Kondo coupling JK to the noninteracting electrons, while

the second ancilla layer has an effective ferromagnetic Kondo
coupling. The FL* phase is obtained when we assume that the
antiferromagnetic Kondo coupling scales to strong coupling
(as it does in the Kondo impurity problem) and dominates
over J⊥. Then we obtain the heavy Fermi liquid state of the
Kondo lattice formed by the cα layer and the S1 spins: this
state has total hole density 1 + p + 1 = p (mod 2), and thus
it yields hole pockets of size p. Meanwhile, the S2 spins
with ferromagnetic Kondo couplings cannot be ignored: the
ferromagnetic Kondo coupling scales to weak coupling, and
so we can safely assume that the S2 spins decouple from the
conduction electrons and form a spin liquid, which provides
the neutral spinon excitations and the associated emergent
gauge fields required in the FL* state. In summary, this theory
of the pseudogap metal can be described by the following
slogan:

A cartoon view of the paramagnon fractionalization ap-
proach is presented in Fig. 2(a). The previous studies in
the ancilla method [25–28] have used fermionic spinons to
describe the spin liquid in the S2 spins. In the present paper,
we shall use bosonic spinons to describe the spin liquid such
as that realized by the CP 1 U(1) gauge theory [20,21,33], as
in (1.1). Given the many dualities between the bosonic and
fermionic spinon approaches [34–36], we expect there is a
nonperturbative mapping between the results obtained by the
two approaches. But at the level of mean-field theory, and
perturbative fluctuations, the results can be quite different, and
much insight is gained by comparisons between them. Our

study of the fermionic spinon dual description of the CP 1

U(1) spin liquid is presented in a companion paper [37]: the
dual has fermionic spinons moving in π flux coupled to a
SU(2) gauge field [34].

The mechanics by which the ancilla method delivers hole
pocket Fermi surfaces of size p has similarities to the “hid-
den” fermion approaches with zeros in the electron Green’s
function [38–52] and “YRZ” [53,54] approaches. In all cases,
the electron has a self-energy which is similar to the propaga-
tor of fermions in an auxiliary band; in the ancilla method,
the auxiliary fermions reside on the first ancilla layer. The
spinon excitations arising from the second ancilla layer are
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FIG. 2. Comparison of the paramagnon and electron fraction-
alization approaches. For the t � J regime of the t-J model
description of the single-band Hubbard model, the holon is unlikely
to survive as a fractionalized excitation, and there is no clear ex-
perimental evidence for it. All charge carriers have spin S = 1/2 in
the paramagnon fractionalization approach employed in the present
paper. We use the fermions f p to describe the ancilla spins S1 and
bosons Z p to describe the ancilla spins S2.

not explicitly present in these earlier theories, but it has been
argued [50–52,55] that a similar role is played by the zeros
of the electron Green’s function. The zeros contribute a linear
in T specific heat and constant spin susceptibility [50–52] in
a manner similar to the mean-field theory of a spinon Fermi
surface in a U(1)-FL* state. However, when we include the
gauge fluctuations in the U(1)-FL* theory, the resulting T 2/3

specific heat is not captured by the theory of Green’s function
zeros.

Along with providing a description of the pseudogap metal
as an FL* phase, the bosonic spinon approach of the present
paper allows us to address confinement transitions of the frac-
tionalized metal. It is relatively easy to reach the spin density
wave (SDW) metallic state with Néel antiferromagnetic order
at smaller p; we simply condense the wα spinon [56], as
along arrow A in Fig. 3. This simultaneously breaks spin and
translational symmetries in the appropriate manner, and also
Higgses out the U(1) photon so that no fractionalized excita-
tions remain. If the wα condensate is at zero wave vector, the
spin density wave phase has conventional Néel order at wave
vector (π, π ). However, the coupling to the charge carriers
can also induce a wα condensate at a nonzero wave vector
(as along arrow C in Fig. 3), leading to incommensurate spin
density wave states, as we shall discuss in Sec. V. We will
describe the evolution of the Fermi surfaces from the FL* state
to these SDW states. A significant result of our analysis is that
the nonzero wave-vector condensation of the wα spinons of
the CP 1 U(1) spin liquid leads to a spiral SDW, and not to the
collinear SDW associated with “stripe” states.

The transition from the FL* metal to the Luttinger-volume
Fermi liquid phase (hereafter denoted FL) at larger p cannot
be described in such a facile manner. One of the purposes of
this paper is to complete the phase diagram of this bosonic

FIG. 3. Schematic of quantum phases in a temperature (T ) and
doping (p) phase diagram for the hole-doped cuprates. In this paper,
we view the FL* pseudogap metal as the “parent,” from which
various low-T phases without fractionalization follow via confining
or Higgs transition. The confinement/Higgs transitions along A, B,
C are discussed in the text; also indicated are the primary gauge
groups from Table I which drive these transitions. Along arrow C,
the bosonic spinon approach [20,21,33] yields only a spiral SDW,
as we shall see in Sec. V. The dual fermionic spinon approach to
the same spin liquid employs fermions moving in π flux coupled to
a SU(2) gauge field [34], and its confinement along C is described
in Ref. [37], yielding d-wave superconductivity and charge density
wave order.

spinon approach to the FL* state, and also connect the FL
phase to the FL* and SDW phases. The confinement transi-
tion from FL* to the Luttinger-theorem-obeying Fermi liquid
(along arrow B in Fig. 3) is quite involved, and proceeds via
a rather exotic intermediate metallic phase D, as shown in
Fig. 4.

We note in passing that there are numerous other ap-
proaches to the pseudogap metal (e.g., Refs. [55,57–63])

TABLE I. Transformations of the main fields under gauge
[U(1)1, U(1)2, SU(2)S] and global [U(1)g, SU(2)g] symmetries.
Listed are the charges under the U(1) symmetries, and the dimen-
sions of the representations under the SU(2) symmetries in boldface.
The effective action for the cα (the gauge-invariant electrons), f p

(spinons in the first ancilla layer), Z p (spinons in the second ancilla
layer), and �p

α (Higgs field hybridizing the electrons with the first
ancilla layer) is obtained by obeying these symmetries, and it forms
the basis of our results. The paramagnon field na is a composite of
the Z p and �p

α as defined in (2.6).

Field Statistics U(1)1 U(1)2 SU(2)S U(1)g SU(2)g

cα fermion 0 0 1 1 2
f p fermion 1 0 2 0 1
Z p boson 0 1 2 0 1
�p

α boson 1 0 2 −1 2̄
na boson 0 0 1 0 3

045123-3



ALEXANDER NIKOLAENKO et al. PHYSICAL REVIEW B 108, 045123 (2023)

FIG. 4. Mean-field phase diagram of (4.1) for w1 + w2 = 0. The
fermion spectrum and gauge fluctuations in the phases are described
in Secs. IV A–IV D. The Fermi surface evolution along the dotted
arrows is described in the labeled subsections of Sec. IV. Region C′

has a large cα Fermi surface (as in the FL phase), along with small
pocket ghost Fermi surfaces and emergent [U(1)1 × U(1)d ]/Z2

gauge fields. The boundary of C′ is vertical and s1-independent
in mean-field theory, but we have sketched a curved boundary to
connect with the possible ghost Fermi surfaces in region D. Most
of region D is also expected to be FL, apart from at or near the
transition to FL*, where a large ghost Fermi surface may appear
along with emergent [U(1)1 × SU(2)S]/Z2 gauge fields [25]. The
quantum phase transition(s) along arrow D.1 has been discussed in
earlier work [25,26].

which begin by fractionalizing the electron into a charge +e
spin S = 0 “holon,” and a spinon, as in Fig. 2(b). The main
difficulty with these approaches is that they do not naturally
lead to an FL* metal. In the case in which the holon is a
fermion, the mean-field description in such approaches leads
to a “holon metal,” with a Fermi surface of charge +e spin
S = 0 quasiparticles. A Fermi surface of “holes” rather than
“holons” can then be obtained by arguing that the holons form
bound states with the spinons to yield charge +e spin S = 1/2
quasiparticles, as in the FL* metal. In practice, however, this
binding process is difficult to carry out with any degree of
control. Furthermore, there is no clear experimental evidence
for the existence of spinless charge carriers in any energy
regime in the cuprates. Therefore, we avoid such electron
fractionalization approaches in the present paper, and will
only fractionalize the paramagnon, as in (1.1).

Section II describes the structure of the gauge theory of
the ancilla approach, as summarized in Table I. Section III
presents the effective action, obtained by imposing the sym-
metries in Table I. The mean-field phase diagram is obtained
in Sec. IV for the case of (π, π ) SDW order, along with results
on the evolution of the Fermi surfaces across the quantum
phase transitions. Section V extends our results to SDW or-
dering at other wave vectors.

II. EMERGENT GAUGE STRUCTURE

The ancilla approach has an intricate structure of gauge
charge assignments, and the resulting gauge theory is the main
tool used to derive the effective actions we shall work with

TABLE II. As in Table I, for auxiliary fields used at intermediate
stages.

Field Statistics U(1)1 U(1)2 SU(2)S U(1)g SU(2)g

ψα fermion 1 0 1 0 2
wα boson 0 1 1 0 2
Ha� boson 0 0 3 0 3

below. This structure can be understood simply from rather
general arguments, as we now show.

First, we have the U(1) gauge charges carried by the
bosonic spinons wα of the second ancilla layer in (1.1). We
refer to this as U(1)2. See Table II below.

We will continue to use a fermionic spinon (ψα) represen-
tation of the spins in the first ancilla layer

S1 = 1
2ψ†

α σα
β ψβ. (2.1)

This introduces a U(1) gauge invariance, which we will denote
U(1)1. [Actually, the full gauge invariance of (2.1) is SU(2)
[64], but we will always work with spin liquids in which the
SU(2) is Higgsed down to U(1), and so we ignore this feature.]
See Table II below.

Finally, we need an SU(2)S gauge field to impose the
rung spin-singlet structure of the ancilla layers, induced by
the large J⊥. This is realized by transforming to a rotating
reference frame in spin space [65]. The spin-singlet projection
requires that we perform the same SU(2) rotation R in both
ancilla layers. So we introduce fermions f p and bosons Z p

(p = ±) by the transformation
(

ψ↑

ψ↓

)
= R

(
f +
f −

)
,

(
w↑

w↓

)
= R

(
Z+
Z−

)
. (2.2)

The fields f p and Z p now both carry a fundamental SU(2)S

gauge charge. In addition, as is clear from (2.2), f p carries
a U(1)1 gauge charge, and Z p carries a U(1)2 gauge charge.
These charge assignments are summarized in Table I. The
monopoles in U(1)2 will carry Berry phases [20,21].

These gauge charges combine to yield a [U(1)1 × U(1)2 ×
SU(2)S]/Z2 gauge theory [25,26], some of whose phases we
will study below. Note that the subscripts of the symmetry
groups are just identifying labels, and they do not refer to a
Chern-Simons level.

In addition to the gauge charge assignments, we should
also keep track of the global symmetries of charge and spin
conservation. These we label as U(1)g and SU(2)g. We present
the global charge assignments of all the fields introduced so
far in Tables I and II.

The theory presented here requires one more boson which
connects the global and gauge symmetries. This boson is the
analog of the hybridization boson of the Kondo lattice, whose
condensation yields the Kondo effect and the heavy Fermi
liquid state [66–69]. Here, the required boson is a complex
four-component Higgs field �

p
α [25,26]. This hybridizes the

fermions in the first ancilla layer with the electrons in the top
layer, and so we have the operator correspondence

�p
α ∼ c†

α f p. (2.3)
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The gauge and global transformation properties of �
p
α can

be easily deduced from (2.3), and they are listed in Table I.
As discussed in Ref. [25], the boson �

p
α can be explicitly

obtained from a Hubbard-Stratonovich transformation of the
Kondo interaction between the electrons and the first ancilla
layer.

Analogous to the Higgs field �
p
α , which connects the

fermions cα and f p, it might seem we need another Higgs field
to connect the SU(2)g spin space of wα [as defined by (1.1)]
to the SU(2)S pseudospin space of Z p. By taking the U(1)2

gauge-invariant combination of the Z p, we can introduce such
a Higgs field Ha� (� = 1, 2, 3, a = x, y, z) with 3 × 3 real
components:

na = w∗
α σ aα

β wβ ∼ Ha�Z∗
p σ

�p
p′ Z p′

, (2.4)

where σ � are also the Pauli matrices. Again, the gauge and
global charges for Ha� can be deduced from Table II. How-
ever, these symmetry properties also show that we can identify
the Higgs field Ha� as the “square” of the Higgs field �

p
α ,

Ha� = �p
α �

∗β

p′ σ aα
β σ �p′

p . (2.5)

Consequently, we will not need to include Ha� as an indepen-
dent field in our considerations, and just identify it as in (2.5).
Also, we can combine (2.4) and (2.5) to write

na ∼ �p
α �

∗β

p′ σ aα
β [Z∗

pZ p′ − 1
2 δp′

p Z∗
q Zq], (2.6)

which relates the paramagnon field na to the Higgs field �
p
α

and the spinons Z p.
The remainder of the paper will derive an effective action

for the electrons cα , the fermionic spinons f p, the bosonic
spinons Z p, and the Higgs field �

p
α . This action can largely

be deduced from the gauge and symmetry properties listed in
Table I. Our results for the phase diagram and the properties
of the phases will follow from this effective action.

III. EFFECTIVE ACTION

Our primary assumption is that the structure of the phase
diagram is determined primarily by the dynamics of the Higgs
fields Z p and �

p
α , and the associated U(1)1, U(1)2, and SU(2)S

gauge fields. In all our discussion here, we will not write
out the gauge fields explicitly, as they can be included from
the requirements of gauge invariance in a familiar manner.
The fermionic matter fields cα and f p are also important, and
their couplings to the Higgs fields are determined, as usual,
by the restrictions of gauge invariance: these couplings then
modify the Fermi surfaces, and determining the Fermi surface
evolution will be an important focus of our study.

We begin by writing down the form of the Higgs potential,
whose minima will determine the structure of the mean-field
phase diagram. From Table I we have

V (Z,�) = s1 �p
α�∗α

p + u1
[
�p

α�∗α
p

]2 + v1 �p
α�

q
β�∗α

q �∗β
p

+ s2 Z∗
pZ p + u2[Z∗

pZ p]2

+w1 Z∗
pZ p�q

α�∗α
q + w2 Z∗

pZq�p
α�∗α

q + · · · .

(3.1)

A variety of minima are possible from such a potential as
the “masses” s1,2 are varied, but we will limit ourselves to the
regime where the minima can be related by gauge and global
rotations to〈

�p
α

〉 = �̄ δp
α, 〈Z p〉 = (Z̄ δ

p
+ + Z̄∗ δ

p
−)/

√
2. (3.2)

With Z̄ = 0 and �̄ = 0, such a minimum yields the FL*
state, which breaks no global symmetries, and which has been
studied in some detail in previous work [25–28]. Our purpose
here is to study the remainder of the phase diagram when Z̄ is
also allowed to be nonzero.

There are also spatial and temporal gradient terms in Z p

and �
p
α . But we refrain from writing them out explicitly

because they have a familiar form dictated by gauge invari-
ance, and they are not used in the analysis of the present
paper. Similarly, there are Maxwell terms for the gauge
fields, and monopole Berry phases for the U(1)2 gauge field
in the second ancilla layer, which we do not present here
[20,21,23,24,34,70].

Finally, let us discuss the fermionic sector, which can also
have a significant influence on the fate of fluctuations. As
in previous work [25–28], we have the dispersions of the
electrons cα in the physical layer, and the fermions f p in
the first ancilla layer, along with their hybridization (Yukawa)
coupling to �

p
α:

Ha
c f = −

∑
i, j

ti jc
†
iαcα

j +
∑
i, j

t1,i j f †
ip f p

j

+
∑

i

(
�p

α f †
ipcα

i + �∗α
p c†

iα f p
i

)
. (3.3)

Using the � condensate in (3.2), Ha
c f then yields the fermion

dispersion in the FL* phase. Such dispersions were compared
with photoemission observations in Ref. [28], and they were
able to describe observations well in both the nodal and antin-
odal regions of the Brillouin zone, and at and away from
the Fermi surface. This comparison with data also allowed
the determination of the hopping parameters and chemical
potentials in ti j and t1,i j , and the hybridization �̄.

The symmetries in Table I allow a number of additional
couplings between the Higgs fields and the fermions (which
were not considered in Ref. [28]),

Hb
c f = −Js

∑
i

ηi na
i c†

iασ aα
β cβ

i + J⊥
∑

i

ηi f †
ipσ

�p
p′ f p′

i Z∗
iqσ

�q
q′Z

q′
i

+ J3

∑
i

(
ηi f †

ipσ
�p
α�α

βcβ
i Z∗

iqσ
�q
q′Z

q′
i + H.c.

)

+ λ
∑

i

�p
ασ aα

β �∗β
p c†

iγ σ
aγ

δ cδ
i , (3.4)

where

ηi ≡ (−1)ix+iy (3.5)

is the staggering factor needed because Z p describes Néel
order in the second ancilla layer. More formally, the wα and
Z p transform nontrivially under lattice symmetries [71], and
this implies the presence of ηi. This Néel order is coupled to
the electrons cα via Js [where na is related to Z p and �

p
α as

in (2.6)], and to the first layer of ancilla fermions via J⊥. The
λ term is proportional to the ferromagnetic moment, and so
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it vanishes in mean-field theory in all the phases considered
here.

IV. PHASE DIAGRAM

We observe the following steps to describe the phase dia-
gram:

(i) Determine the mean-field phase diagram by minimizing
the Higgs potential in (3.1) to obtain the values of �̄ and Z̄ .

(ii) Insert the values of �̄ and Z̄ into Ha
c f + Hb

c f in (3.3)
and (3.4), and then compute the mean-field dispersions of the
fermions and their Fermi surfaces.

(iii) Analyze gauge fluctuations in all the phases and phase
transitions so obtained.

We begin by describing the first step above, the mean-
field theory of (3.1). With the ansatz (3.2), this becomes the
standard Landau theory of tetracritical and bicritical points
[72,73], with the Landau potential

V (Z,�) = s1|�̄|2 + (u1 + v1)|�̄|4 + s2|Z̄|2 + u2|Z̄|4

+ (w1 + w2)|Z̄|2|�̄|2. (4.1)

We will not work out the phase diagram of (4.1) here, as
it is identical to that in early works [72,73]. In the interest
of simplicity, we focus on the case w1 + w2 = 0, when the
phase diagram takes the very simple form in Fig. 4. The mean-
field theory yields four phases, A, B, C, and D, separated
by phase boundaries at s1 = 0 or s2 = 0. These phases are
discussed below in the correspondingly named subsections.
Upon including gauge fluctuations, phases C and D ultimately
become conventional Fermi liquids (FL) with a single large
Fermi surface of the cα fermions, so phases C and D can be
smoothly connected without an intervening quantum phase
transition, and this is indicated by making the line s2 = 0,
s1 > 0 a dashed line. However, within regions C and D, below
the curved dotted line, there is the possibility of additional
“ghost” Fermi surfaces of the f p fermions [25,26]; these ghost
Fermi surfaces will be small for s2 < 0, and large for s2 > 0.

A. FL*

This phase has �̄ = 0, Z̄ = 0. The �
p
α condensate fully

Higgses the SU(2)S and U(1)1 gauge fields, but the U(1)2

gauge field remains potentially deconfined.
With Z̄ = 0, the situation here is as described in earlier

papers [25–28], and also along the eventual transition to a
Fermi liquid in region D. So we obtain small hole pocket
Fermi surfaces of size p, a deconfined U(1)2 gauge field.

The bosonic spinon description of the spin liquid in the
second ancilla layer can make a potential difference here from
the earlier work: the U(1)2 spin liquid can have a monopole-
induced confinement to a valence bond solid at some large
length scale. Alternatively, a stable Z2 spin liquid can appear
here [23,24,34,70].

B. SDW

This phase has �̄ = 0, Z̄ = 0. Now the �
p
α and Z p con-

densates fully Higgs all the SU(2)S , U(1)1, and U(1)2 gauge
fields, and there are no deconfined gauge charges. However,
the presence of both Higgs condensates implies that 〈n〉 = 0

from (2.6), and the global symmetry SU(2)g is broken, imply-
ing the presence of SDW order.

1. Fermi surfaces from FL* to SDW

Here we follow arrow A in Fig. 3, or arrow B.1 in Fig. 4. To
compute Fermi surfaces, we start from the mean-field Hamil-
tonian in the reduced Brillouin zone, H = ∑

�k ψ
†
�k H�k ψ�k ,

where ψ�k = (c�k, c�k+ �Qπ
, f�k, f�k+ �Qπ

), �Qπ = (π, π ), and (with
�̄, Z̄ real)

H�k =

⎛
⎜⎜⎜⎜⎝

εc�k JsZ̄2�̄2 �̄ 0

JsZ̄2�̄2 εc�k+ �Qπ
0 �̄

�̄ 0 ε f �k J⊥Z̄2

0 �̄ J⊥Z̄2 ε f �k+ �Qπ

⎞
⎟⎟⎟⎟⎠. (4.2)

With the input of the variations in the values of �̄ and Z̄
across the phase diagram of Fig. 4, this Hamiltonian describes
the mean-field evolution of the Fermi surfaces across all the
phases. The eigenvalues of H�k cannot be found analytically
for nonzero Z̄ and �̄, but it is easy to diagonalize the Hamil-
tonian numerically. We choose Js = J⊥ = 1 and tight-binding
parameters consistent with experimental ARPES observations
in Bi2201 [7]:

εc�k = −2t (cos kx + cos ky) − 4t ′ cos kx cos ky

− 2t ′′(cos 2kx + cos 2ky)

− 4t ′′′(cos 2kx cos ky + cos 2ky cos kx ) − μc, (4.3)

where t = 0.22, t ′ =−0.034, t ′′ = 0.036, t ′′′ =−0.007, μc =
−0.24 and

ε f �k = 2t1(cos kx + cos ky) + 4t ′
1 cos kx cos ky

+ 2t ′′
1 (cos 2kx + cos 2ky) − μ f , (4.4)

where t1 = 0.1, t ′
1 = −0.03, t ′′

1 = −0.01, μ f = 0.009. Chem-
ical potentials will vary in order to satisfy constraints
〈c†

iαcα
i 〉 = (1 − p)/2 and 〈 f †

ip f p
i 〉 = 1/2, while we will use the

same tight-binding parameters in the rest of the paper. We also
compute spectral weights by taking the imaginary part of the
retarded Green’s function with finite imaginary broadening
δ = 0.01. The spectral weight, contrary to a Fermi surface,
is directly measured in ARPES experiments. Figure 5 shows
the Fermi surface and spectral weight in the FL∗ phase. There
are eight hole pockets instead of four since the Brillouin zone
is shrunk by two in our basis, but the spectral weight only sees
four hole pockets.

As we move into the SDW phase along the B.1 line, eight
hole pockets turn into four hole pockets, as shown in Fig. 6.
Unlike the FL* pockets in Fig. 5, these pockets are symmetric
with respect to the boundaries of the reduced Brillouin zone
(black dashed line). Moreover, their area enclosed in the orig-
inal Brillouin zone has doubled [60]. These are features that
should be possible to detect in experiment.

The transition is described by a CP 1 field theory for the
U(1)2 gauge field coupled to Z p, along with spectator bands
of fermions neutral under U(1)2; recall that the monopoles
in U(1)2 do carry Berry phases, and this allows deconfined
criticality [23,24].
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FIG. 5. Fermi surface and spectral weight in the FL∗ phase. Parameters: �̄ = 0.09, Z̄ = 0.0, μc = −0.243, μ f = 0.009.

C. FL

This phase has �̄ = 0, Z̄ = 0. The Z p condensate breaks
the [SU(2)S × U(1)2]/Z2 gauge symmetry down to a diag-
onal U(1) symmetry, which we refer to as U(1)d : this is
the linear combination of U(1)2 and the x component of
SU(2)S , which leaves the second equation in (3.2) invariant
(for real Z̄). The U(1)1 gauge field is also potentially de-
confined. The f p Fermi surface can be gapped via the J⊥
coupling in (3.4) and (4.2) provided the Z p condensate is
large enough. We assume the f p fermions are gapped for
now, and consider the situation with gapless f p excitations
below. With the f p fermions gapped, the Polyakov mechanism
of monopole proliferation can confine [U(1)1 × U(1)d ]/Z2

gauge fields, but we do need to consider the monopole Berry
phases to determine the scales over which deconfinement can
survive [20,21,23,24]. Upon confinement, the Higgs field �

p
α

is no longer an elementary excitation in the FL phase. The
gauge-neutral two-particle bound state of �

p
α turns into the

paramagnon via (2.6). For the explicit form of (2.6) here, it
is useful to orient the Z p condensate in the z direction by
replacing (3.2) by 〈Z p〉 = Z̄ δ

p
+; then (2.6) becomes

n ∼ �+
α σα

β�
∗β
+ − �−

α σα
β�

∗β
− ,

m ∼ �+
α σα

β�
∗β
+ + �−

α σα
β�

∗β
− . (4.5)

We have also noted the form of the ferromagnetic order pa-
rameter m, which follows from the λ coupling in (3.4). The �

p
α

now carry charge p under U(1)d , and charge 1 under U(1)1.
We can realize a theory without ferromagnetism, m ≈ 0, by
condensing εαβ�+

α �−
β so that �−

α ∼ εαβ�
β∗
+ . This condensate

Higgses U(1)1, but there remains the possibility that U(1)d is
deconfined over a significant length scale, in which case we
should consider the theory with fractionalized �+

α excitations:
such a theory reduces to that considered in Sec. III of Ref. [19]
with the bosonic spinon z∗

α of that paper corresponding to
our �+

α . However, note that the spinons of �+
α represent spin

fluctuations on both ancilla layers, and so the Berry phases
of the monopoles in U(1)d cancel between the contributions
of the two layers, and do not suppress confinement [23,24].
Once U(1)d confines, we obtain the usual Hertz theory [74]
of a paramagnon n ∼ �+

α σα
β�

∗β
+ coupled to large Fermi

surface. The deconfined theory in terms of the �+
α has no

monopoles/hedgehogs, and so it only includes orientational
fluctuations of the SDW order, whereas the n theory also
allows amplitude fluctuations.

For a smaller Z p condensate, the f p fermions can be gap-
less because pocket f p ghost Fermi surfaces will survive, and
we have indicated this region of the phase diagram as C′ in
Fig. 4. With gapless f p fermions, the Polyakov mechanism for

FIG. 6. Fermi surface and spectral weight in the SDW phase. Parameters: �̄ = 0.09, Z = 0.2, μc = −0.237, μ f = 0.006.

045123-7



ALEXANDER NIKOLAENKO et al. PHYSICAL REVIEW B 108, 045123 (2023)

FIG. 7. Fermi surface and spectral weight in the SDW phase, close to FL phase. Parameters: � = 0.03, Z = 0.2, μc = −0.210, μ f =
0.062.

confinement is suppressed [75]. The f p fermions have gauge
charges p = ± under U(1)d , and the same gauge charge under
U(1)1: consequently, there is a near-cancellation of attractive
and repulsive forces [26], and it is possible that the pocket f p

Fermi surfaces will avoid a pairing instability. If the pairing
instability does occur, the ancilla layers become trivial, and
we obtain a conventional FL state—the [U(1)1 × U(1)d ]/Z2

gauge symmetry is Higgsed down to U(1)d , and the fermion
gap will lead to the U(1)d confinement discussed above.

1. Fermi surfaces from SDW to FL

The transition from SDW to Fermi liquid (along the C.1
line) is shown in Fig. 7. As we move closer to FL phase,
electron pockets appear at the antinodal points, and Fermi arcs
evolve into a usual Fermi surface of a Fermi liquid.

The f p electron Fermi surface is gapped, and so as dis-
cussed above, the transition is a conventional transition [74]
from SDW to FL, with the Js term in (3.4) coupling to the
SDW order parameter, the paramagnon n defined by (4.5).

2. Fermi surfaces from SDW to C ′

The transition between SDW and C′ phase happens when Z̄
is smaller and the Fermi surface of f p fermions is not gapped.
Figure 8 shows a cα fermion Fermi surface (blue line), and an
f p fermion Fermi surface (red line). However, spectral weight
lies only on the physical electron Fermi surface.

Assuming the [U(1)1 × U(1)d ]/Z2 gauge fields are decon-
fined, the transition is described by a gauge theory for the �

p
α

and the fermions; for 〈Z p〉 = Z̄ δ
p
+, the �

p
α and f p carry gauge

charges p under U(1)d and 1 under U(1)1. The monopoles
in both U(1)’s are suppressed by the f p Fermi surfaces, and
they do not carry Berry phases because the �

p
α represent spin

fluctuations in a bilayer antiferromagnet.

D. Ghost Fermi surfaces

1. Fermi surfaces from FL* to D

The transition between FL∗ and D was studied in previous
works [25–28] and describes an emergence of hole pockets
from the full Fermi surface; see Fig. 9.

V. INCOMMENSURATE SPIN DENSITY WAVES

This section will explore the possibility that the SDW
phase in Fig. 4 has incommensurate spin correlations, as
indicated as a possibility along arrow C in Fig. 3. This is
motivated by the numerous observations of incommensurate
spin order in the underdoped regime of the La-based cuprates.

We approach the SDW phase B from the FL* phase A.
Both of these phases have the Higgs condensate 〈�p

α〉 = 0,
while only the SDW phase has 〈Z p〉 = 0. Our operating as-
sumption is that the coupling to the Fermi pockets of the FL*
phases leads the Z p spinons to condense at an incommensu-
rate wave vector. In the remaining discussion in this section,
we will not distinguish between the SU(2)S indices and the
SU(2)g indices because they are identified by the diagonal �

p
α

condensate in (3.2). Moreover, the spinons wα are identified
with Z p by (2.4) and (2.5). So we will denote the spinons by
Zα in this section, and (2.6) becomes

na = Z∗
α σ aα

β Zβ. (5.1)

We are interested in a state in which the spinon condensate
in (3.2) is replaced by

〈Zα (�r)〉 = Z̄α
1 ei �q1·�r + Z̄α

2 ei �q2·�r + Z̄α
3 e−i �q1·�r + Z̄α

4 e−i �q2·�r, (5.2)

where �q1 and �q2 incommensurate wave vectors are related by
square-lattice symmetries. Thus, we could have �q1 = (κ, 0)
and �q2 = (0, κ ), or we could have �q1 = (κ, κ ) and �q2 =
(−κ, κ ), where κ is some small incommensurate wave vector.
Inserting (5.2) into (5.1), we see that the possible ordering
wave vectors of the SDW order are

(π, π ); (π, π ) ± 2�q1; (π, π ) ± 2�q2; (π, π ) ± �q1 ± �q2.

(5.3)

Of significant importance is the fact that there remains an
SDW ordering at the commensurate wave vector (π, π ) with
weight proportional to

Z̄∗
1ασ aα

β Z̄β

1 + Z̄∗
2ασ aα

β Z̄β

2 + Z̄∗
3ασ aα

β Z̄β

3 + Z̄∗
4ασ aα

β Z̄β

4 . (5.4)

As the cuprates do not display coexistence between incom-
mensurate SDW and (π, π ) Néel ordering, we will only be
interested in cases in which (5.4) vanishes for all components
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FIG. 8. Fermi surface and spectral weight in the C′ phase. The blue line corresponds to cα Fermi surface and the red line corresponds to
f p ghost Fermi surface. Parameters: � = 0.0, Z = 0.1, μc = −0.213, μ f = 0.065.

a. A solution with only a unidirectional SDW at (π, π ) ± 2�q1

requires that

Z̄α
2,4 = 0, Z̄α

3 = εαβ Z̄∗
1β. (5.5)

Then the SDW ordering is described by

n(�r) = εαγ Z̄γ

1 σα
β Z̄β

1 e2i �q1·�r + c.c. = (m1 + im2)e2i �q1·�r + c.c.,

(5.6)

where m1,2 are real vectors obeying

m1 · m1 = m2 · m2 =
(∣∣Z̄α

1

∣∣2
)2

, m1 · m2 = 0. (5.7)

So we see that (5.6) is a spiral SDW, and not a collinear
“stripe” SDW. Such spiral SDW states have been considered
in many studies, and recently in Ref. [63]. But the present
approach of condensing Zα does not lead to unidirectional
“stripe” states with collinear spin correlations, of the type
observed in recent numerical studies [76,77].

We now turn to a microscopic mechanism for the conden-
sation of Zα at an incommensurate wave vector. Our idea is
that the coupling of the Zα to the Fermi pockets of the FL*
phase will lead to a Zα self-energy, and this self-energy will
lead to a minimum in the dispersion of the Zα at (π, π ) ± �q1,2.
A similar approach was used early on in Ref. [13], but in a

theory of the paramagnons na coupled to the Fermi pockets.
Our point here is that the existence of Fermi pockets that do
not have a Luttinger volume requires fractionalization, and so
we should carry out the computation using the fractionalized
spinon excitations Zα rather than the paramagnons na.

We write the Hamiltonian for the electron layer and the first
ancilla layer in Eq. (3.3) in the form

Hc f =
∑

�k

[
εc�kc†

�k,α
cα

�k + ε f �k f †
�k,α

f α
�k + �̄ f †

�k,α
cα

�k + �̄∗c†
�k,α

f α
�k
]
.

(5.8)
This yields the normal fermion Green’s functions

Gc(�k, iω) =
iω − ε f �k

(iω − εc�k )(iω − ε f �k ) − |�̄|2

=
iω − ε f �k

(iω − E1�k )(iω − E2�k )
, (5.9)

G f (�k, iω) = iω − εc�k
(iω − εc�k )(iω − ε f �k ) − |�̄|2

= iω − εc�k
(iω − E1�k )(iω − E2�k )

, (5.10)

FIG. 9. Spectral weight in the FL∗ and D phase. Parameters: � = 0.09, Z = 0.0, μc = −0.24, μ f = 0.009. � = 0 in the D phase.
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FIG. 10. Self-energy diagrams from the Js and J⊥ vertices. (a) Diagram from only Js vertex proportional to J2
s . (b) Diagram from only J⊥

vertex proportional to J2
⊥. (c),(d) Diagrams combining Js and J⊥ vertices, which involves the mixed propagators Gc f and Gf c, and is proportional

to JsJ⊥ with an additional suppression by |�̄|2. Solid lines correspond to c propagators, dashed lines correspond to f propagators, and wiggly
lines correspond to bare Z boson propagator. The lines that are both solid and dashed correspond to Gc f and Gf c.

where

E1�k =
εc�k + ε f �k +

√
(εc�k − ε f �k )2 + 4|�̄|2

2
,

E2�k =
εc�k + ε f �k −

√
(εc�k − ε f �k )2 + 4|�̄|2

2
, (5.11)

and εc�k , ε f �k are defined in Eqs. (4.3) and (4.4).

The Zα are described by a CP1 field theory,

L = 1
g |(∂μ − iaμ)Zα|2 + iλ(|Zα|2 − 1). (5.12)

Here iλ = λ + iλ̃, where λ̃ is the fluctuating part of λ, and
the saddle point λ is the Lagrange multiplier imposing the
constraint on the Z boson density. Thus, ignoring the gauge
field, the Z boson Green’s function is

D(�k, iω) = g

ω2 + εZ�k + λ − �(�k, iω)
, (5.13)

where �(�k, iω) denotes the self-energy of the Z boson. The
bare Z boson propagator is given by

D0(�k, iω) = g

(iω + EZ�k )(−iω + EZ�k )
, (5.14)

where EZ�k =
√

εZ�k + λ, with εZ�k = k2 in the continuum, but
on the lattice we use εZ�k = v{1 − [cos(kx ) + cos(ky)]/2} lead-
ing to the form εZ�k ∼ vk2/4 near �k = 0. We write the coupling
of Z bosons to the c and f layers in the first terms in Eq. (3.4)
as

HZ =
∑

i

ηiZ
∗
iγ σ

aγ

δ Zδ
i

[−Jsc
†
iασ aα

β cβ
i + J⊥ f †

iασ aα
β f β

i

]
, (5.15)

where we recall that ηi = (−1)xi+yi . In addition, we will also
consider the influence of a term of the form

H3 = J3

∑
i

ηiZ
∗
iγ σ

aγ

δ Zδ
i

[
c†

iασ aα
β f β

i + f †
iασ aα

β cβ
i

]
. (5.16)

This term involves a nonlocal exchange between the top two
layers, and it is clearly permitted by the symmetries of the
problem.

The coupling terms in Eqs. (5.15) and (5.16) contribute to
self-energy corrections to the Z boson propagator. At the bare
level, the Z boson propagator at iω = 0, D0(�k, iω = 0), has
a maximum at �k = 0. We are interested in the case in which

the renormalized Z propagator at iω = 0, D(�k, iω = 0), has a
maximum at �k = 0 or, equivalently, the inverse Z propagator
D(�k, iω = 0)−1 has its minimum at �k = 0. This means that at
low temperatures, the Z boson can condense at this nonzero
�k leading to a nontrivial spin order. In our case, that may
correspond to a spiral or a double spiral.

A. Spinon self-energy

Let us first write the lowest-order self-energy contribution
from the HZ term in Eq. (5.15). It has two diagrams shown in
Figs. 10(a) and 10(b) leading to the following forms:

�10a(�k, iω) = −6J2
s

β2

∑
iω1,iω2

∫
�k

Gc(�k1, iω1)Gc(�k2, iω2)

× D0(�k − �k1 + �k2 − �Qπ , iω + iω2 − iω1),
(5.17)

�10b(�k, iω) = −6J2
⊥

β2

∑
iω1,iω2

∫
�k

G f (�k1, iω1)G f (�k2, iω2)

× D0(�k − �k1 + �k2 − �Qπ , iω + iω2 − iω1),
(5.18)

where we have used a short-hand notation,

∫
�k
= 1

(2π )4

∫
d�k1d�k2, (5.19)

and �Qπ = (π, π ), which arises by writing ηi = ei �Qπ · �Ri . It
turns out that for both of these diagrams, −�10a/b(�k, 0) has
its minimum at �k = 0, and thus D(�k, 0)−1

10ab = D0(�k, 0)−1 −
�10a(�k, 0) − �10b(�k, 0) always has its minimum at �k = 0. In
addition to these diagrams, there are also self-energy diagrams
involving mixed propagators, Gc f and G f c, which lead to a
minimum at �k = 0 in D(�k, 0)−1. The corresponding diagrams
are shown in Figs. 10(c) and 10(d). However, these diagrams
are suppressed by a factor of |�̄|2 arising in the mixed prop-
agators, which is quite small. So these contributions will
always be subdominant compared to the previous diagrams.
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FIG. 11. Self-energy diagrams from the J3 vertex. Solid lines correspond to c propagators, dashed lines correspond to f propagators, and
wiggly lines correspond to bare Z boson propagators. The lines that are both solid and dashed correspond to Gc f and Gf c.

For completeness, we quote their expressions here,

�10c(�k, iω) = 6JsJ⊥
β2

∑
iω1,iω2

∫
�k

Gc f (�k1, iω1)G f c(�k2, iω2)

× D0(�k − �k1 + �k2 − �Qπ , iω + iω2 − iω1),
(5.20)

�10d (�k, iω) = 6J⊥Js

β2

∑
iω1,iω2

∫
�k

G f c(�k1, iω1)Gc f (�k2, iω2)

× D0(�k − �k1 + �k2 − �Qπ , iω + iω2 − iω1).

(5.21)

The self-energy contribution arising from the H3 term
has two diagrams involving normal propagators, shown in
Figs. 11(a) and 11(b), giving the following expressions:

�11a(�k, iω) = −6J2
3

β2

∑
iω1,iω2

∫
�k

Gc(�k1, iω1)G f (�k2, iω2)

× D0(�k − �k1 + �k2 − �Qπ , iω + iω2 − iω1),
(5.22)

�11b(�k, iω) = −6J2
3

β2

∑
iω1,iω2

∫
�k

G f (�k1, iω1)Gc(�k2, iω2)

× D0(�k − �k1 + �k2 − �Qπ , iω + iω2 − iω1).
(5.23)

FIG. 12. Self-energy contributions and bosonic propagators. In subfigures (a) and (e) the self-energy contributions [−�11a(�k, 0) −
�11b(�k, 0)]/6J2

3 are shown for m2
Z = 1, β = 10 and m2

Z = 10, β = 10, respectively. The remaining subfigures show the inverse propagator of
the Z boson D(�k, 0)−1

11ab, computed according to Eq. (5.26), at iω = 0 for different values of J3, m2
Z , and β: (b) m2

Z = 1, β = 10, 6J2
3 = 552.5;

(c) m2
Z = 1, β = 10, 6J2

3 = 600; (d) m2
Z = 1, β = 1000, 6J2

3 = 378; (f) m2
Z = 10, β = 10, 6J2

3 = 5300; (g) m2
Z = 10, β = 10, 6J2

3 = 5319; (h)
m2

Z = 10, β = 5, 6J2
3 = 9655. These values were chosen to showcase different constellations in which the minimum of the inverse boson

propagator can occur at �k = 0. For the boson dispersion, a value of v = 4 was used.
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FIG. 13. Spectral weight in the collinear bidirectional SDW. Js = 2J⊥ = 1, J3 = 0.2.

For these diagrams, −�11a/b has its minimum at �k = 0 (see
Fig. 12) and thus for sufficiently large values of J3 the in-
verse propagator of the Z boson, D(�k, 0)−1

11ab = D0(�k, 0)−1 −
�11a(�k, 0) − �11b(�k, 0), has a minimum at �k = 0. In addition,
as before, there are two more diagrams involving mixed prop-
agators, shown in Figs. 11(c) and 11(d), with the following
expressions:

�11c(�k, iω) = −6J2
3

β2

∑
iω1,iω2

∫
�k

Gc f (�k1, iω1)Gc f (�k2, iω2)

× D0(�k − �k1 + �k2 − �Qπ , iω + iω2 − iω1),
(5.24)

�11d (�k, iω) = −6J2
3

β2

∑
iω1,iω2

∫
�k

G f c(�k1, iω1)G f c(�k2, iω2)

× D0(�k − �k1 + �k2 − �Qπ , iω + iω2 − iω1).
(5.25)

These are again suppressed by an additional small factor of
|�̄|2 and so these are subdominant compared to the previous
diagrams. In Appendix A, we provide detailed expressions of
the self-energy terms.

To make the renormalization of the Z boson partially self-
consistent, we employ a similar approach to that in Ref. [13].
To this end, we rewrite its propagator defined in Eq. (5.13) as

D(�k, iω) = g

ω2 + εZ�k + m2
Z − �(�k, iω) + �(0, 0)

, (5.26)

where m2
Z = λ − �(0, 0) is the boson mass gap. Thus, to take

into account the renormalized mass gap, in Eq. (5.14) we
replace λ by m2

Z , effectively using D0(�k, iω) = (ω2 + εZ�k +
m2

Z )−1 in Eqs. (5.17) and (5.18) and Eqs. (5.20)–(5.25). As a
result, the closing of the bosonic mass gap due to the renor-
malization process affects the renormalization of the Z boson.

In Fig. 12 we show self-energy contributions
[−�11a(�k, 0) − �11b(�k, 0)] (in units of 6J2

3 ) along with
the inverse propagator of the Z boson resulting from these
corrections. As can be seen, the self-energy contributions
(multiplied by a factor of −1) are negative and feature a
minimum at �k = �Qπ . Thus, for a sufficiently large value of
6J2

3 , the Z boson inverse propagator, computed according to

Eq. (5.26), features a minimum at �k = 0. For smaller values
of J3 its minimum remains at �k = 0, while for intermediate
values its minimum can behave in one of several ways
before eventually reaching �k = �Qπ for sufficiently large
values of J3. For these intermediate values of J3 we have
observed instances in which the minimum moved along the
diagonal (kx = ky) or the vertical/horizontal (ky = 0/kx = 0).
Additionally, it has jumped from �k = 0 via �k = (π, 0)
to �k = �Qπ or even directly. Several such possibilities are
illustrated in Fig. 12, where we show bosonic propagators
with degenerate minima between 0 and �Qπ (b) or (π, 0) and
(π, π ) (g) as well as propagators with minima at �Qπ (c),
minima at (k, 0), (0, k) (d), minima at (π, 0), (0, π ) (f), and
minima at (k, k) (h), where k ∈ [0, π ] and we have only listed
minima in the upper right quadrant.

B. Fermi surfaces

This section will briefly present the Fermi surfaces induced
by incommensurate SDW order across the transition from the
FL* metal. Along with the spiral SDW obtained in (5.6),
we will also consider collinear SDW states for completeness
in the following subsections. The latter states are “stripes”
because they have coexisting charge density wave order.

1. Collinear bidirectional SDW

Collinear SDWs are characterized by complex order pa-
rameters �a

x and �a
y , taking the place of the real vectors ma

1,2
in (5.6) for spiral SDWs. These determine the spin density via

Sa(r) = Re
[
ei �Kx ·r�a

x (r) + ei �Ky·r�a
y (r)

]
, (5.27)

where

�Kx = (3π/4, π ), �Ky = (π, 3π/4). (5.28)

An order parameter with arg(�xa) = (0, π/4, π/2, 3π/4,

π, 5π/4, 3π/2, 7π/4) is bond-centered, and one with
arg(�xa) = (π/8, 3π/8, 5π/8, 7π/8, 9π/8, 11π/8, 13π/8,

15π/8) is site-centered. We chose a commensurate wave
vector to obtain a smaller unit cell.

The mean-field Hamiltonian for the bidirectional SDW will
be given by Ha

c f + Hc
c f , with the wave vectors in (5.28). In
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FIG. 14. Spectral weight in the collinear bidirectional SDW. Js = 2J⊥ = 1, J3 = 0.2.

momentum space, Ha
c f is given by Eq. (5.8) and Hc

c f looks as
follows:

Hc
c f =

∑
�k

−Js

(
�xc†

�k+ �Kx,α
σ zα

β cβ

�k + �yc†
�k+ �Ky,α

σ zα
β cβ

�k

)

+ H.c. + J⊥(· · · ) + J3(· · · ), (5.29)

where the J⊥ term is the same as the Js term with c → f . We
also include the J3 term, which couples c and f fermions in
the same way; see (5.16).

The Hamiltonian can be diagonalized in the following basis
of 128 elements given by �k = (ckx+Qi,ky+Qj , fkx+Qi,ky+Qj ),
where Qi = (0, 3π/4, 6π/4, 9π/4, π, 7π/4, 2π/4, 5π/4).
We can compute a spectral weight after the SDW order
emerges. For simplicity, we put Js = 2J⊥ = 1, J3 = 0 and
change only �x = �s, �y = �seiπ/8. Chemical potentials
and hybridization were chosen to be as in Fig. 5. Figures 13
and 14 show that hole pockets evolve into more complicated
Fermi surfaces with the possible gap closing in the antinodal
region.

2. Collinear unidirectional SDW

Now we consider the case of unidirectional SDW with
wave vector �Kx = (3π/4, π ). The Hamiltonian will be the
same as in a previous case with �y = 0. The evolution of the
spectral weight is depicted in Fig. 15. We see that as we move
deeper into the SDW phase, the hole pocket of a different size

arises in the nodal region followed by the emergence of the
fermion pocket in the antinodal region.

C. Spiral unidirectional SDW

We consider spiral SDW with �S(r) = �x(�x + i�y)ei �Kx�r +
(c.c.). The Ha

c f part of the Hamiltonian is not changed, while
the Hc

c f part looks as follows:

Hc
c f = −Js

(
�xc†

�k+ �Kx,α
(σ+)αβcβ

�k + �xc†
�k,α

(σ−)αβcβ

�k+ �Kx

)

+ J⊥(· · · ) + J3(· · · ). (5.30)

The Hamiltonian can be diagonalized in the following basis:

��k = (c�k,↑, c�k,↓, c�k+ �Kx,↑, c�k− �Kx,↓, f�k,↑, f�k,↓, f�k+ �Kx,↑, f�k− �Kx,↓).
(5.31)

It is important to stress that even for incommensurate �Kx, the
size of the basis is not changed; that is because fermions with
spin up can only scatter by wave vector + �Kx to fermions with
spin down, but cannot scatter back with wave vector − �Kx.
So the present computation can be carried out for arbitrary
�K , and the results for commensurate and incommensurate
wave vectors are not different. The distribution of the spectral
weight, see Fig. 16, is similar to a collinear scenario, but
the important difference is that original hole pockets do not
disappear, and reconstruction of the Fermi surface happens on

FIG. 15. Spectral weight in the unidirectional collinear SDW phase. Js = 2J⊥ = 1, J3 = 0.2.
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FIG. 16. Spectral weight in the unidirectional spiral SDW phase. Js = 2J⊥ = 1, J3 = 0.2, �s = 0.06.

top of the hole pockets. The exact way the Fermi surface is
reconstructed would depend on the wave vector �Kx.

VI. DISCUSSION

An earlier paper [28] showed that the observed photoe-
mission spectrum in the pseudogap metal of the underdoped
hole-doped cuprates [7,10] could be well described by a para-
magnon fractionalization theory summarized in Figs. 1 and 2.
A similar connection to the experimental data has also been
made in the YRZ framework [54]. We view this agreement as
evidence in favor of the presence of spin fractionalization in
the underdoped cuprates at intermediate temperatures.

Also notable are recent experimental studies [78] of the
very lightly doped state with long-range Néel order at wave
vector (π, π ). Convincing evidence has recently been ob-
tained for the presence of hole pockets in such a metallic state.

This situation provided motivation for the studies presented
in this paper, as summarized in Fig. 3. We view the pseudogap
metal at intermediate temperatures and underdoping as the
“parent” of the phase diagram. We described this pseudogap
as a metal with hole pockets whose enclosed volume does
not equal the Luttinger volume. Consequently, this phase must
have fractionalized spin excitations, i.e., it is an FL* metal.

We described how the FL* state of the pseudogap metal
evolved into a metallic (π, π ) Néel state without fraction-
alization with decreasing doping, as shown by arrow A in
Fig. 3. We used charge-neutral bosonic spinons to represent
the fractionalized paramagnons, and condensation of such
spinons led to the Néel state in which all emergent gauge
fields were Higgsed. We described the evolution of the hole
pockets across the transition from the FL* state to the metallic
Néel state in Sec. IV B 1. We are presenting these results as
predictions for future observations which are able to follow
the Fermi surfaces from the pseudogap metal to the ordered
Néel state; in particular, Figs. 5 and 6 show how the effective
size of the hole pocket doubles [60] in the full Brillouin
zone across the transition from the pseudogap metal to the
Néel metal. Furthermore, we propose that, in sufficiently clean
samples, the evidence for hole pockets in the pseudogap metal
state without magnetic order will become sharper than that
presented in Ref. [11]: this would then constitute direct evi-
dence for an FL* metal with fractionalized excitations.

We also considered the situation with increasing doping
from the pseudogap metal, as shown by arrow B in Fig. 3. In
this direction, the FL* state evolves into a conventional Fermi
liquid via an intermediate metallic state with ghost Fermi
surfaces [25–27]. We studied this route to the confinement of
fractionalized excitations, and our results are summarized in
the phase diagram in Fig. 4. All the phases in this diagram
are described in terms of a gauge theory of the fields collected
in Table I. The paramagnon field n is gauge-neutral, and it is
related to the fractionalized fields via (2.6); the paramagnon
becomes an elementary excitation in the Fermi liquid phases
where all gauge charges are confined. The effective action
for these fields can be deduced from the symmetries listed
in Table I, and the potential for the bosonic fields appeared
in (3.1). The nature of the transition out of the pseudogap
metal to the Fermi liquid, i.e., that between phases A and
D in Fig. 4, is the same as that considered in earlier work
[25,26], and it involves critical fluctuations of the Higgs field
� coupled to the c and f Fermi surfaces. The second an-
cilla layer of spins is not important to this critical theory,
and so the use of bosonic spinons here, in contrast to the
fermionic spinons in the earlier work [25,26], does not make
a substantial difference. Upon adding spatial disorder to the
Yukawa coupling of the Higgs field �, such a theory will
yield a strange metal with linear-T resistivity in the critical
region [79,80].

Finally, in Sec. V we considered the fate of the FL* metal
upon lowering T within the pseudogap, as shown by arrow
C in Fig. 3. Here, we face the important question of whether
the fractionalization will survive at lower T , or even at T = 0.
There has been no direct experimental evidence in favor of
fractionalization at low T so far. Recent numerical studies
on the doped Hubbard model [76,77] indicate that the T = 0
state is a conventional striped state with both spin and charge
density wave orders. In light of this, Sec. V considered the
appearance of a confining incommensurate SDW state via the
condensation of the bosonic spinons at an incommensurate
wave vector. We showed in Sec. V A that coupling of the
bosonic spinons to the hole pockets could induce a self-energy
so that the spinon dispersion minimum was at an incommen-
surate wave vector. This mechanism for the appearance of
incommensurate SDW from hole pockets is similar to that
considered in Ref. [13], although that analysis was expressed
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in terms of the paramagnon dispersion. We presented predic-
tions for the photoemission spectrum as it evolved from the
pseudogap to incommensurate SDW states.

A significant result of our analysis, appearing in Eqs. (5.1)–
(5.7), is that our spinon condensation mechanism did not
induce a collinear SDW with coexisting charge stripe order.
Instead, the SDWs found in Sec. V carried spiral spin cor-
relations. The basic reasoning is independent of the form of
the spinon free energy. These equations show that incom-
mensurate spinons induce an incommensurate SDW along
with a commensurate SDW. As such a coexistence is not
observed, we impose the requirement that the commensurate
SDW vanish: we then find that this can only be achieved by
an incommensurate spiral SDW.

Arrow C in Fig. 3 also indicates transitions from FL*
to d-wave superconductivity and charge density wave. Such
transitions were discussed in Refs. [81,82] using fermionic
spinons for cases in which the parent was a Z2 spin liquid. The

dual fermionic spinon description of the confining instabilities
of a parent CP 1 U(1) spin liquid is presented in a companion
paper [37]; the dual of the CP 1 U(1) spin liquid has fermionic
spinons moving in π flux coupled to an emergent SU(2) gauge
field [34].
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APPENDIX: SELF-ENERGY EXPRESSION

We can perform the frequency summation in the self-energy expression in Eq. (5.17), and we obtain

�10a(�k, iω) = 6J2
s

(2π )4

∫
d�k1d�k2d�k3 δ(�k1 − �k2 + �k3 − �k + �Qπ )

12∑
i=1

Si, (A1)

S1 =
nF (E1�k1

)nF (E1�k2
)(E1�k1

− ε f �k1
)(E1�k2

− ε f �k2
)

(iω − E1�k1
+ E1�k2

+ EZ�k3
)(iω − E1�k1

+ E1�k2
− EZ�k3

)

1

(E1�k1
− E2�k1

)

1

(E1�k2
− E2�k2

)
, (A2)

S2 =
nF (E1�k1

)nF (E2�k2
)(E1�k1

− ε f �k1
)(E2�k2

− ε f �k2
)

(iω − E1�k1
+ E2�k2

+ EZ�k3
)(iω − E1�k1

+ E2�k2
− EZ�k3

)

1

(E1�k1
− E2�k1

)

1

(E2�k2
− E1�k2

)
, (A3)

S3 =
nF (E2�k1

)nF (E1�k2
)(E2�k1

− ε f �k1
)(E1�k2

− ε f �k2
)

(iω − E2�k1
+ E1�k2

+ EZ�k3
)(iω − E2�k1

+ E1�k2
− EZ�k3

)

1

(E2�k1
− E1�k1

)

1

(E1�k2
− E2�k2

)
, (A4)

S4 =
nF (E2�k1

)nF (E2�k2
)(E2�k1

− ε f �k1
)(E2�k2

− ε f �k2
)

(iω − E2�k1
+ E2�k2

+ EZ�k3
)(iω − E2�k1

+ E2�k2
− EZ�k3

)

1

(E2�k1
− E1�k1

)

1

(E2�k2
− E1�k2

)
, (A5)

S5 = −
(E1�k2

− ε f �k2
)

2EZ�k3
(E1�k2

− E2�k2
)

nF (E1�k2
)nB(EZ�k3

)(iω − ε f �k1
+ E1�k2

+ EZ�k3
)

(iω − E1�k1
+ E1�k2

+ EZ�k3
)(iω − E2�k1

+ E1�k2
+ EZ�k3

)
, (A6)

S6 = −
(E2�k2

− ε f �k2
)

2EZ�k3
(E2�k2

− E1�k2
)

nF (E2�k2
)nB(EZ�k3

)(iω − ε f �k1
+ E2�k2

+ EZ�k3
)

(iω − E1�k1
+ E2�k2

+ EZ�k3
)(iω − E2�k1

+ E2�k2
+ EZ�k3

)
, (A7)

S7 =
(E1�k2

− ε f �k2
)

2EZ�k3
(E1�k2

− E2�k2
)

nF (E1�k2
)nB(−EZ�k3

)(iω − ε f �k1
+ E1�k2

− EZ�k3
)

(iω − E1�k1
+ E1�k2

− EZ�k3
)(iω − E2�k1

+ E1�k2
− EZ�k3

)
, (A8)

S8 =
(E2�k2

− ε f �k2
)

2EZ�k3
(E2�k2

− E1�k2
)

nF (E2�k2
)nB(−EZ�k3

)(iω − ε f �k1
+ E2�k2

− EZ�k3
)

(iω − E1�k1
+ E2�k2

− EZ�k3
)(iω − E2�k1

+ E2�k2
− EZ�k3

)
, (A9)

S9 =
(E1�k1

− ε f �k1
)

2EZ�k3
(E1�k1

− E2�k1
)

nF (E1�k1
− EZ�k3

)[nF (E1�k1
) + nB(EZ�k3

)](iω − E1�k1
+ ε f �k2

+ EZ�k3
)

(iω − E1�k1
+ E1�k2

+ EZ�k3
)(iω − E1�k1

+ E2�k2
+ EZ�k3

)
, (A10)

S10 = −
nF (E1�k1

+ EZ�k3
)[nF (E1�k1

) + nB(−EZ�k3
)](iω − E1�k1

+ ε f �k2
− EZ�k3

)(E1�k1
− ε f �k1

)

2EZ�k3
(E1�k1

− E2�k1
)(iω − E1�k1

+ E1�k2
− EZ�k3

)(iω − E1�k1
+ E2�k2

− EZ�k3
)

, (A11)

S11 =
nF (E2�k1

− EZ�k3
)[nF (E2�k1

) + nB(EZ�k3
)](iω − E2�k1

+ ε f �k2
+ EZ�k3

)(E2�k1
− ε f �k1

)

2EZ�k3
(E2�k1

− E1�k1
)(iω − E2�k1

+ E1�k2
+ EZ�k3

)(iω − E2�k1
+ E2�k2

+ EZ�k3
)

, (A12)

S12 = −
nF (E2�k1

+ EZ�k3
)[nF (E2�k1

) + nB(−EZ�k3
)](iω − E2�k1

+ ε f �k2
− EZ�k3

)(E2�k1
− ε f �k1

)

2EZ�k3
(E2�k1

− E1�k1
)(iω − E2�k1

+ E1�k2
− EZ�k3

)(iω − E2�k1
+ E2�k2

− EZ�k3
)

. (A13)
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The expression for the self-energy �10b in Eq. (5.18) is obtained by replacing ε f → εc and Js → J⊥ in the above expressions. The
expression for the self-energy �11a in Eq. (5.22) is obtained by replacing ε f �k2

→ εc�k2
and Js → J3 in the above expressions, while

that for �11b in Eq. (5.23) is obtained by replacing ε f �k1
→ εc�k1

and Js → J3. The expressions for the self-energies �10c,�10d

in Eqs. (5.20) and (5.21) are obtained by replacing all terms in the numerator not involving the Bose- or Fermi-distribution
functions by |�̄|2, and replacing J2

s → JsJ⊥ in the above expressions. The expressions for �11c,�11d in Eqs. (5.24) and (5.24)
are obtained analogously, replacing Js → J3.
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