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Charge density wave fluctuation driven composite order in layered kagome metals
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The recently discovered kagome metals AV3Sb5 (A = K, Rb, Cs) offer an exciting route to study exotic
phases arising due to interplay between electronic correlations and topology. In addition to superconductivity,
these materials exhibit a charge-density-wave (CDW) phase occurring at ∼100 K, whose origin still remains
elusive. The robust multicomponent 2 × 2 CDW phase in these systems is of great interest due to the presence
of an unusually large anomalous Hall effect. In quasi-two-dimensional systems with weak interlayer coupling,
fluctuation-driven exotic phases may appear. In systems with multicomponent order parameters, fluctuations may
lead to establishment of composite order when only products of individual order parameters condense while the
individual ones themselves remain disordered. We argue that such a fluctuation-driven regime of composite
CDW order may exist in thin films of kagome metals above the CDW transition temperature. It is suggested that
the melting of the trihexagonal state in the material doped away from the Van Hove singularities gives rise to
a pseudogap regime where the spectral weight is concentrated in small pockets and most of the original Fermi
surface is gapped. Our findings suggest the possible presence of exotic phases in the weakly coupled layered
kagome metals, more so in the recently synthesized thin films of kagome metals.
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I. INTRODUCTION

The interplay between electronic correlations and topology
is a major field of study in the condensed matter systems [1,2].
The recently discovered kagome metals AV3Sb5 (A = K, Rb,
Cs) are quasi-two-dimensional (2D) systems with hexago-
nal lattice symmetry [3]. The band structure of the kagome
metals exhibits flat band, saddle-point Van Hove singularities
(VHSs) and a pair of Dirac points. Owing to such an electronic
structure, these systems have created a platform to study
exotic phases which can occur due to the presence of both
correlations and topology [4,5].

All AV3Sb5’s undergo a charge-density-wave (CDW) tran-
sition [6–10] at around temperature TCDW ∼ 100 K. Along
with the emergence of the CDW order, experiments and the-
oretical studies have found different unusual properties, such
as bond density modulations [11], a chiral flux phase [12,13],
and a giant anomalous Hall effect [14–16] with time-reversal
symmetry breaking [17–20], which can be associated with
loop currents [21–23].

At much lower temperatures these materials may exhibit
superconductivity [4,24–26] with Tc ∼ 1 K. The nature of
the superconducting phase is still under debate. Some exper-
iments found the gap to be nodeless [27], some to contain
nodes [28]. Theoretical studies suggest an unconventional
nature of the superconductivity [29–33]. There have also been
proposals of more exotic superconductivity like pair-density
wave [34,35], charge 4e and charge 6e superconducting states
[35], and nematicity [36–38].

There have been many works [39–44] to gain insight into
the nature of the CDW phase. So far, it is well established that
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the CDW order of the kagome metals is a multicomponent
(3Q) one, although the real space structure of the CDW phase
still remains elusive. Experiments [45,46] observe both star
of david (SOD) and trihexagonal (TRH) patterns in the 2D
plane of these systems. Moreover, the CDW order doubles
the unit cell in the (a,b) plane and hence has a robust 2 × 2
feature as found in scanning tunneling microscopy (STM) [6],
angle-resolved photoemission spectroscopy (ARPES) [47],
and x-ray [48] experiments. However, some x-ray and STM
experiments found a modulation in the crystallographic c
direction for the kagome metals with alkali atoms Rb and
Cs. The simultaneous ordering of the CDW phase with com-
mensurate momenta 3Q are believed to be driven by nested
Fermi surface instabilities [29,30,49,50], enhanced through
the presence of VHSs due to logarithmically diverging density
of states at the VHS points [51] in 2D. In this paper, we ex-
plore the situation [29] of a 5

12 filled band when the chemical
potential lies at the VHS.

According to the Mermin-Wagner theorem [52], fluctua-
tions are enhanced in low dimensions. The presence of strong
fluctuations is well established in such quasi-2D systems as
cuprates, iron-based superconductors [53] where they are re-
sponsible for a pseudogap phase [54–56], anomalous phonon
softening [57], and different emergent orders [58–60]. These
prototype examples indicate that fluctuations may also play
an important role in the layered quasi-2D kagome metal
materials. However, as of now, although authors of several
theoretical works have considered a mean-field scenario of the
CDW order parameters, the effect of fluctuations in kagome
CDW metals has not been discussed. Their effect will become
even more important in the kagome metal monolayers [61]
and thin films [62–64].

In this paper, we go beyond the mean-field theory of the
multicomponent CDW order and consider the fluctuations

2469-9950/2023/108(4)/045119(8) 045119-1 ©2023 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.045119&domain=pdf&date_stamp=2023-07-12
https://doi.org/10.1103/PhysRevB.108.045119


ALEXEI M. TSVELIK AND SAHELI SARKAR PHYSICAL REVIEW B 108, 045119 (2023)

in these orders within a Ginzburg-Landau (GL) free en-
ergy model. As its microscopic justification, we consider
an effective low-energy theory [49] described by the patch
model considering only the V atoms of AV3Sb5, giving rise
to VHSs at the three M points in the Brillouin zone. We
consider 2D systems where topologically nontrivial config-
urations of the order parameter fields—vortices—can melt
away the CDW order and restore the original lattice symmetry
without destroying the quasiparticle gaps. We find an interval
of temperatures above the CDW phase transition where only
a composite order of the three CDWs can exist while the in-
dividual CDW order parameters remain fluctuating. The latter
ones condense at low temperatures.

We organize the rest of the paper as follows. In Sec. II,
we present our working microscopic model which includes
the interactions in the system, giving rise to the electronic
CDW instability. Then in Sec. III, we perform the mean-field
analysis of the CDW orders. In Sec. IV, we consider fluctu-
ations of the CDW order parameters and present a GL free
energy by incorporating the vortex configurations by means
of dual fields. In Sec. V, we consider a simplified case, where
only two CDW orders develop. We discuss appearance of the
composite order in this model. Then in Sec. VI, we discuss the
effects of doping away from the VHSs. We argue that melting
of the TRH phase in a doped system leads to emergence
of a pseudogap regime resembling the one observed in the
underdoped cuprates. Finally, we give a conclusion of our
work in Sec. VII.

II. MODEL

The goal of this paper is to describe fluctuations in the
CDW regime of kagome metals described by the patch model
adopted by Park et al. [49]. A similar model leading to the
same GL energy was used in Ref. [11]. Both models consider
just one vanadium orbital per site of the kagome lattice. The
CDW order is believed to be electronically driven. How-
ever, there are some experiments which point to the role of
phonons [65].

The first-principles calculations [4,66,67] for the kagome
metals AV3Sb5 show saddle points at the Ma points of the
hexagonal Brillouin zone, giving rise to the logarithmically
divergent density of states. Hence, we consider an effective
low-energy model which consideres only patches of the Fermi
surface around the Ma points in the Brillouin zone (Fig. 1) of
kagome metals AV3Sb5 and interactions among the fermionic
states between these saddle points, as was done in Ref. [49].

The noninteracting Hamiltonian is given by

H0 =
3∑

a=1

∑
|k|<�

c†
aσ (k)[εa(k) − μ]caσ (k), (1)

where the single-electron dispersion close to the saddle points
Ma are given by

ε1 = k1(k1 + k2),

ε2 = −k1k2,

ε3 = k2(k1 + k2),

k1,2 = kx ±
√

3ky, (2)

FIG. 1. The hexagonal Brillouin zone, showing the high-
symmetry points. AV3Sb5 exhibits saddle points at M1,2,3, shown by
green and blue circles. The Ma points are connected by the three
nesting vectors Q1,2,3, which are also the ordering wave vectors of
the charge density wave (CDW).

and μ is the chemical potential. Now we consider electron-
electron interactions among the fermions in the three patches
close to the Ma saddle points:

Hint =
∑
a �=b

∑
k1,k2,k3,k4

[
g1

(
c†

a,k1,σ
cb,k4,σ

)(
c†

b,k2,σ ′ca,k3,σ ′
)

+ g2
(
c†

a,k1,σ
ca,k4,σ

)(
c†

b,k2,σ ′cb,k3,σ ′
)

+ g3
(
c†

a,k1,σ
c†

a,k2,−σ

)(
cb,k3,−σ cb,k4,σ

)]
+

∑
a

∑
k1,k2,k3,k4

g4
(
c†

a,k1,σ
ca,k4,σ

)(
c†

a,k2,−σ
ca,k3,−σ

)
.

(3)

The total effective Hamiltonian is given by

H = H0 + Hint. (4)

In the Hamiltonian, a = 1, 2, 3 are the patch indices, and
k is momentum measured from Ma. In Eq. (3), we have
the constraint k1 + k2 + k3 + k4 = 0. The coupling constants
g1, g2, g3, and g4 represent interpatch exchange, interpatch
density-density, Umklapp, and intrapatch scattering terms,
respectively.

The parquet renormalization group (PRG) analysis [49]
suggests that an instability in the system occurs if the corre-
sponding interaction strength becomes positive. In this paper,
we are interested only in various CDW instabilities. We do
not consider [49] interplay between the superconductivity and
the CDW, as the superconductivity appears only at very low
temperature. Now one can construct the following CDW-type
order parameters in the patch model.

For the real CDW (rCDW) and imaginary CDW (iCDW),
the order parameters are, respectively,

�a ∼ G1

∑
k,σ

〈
c†

a2kca3k′
〉
, (5)

�a ∼ G2

i

∑
k,σ

〈
c†

a2kca3k′
〉
. (6)

The effective interaction strengths for rCDW and iCDW
are G1 = −2g1 + g2 − g3 and G2 = −2g1 + g2 + g3, respec-
tively. Moreover, k′ = k + Qa. Here, Qa’s are the three
nesting vectors connecting Ma and the ordering wave vectors
for the CDW order parameters, as shown in the Fig. 1.
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The interactions are assumed to be quasilocal with � being
the ultraviolet (UV) cutoff. The Hamiltonian is SU(2) × Z3 ×
U(1) invariant.

III. MEAN-FIELD THEORY

In this section, we perform a mean-field decoupling of
Eq. (4) in the CDW channels. This already suggests that we
have g4 = 0, as the effective interactions for rCDW and iCDW
do not depend on g4. We keep both rCDW and iCDW and
derive a mean-field Hamiltonian and GL free energy in terms
of complex CDW order parameters.

If the leading interaction term is g1, one can perform the
Hubbard-Stratonovich transformation:

Hm f = |Vab|2
2g1

+
∑
a>b

[Vabc+
aσ cbσ + V ∗

abc+
bσ caσ ]

+
3∑

a=1

∑
|k|<�

εa(k)c+
aσ (k)caσ (k). (7)

We introduce notations V12 = �3,V13 = �2, and V23 = �∗
1.

Now by integrating out the fermion field, we obtain the ac-
tion in terms of the CDW order parameter fields �a = �a +
i�a = |�a| exp(iφa):

F = 1

2g1

∫
d2xdτ |�a|2 − Tr ln G−1, (8)

where G−1 is the inverse Green’s function matrix. The elec-
tronic spectrum at the saddle point is determined by the
equation: ∣∣∣∣∣∣∣

−E + ε1 �3 �2

�∗
3 −E + ε2 �∗

1

�∗
2 �1 −E + ε3

∣∣∣∣∣∣∣ = 0. (9)

The result is

(ε1 − E )(ε2 − E )(ε3 − E ) + E (|�1|2 + |�2|2 + |�3|2)

− ε1|�1|2 − ε2|�2|2 − ε3|�3|2 + �1�3�2

+�∗
1�

∗
2�

∗
3 = 0. (10)

We assume that the fluctuations of moduli are gapped and
consider the saddle point where all |�a|’s are equal. It follows
from Eq. (2) that

ε1ε2 + ε1ε3 + ε2ε3 = 0, (11)

which leads to simplification of Eq. (10), resulting in

(E ± 1)2(E ∓ 2) − 3
(
k2

x + k2
y

)
(E2 − 1)

+ 4k2
x

(
k2

x − 3k2
y

)2 = 0, (12)

where we set |�a| = 1. According to Ref. [33], a plus sign in
the first bracket corresponds to the −3Q phase (SOD). In this
phase, there is a Fermi surface (see Fig. 2). The minus sign
corresponds to the +3Q (TRH) phase where the quasiparticle
spectrum is fully gapped. At g3 �= 0, the mean-field spectrum
should be corrected:

�a → �a +
(

g3

g1

)
�∗

a. (13)

FIG. 2. Contour plots of the gapless quasiparticle branch in the
−3Q phase. The Fermi surface is the boundary between the gray and
brown areas.

This change does not modify the spectrum qualitatively,
though it modifies Green’s function.

IV. GL FREE ENERGY

We will follow the conclusions of the previous papers
and, as we have mentioned above, consider the saddle-point
solution with all |�a|’s being equal and treat fluctuations of
the moduli of �’s as gapped. Hence, the subsequent analysis
of the GL free energy will include only phase fluctuations. In
the absence of the Umklapp g3 = 0, the only phase-dependent
term in the free energy density corresponds to the product of
all three �’s:

δF = −G cos(φ1 + φ2 + φ3). (14)

Hence, in the absence of the Umklapp, two phase fields
remain critical in the low-temperature phase. However, if
g3 �= 0, there is a contribution to the free energy density:

g3
[
�2

a + (�∗
a )2] ∼ g3[cos(2φ1) + cos(2φ2) + cos(2φ3)].

(15)

A. Fluctuations in the CDW order parameters

Now we will consider phase fluctuations of the CDW order
parameters which requires inclusion of the gradient terms. In
2D, one must account for topologically nontrivial configura-
tions of order parameter fields—vortices—which are pointlike
objects with finite energy and can be thermally excited. To
properly account for such configurations, we regularize the
model by putting it on a suitable lattice with lattice constant b
and then taking a continuum limit.

The form of the free energy functional in Eq. (16) reflects
the fact that the order parameters are periodic functions of φa.
This feature allows for topologically nontrivial configurations
of the fields in the form of vortices—configurations where φa

fields change by 2π along closed spacial loops. In the con-
tinuum limit, such configurations are singular, which explains
the necessity for lattice regularization. It is well known that
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in 2D vortices can change the character of phase transitions.
One way to consider them in the continuous limit is to in-
troduce dual phase fields φ̄a [68]. In the present case, this
is slightly unusual because, in the region of interest, the GL
action contains the terms which depend on both φ and φ̄. The
corresponding formalism was introduced in Ref. [69] (see also
Ref. [59]). The regularized GL free energy density is

F
T

= − J

T

∑
a

∑
〈b〉

1

b2
cos [φa(x) − φa(x + b)]

− G cos(φ1 + φ2 + φ3) + Ag3

∑
a

cos(2φa), (16)

where coefficient A ∼ �2/T > 0.
Now we can follow the standard procedure and write the

continuum limit of Eq. (16) as (in what follows, we will set
the stiffness J = 1)

F
T

=
∑

a

[
1

2T
(∂xφa)2 + T

2
(∂xφ̄a)2 + i∂xφa∂yφ̄a

+ Ag3 cos(2φa) + η cos(2πφ̄a)

]
− G cos(φ1 + φ2 + φ3). (17)

The coupling η is proportional to the vortex fugacity. The
model Eq. (17) contains both original fields φa and their dual
fields φ̄a which take care of the vortex configurations. The
corresponding path integral for the partition function includes
integration over both fields:

Z =
∫

Dφa(x)Dφ̄a(x) exp

(
−

∫
d2x

F
T

)
. (18)

To determine whether the cosine terms are relevant or
irrelevant, one has to calculate their scaling dimensions. To
compute the scaling dimensions of various perturbations, we
start with the Gaussian model. The results are

dg3 = T

π
, dη = π

T
, dG = 3T

4
π. (19)

The direct and dual operators cannot order simultaneously;
this creates an interesting situation at the transition where
both of them are relevant. It is a nontrivial situation, see for
example, Ref. [59].

In what follows, we consider a limit of large G when
the sum of all phases is fixed [31]. Now we can make a
transformation as follows:

φa = �√
3

+
(√

2

3

)
eaχ,

ea = (1, 0),

(
−1

2
,

√
3

2

)
,

(
−1

2
,−

√
3

2

)
, (20)

with χ = (χ1, χ2) and treat � as gapped.

FIG. 3. The phase diagram of the kagome metal layer. For J =
1, there is a crossover into a regime with composite order around
T
π

= 8
3 , where the sum of the charge-density-wave (CDW) phases

are frozen. For a doping slightly away from the Van Hove singularity
(VHS; μ �= 0), it will exhibit a pseudogap-like behavior. Around
T
π

= √
3, there is a phase transition into the state where individual

CDWs order. For g3 > 0, the low-temperature phase breaks time-
reversal symmetry.

In this case, we get following the calculation shown in
Appendix, an effective free energy:

Feff

T
=

3∑
a=1

[
Āg3 cos

(√
8

3
eaχ

)
− B cos(2π

√
2ωaχ̄)

]

+
∑
i=1,2

[
1

2T
(∂xχi )

2 + T

2
(∂xχ̄i )

2 + i∂xχi∂yχ̄i

]
,

(21)

where ωa = (0, 1), (
√

3, 1)/2, (
√

3,−1)/2, B ∼ η2, and Ā =
〈cos(�/

√
3)〉A.

The scaling dimensions of the cosines are

dg3 = 2T

3π
, dB = 2π

T
. (22)

The perturbations are relevant or irrelevant when the scaling
dimension of the operators dop < D and dop > D, respectively,
D being the spatial dimension of the system. We observe
that, below T/π = 3, both direct and dual cosine terms are
relevant, provided the G term is relevant, which is true for
T/π < 8

3 .
Below Tc1/π = 8

3 , the G term is relevant, and the sum of
all phases is frozen. However, above a certain temperature Tc2,
the vortices destroy the order of individual CDWs. Only the
product of their order parameters acquires a finite average,
which we refer to as a composite order (�1�2�3) (see Fig. 3).
Since the periodicity of this order parameter coincides with
the periodicity of the lattice, Tc1 is likely to mark a crossover.

At Tc2, there is a transition where individual phases are
frozen which breaks the symmetry of the lattice and may also
break the time-reversal symmetry (see below and see also
Fig. 3). The character of the low-temperature phase is deter-
mined by the signs of G and g3. At G > 0, the product of �’s
has the same sign, and we have the TRH order; at G < 0, it is
negative, and we have the SOD pattern. If g3 < 0, the vacuum
corresponds to χ1 = χ2 = 0. This is rCDW. If g3 > 0, there
are degenerate vacua situated on a hexagonal lattice of χ1,2.

There are two inequivalent points
√

8
3 (χ1, χ2) = (4π/3, 0)

and (2π/3, 2π/
√

3). At each of these vacua, all �a’s are
the same and are equal either to exp(4π i/3) or its complex
conjugate. In the broken-symmetry state, one of this vacua is
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chosen which corresponds to complex rCDW + iCDW with a
broken time reversal. This time-reversal symmetry breaking
spontaneously induces orbital currents which can manifest
into the anomalous Hall effect [14]. The resulting real-space
pattern for the corresponding bond order can be either SOD or
TRH along with the current order pattern, as also discussed in
Refs. [11,49].

The transition temperature is determined by the compe-
tition between normal and dual cosine perturbations. It can
be estimated by comparing the mass scales generated by
the competing operators. A relevant perturbation can drive a
phase transition, and the transition point can be determined by
estimating the scale of mass gaps in the corresponding phases
and comparing them with each other. The scale of the mass
gap can be estimated by the fact that the contribution to the
action of the relevant operator inducing a finite correlation
length becomes of the order of unity. Therefore, we notice
that the phase transition from the composite order state to the
state with individual CDWs occurs when

B1/(2−dB ) ∼ (Āg3)1/(2−dg3 ). (23)

Solving this equation with logarithmic accuracy, we get the
estimate for the transition temperature:

Tc2

π
= 3

2

(
1 − α +

√
1 − 2α

3
+ α2

)
,

α = ln(Āg3)

ln B
. (24)

For comparable coupling constants, it yields Tc2/π = √
3 and

d∗ = 2/
√

3.
The model in Eq. (21) belongs to the class of affine XY

models which have been studied in connection to the problem
of quark confinement [70,71]. Although this model has not
been studied, some insights can be drawn. An affine XY
model with different operators was studied numerically in
Ref. [71], and the results indicate that the transition is prob-
ably weak first order. The hysteresis, however, has not been
observed, which leaves the possibility of a second-order phase
transition. The uncertainty remains, and a first-order transition
also remains a possibility for our case. If, however, it is a
second-order transition, then following the results for another
similar model [72], we suggest that it would belong to the
Z3 Potts universality class [73]. This suggests that the critical
exponents are ν = 5

6 and η = 4
15 [74].

V. SIMPLIFIED CASE

The purpose of this section is to study an example of a
treatable model describing a phase transition driven by mutu-
ally dual cosines. This model describes the case when only
two CDWs develop: �3 = 0 and |�1| = |�2|, describing a
nematicity [38] in the system. Then there are two phases φ1

and φ2, whose fluctuations are described by the action in
Eq. (16). Once their sum is frozen, we arrive at the model
[Eq. (21)] with a single pair of fields χ, χ̄ . This situation was
studied in Ref. [59], and we repeat the calculations here for
illustrative purposes.

In this case, at T/π = 1, the scaling dimensions of the
cosines are equal to 1, giving rise to comparable values of

Āg3 and B. At this point, the bosonic action [Eq. (21)] can be
refermionized and recast as a model of relativistic fermions
with two kinds of mass terms [75]:

Feff

T
= R+(∂y − i∂x )R + L+(∂y + i∂x )L

+ Āg3(R+L + L+R) + B(RL + L+R+). (25)

The next step is to express the Dirac fermions in terms of
Majoranas:

R, L = 1√
2

[ρ (+)
R,L + iρ (−)

R,L ]. (26)

As a result, we get two separate models for Majorana fermions
with masses m± = Āg3 ± B. Each Majorana species corre-
sponds to the 2D Ising model where the mass is proportional
to (T − Tc). For any sign of g3, the transition occurs only for
one Majorana species. As was shown in Ref. [59], the CDW
order parameter (for instance, �1 since, in the given case,
�2 = �∗

1) can be written as

� = iσ+σ− + μ+μ−, (27)

where σ± are the order and μ± are the disorder parameters
of the Ising models with masses m±. One of these models
is always in the ordered 〈σ 〉 �= 0 or disordered (〈μ〉 �= 0)
phase; the other one undergoes a phase transition. It can be
shown that, in the part of the phase diagram where m± > 0,
the expectation value of σ1/2 is nonvanishing, whereas the
average of μ1/2 vanishes. Also, for m± < 0, the average of
σ± vanishes, while the average of μ± becomes finite.

The Z3 symmetric case is more complicated. If the transi-
tion is of the second order, then some insight can be drawn
from Ref. [72], where a similar model at the transition point
was represented as a sum of the critical Z3 Potts model and a
W3 conformal field theory perturbed by a relevant operator:

H = H0
Z3

+ H0
W3

− γ�λ1+λ2,0, (28)

where λ’s are fundamental weights of the SU(3) group. The
perturbed W3 theory is massive.

VI. DOPING

All previous calculations remain valid if the chemical po-
tential is slightly away from the VHS. In the low-temperature
state, the CDW order will lead to reconstruction of the Fermi
surface through Brillouin zone folding with the appearance of
small Fermi pockets, as described, for example, in Ref. [35].
Once the temperature exceeds Tc2, the individual CDW order
will melt, but the spectral gaps will survive. The system will
enter into a pseudogap regime like the one observed in the
underdoped cuprates where, below a certain crossover tem-
perature, most of the original Fermi surface gradually fades
away, and the low-energy spectral weight is concentrated at
small pockets. As in the cuprates, the predicted crossover is
not accompanied by broken-lattice symmetry. The idea is that
melting of the low-temperature Néel order may explain the
observations of the Fermi surface arcs [76].
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VII. CONCLUSIONS

In this paper, we have studied a fluctuation regime in the
CDW order, within an effective low-energy interacting patch
model [49] describing a layered kagome system or a 2D film.
We study the fluctuation by considering a field theoretic tech-
nique which allows us to simultaneously treat the effects of
the discrete symmetry-breaking order and the vortex physics.
We observe that the interplay of fluctuations and topology
(vortices) in 2D leads to formation of a special regime where
the individual low-temperature CDW orders melt, restoring
the lattice symmetry but keeping the quasiparticle gaps intact.
At further lowering of the temperature, the system undergoes
a transition into the phase with individual CDW order.

The suggested mechanism is like the mechanism of for-
mation of charge 6e superconducting condensate described
theoretically in Refs. [35,77–80] and recently observed in
the thin flakes of the kagome superconductor CsV3Sb5 [81].
The measurements were performed on mesoscopic CsV3Sb5

rings fabricated by etching the kagome superconductor thin
flakes exfoliated from bulk samples. We suggest a similar
arrangement for the CDW experiments. We identify the CDW
transition as belonging to the Z3 Potts universality class.
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APPENDIX: FREE ENERGY FOR A LARGE VALUE OF G

The free energy considered in Sec. IV A is given by

F
T

=
∑

a

[
1

2T
(∂xφa)2 + T

2
(∂xφ̄a)2 + i∂xφa∂yφ̄a

+ Ag3 cos(2φa) + η cos(2πφ̄a)

]
− G cos(φ1 + φ2 + φ3). (A1)

At η = 0, one can integrate over ∂xφ̄a:∫
Dφ̄a exp

{
−

∫
d2x

[
T

2
(∂xφ̄a)2 + i∂xφa∂yφ̄a

]}

= const
∫

Dφ̄a exp

{
−

∫
d2x

[
T

2
(∂xφ̄a)2 − i∂yφa∂xφ̄a

]}

∼ exp

[
− 1

2T

∫
d2x(∂yφ)2

]
. (A2)

The result is the partition function for φ fields:

Z[φ] =
∫

Dφa exp

{
−

∫
d2x

[
1

2T
(∂xφa)2 + (∂yφa)2

]

+ Ag3 cos(2φa) − G cos(φ1 + φ2 + φ3)

}
. (A3)

In a similar way, at g3 = 0, we can integrate out the φ

fields.
In the limit of large G, we can consider the sum of all

phases to be fixed. Hence, the GL free energy can be trans-
formed with

φ1 = �√
3

+
(√

2

3

)
χ1,

φ2 = �√
3

+
(√

2

3

)(
−χ1

2
+

√
3

2χ2

)
,

φ3 = �√
3

−
(√

2

3

)(
χ1

2
+

√
3

2χ2

)
. (A4)

In this case, cos(φ1 + φ2 + φ3) = cos(
√

3�). When � is
frozen, the dual field �̄ = ∑

a φ̄a fluctuates strongly so that
correlators of the dual exponents decay exponentially. Then
the dual perturbation is generated in the second order in η:

η2
∫

d2x exp

{
i�̄√

3
+

√
8

3π
eaχ̄

}
r

× exp

{
− i�̄√

3
−

√
8

3π
ebχ̄

}
r+x

, (A5)

giving rise to the operators

cos

[√
8

3
π (ea − eb)χ̄

]
, (A6)

with scaling dimension 2π/T . In that case, we get

Feff

T
=

3∑
a=1

[
Āg3 cos

(√
8

3
eaχ

)
− B cos(2π

√
2ωaχ̄)

]

+
∑
i=1,2

[
1

2T
(∂xχi )

2 + T

2
(∂xχ̄i )

2 + i∂xχi∂yχ̄i

]
,

(A7)

with ωa = (0, 1), (
√

3, 1)/2, and (
√

3,−1)/2. More
explicitly,

∑
a

cos

(√
8

3
eaχ

)

= cos

[√
8

3
χ1

]
+ cos

[√
2

3
(χ1 −

√
3χ2)

]

+ cos

[√
2

3
(χ1 +

√
3χ2)

]
, (A8)

and ∑
a

cos(2π
√

2ωaχ̄)

= cos[2π
√

2χ̄2] + cos[π
√

2(χ̄2 +
√

3χ̄1)]

+ cos[π
√

2(χ̄2 −
√

3χ̄1)]. (A9)
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