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Excitonic metal and non-Fermi liquid behavior in twisted double bilayer
graphene near charge neutrality
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Twisted double bilayer graphene is a compensated semimetal near the charge neutrality point with the presence
of small electron and hole pockets in its band structure. We show that strong Coulomb attraction between the
electrons and holes can lead to the formation of indirect excitons. Condensation of these excitons at low temper-
ature creates an excitonic metal with charge density wave order for an appropriate range of interaction strength.
This has interesting implications for low-temperature transport in the system as a function of carrier density and
temperature. The reorganization of the single-particle excitations and their density of states in the excitonic metal
can lead to peaks in resistivity as a function of carrier density, recently seen in experiments at low temperatures.
The fluctuations of the Landau damped order parameter in the quantum critical metal lead to non-Fermi liquid
behavior, which can explain the sublinear T 2/3 dependence of the resistance near the charge neutrality point.
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I. INTRODUCTION

When sheets of two-dimensional materials are stacked on
top of each other and their crystal axes are twisted (rotated) by
a small angle, the electronic structure of these heterostructures
becomes extremely sensitive to the angle of twist between
them [1–10]. This has led to the idea of twistronics [6,11],
where the twist angle will be used as an experimental knob
to change the electronic properties of these systems. The
tunability of electronic structure with twist angles has been
successfully studied in a controlled fashion in several systems,
including multiple layers of graphene [11–16] and Bernal
stacked bilayer graphene [17–19], graphene-boron nitride
sandwiches [20], and heterostructures made of dichalco-
genides [21,22]. A common feature of these systems is the
presence of (multiple) magic twist angles [1,7], where the
bandwidth of the system is a minimum and the fate of the
system is determined by strong electronic interactions. In
graphene-based systems, such magic angles occur around 1–
1.6 ◦ [14,23,24], leading to large incommensurate moiré unit
cells ∼8–15 nm.

In twisted bilayer graphene (tBLG), where two sheets of
graphene are twisted with respect to each other, the electronic
interactions lead to a plethora of symmetry-broken phases
as a function of the electron density at the magic angle,
from correlated insulators [11,23,25] to orbital ferromagnets
[26] to superconductors [12,13,23,27,28]. In twisted trilayer
graphene (tTLG), where three sheets of graphene are twisted
with respect to each other, the electronic correlations again
lead to a superconducting state over a range of carrier densities
[14,15,29,30]. In comparison, their close cousin, the twisted
double bilayer graphene (tDBLG), where two sheets of Bernal
stacked bilayer graphene are rotated with respect to each
other, had shown a simple metallic behavior as a function of
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filling in early experiments [17,19]. While there is evidence of
correlated behavior in the presence of perpendicular electric
[17,18,24,31] or magnetic [17,31] fields, the phenomenology
of tDBLG in the absence of these fields can be explained by a
noninteracting picture [9,10,17,19].

The metallic behavior of tDBLG even near the charge
neutrality point (CNP) with no external doping is readily
explained by the fact that the flat valence and conduction
bands in tDBLG overlap with each other in energy. This leads
to the formation of small electron and hole pockets in this
regime [9,10,32]. tDBLG at the CNP is thus a compensated
semimetal. The presence of these electron and hole pockets
near the CNP in tDBLG has now been demonstrated un-
ambiguously through recent magnetotransport measurements
[33]. This brings us to an interesting question: Do the strong
electronic interactions have any qualitative effect on the small
electron and hole pockets near the CNP or do they behave
like almost noninteracting systems? In this paper, we show
that indirect excitons are formed due to the attraction be-
tween the electron and hole pockets, and condensation of
these excitons can lead to the formation of a charge density
wave (CDW) state near the CNP at low temperatures. The
system remains metallic on either side of the transition for
a range of parameters. The phase transition in the background
of itinerant electrons is driven by Landau damped fluctuations
of the excitonic order. The scattering of electrons by these
fluctuations leads to non-Fermi liquid behavior in these sys-
tems [34–42]. Thus interactions have profound effects on the
small electron and hole pockets in the system. In this context,
we would like to note that there are several theoretical works
[43–47] which propose a particle-hole asymmetric band struc-
ture even for tBLG and tTLG with the possible formation of
e-h pockets near the CNP. These electrons and holes can also
form excitonic bound states. However, in tBLG and tTLG,
the experiments [11,13–15,23,26] show insulating behavior
near the CNP. Therefore, even if excitons are formed, they
are likely to form insulating states in these systems.
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The formation of an excitonic condensate leads to a reorga-
nization of the electronic structure into multiple “minibands”
with their respective Fermi seas. This leads to anomalous
peaks in the inverse density of states at the Fermi level as
a function of carrier density, which mimics the peaks in
resistance as a function of carrier density seen in recent ex-
periments [33]. Within a mean-field theory, the simultaneous
presence of the anomalous peaks as well as a Fermi sea to
account for metallic behavior strongly constrains the interac-
tion parameters. We find that the allowed parameter ranges are
reasonable for tDBLG.

Another surprising result from these experiments [33] is
that close to the CNP, the measured resistance exhibits a
unique sublinear temperature dependence (R ∼ T 2/3) in the
temperature range 0–10 K. Above this temperature range,
the resistance increases linearly with temperature. Far away
from the CNP, the resistance reverts to a standard superlin-
ear temperature dependence (R ∼ T 2) seen in usual metals.
The sublinear temperature dependence of resistivity is rarely
seen in metals and cannot be explained by standard scattering
mechanisms (disorder, electron-electron, or electron-phonon)
within a Fermi liquid theory. On the other hand, in a quantum
critical metal on the verge of forming excitonic condensates,
the quantum fluctuations of the order parameter will be Lan-
dau damped by the low-energy fermions present in the system.
We show that the scattering of charge carriers in the small
Fermi pockets from such overdamped critical fluctuations
gives rise to a non-Fermi liquid with a T 2/3 dependence of
resistance at low temperatures. At higher temperatures, we
reach an equivalent of a “Bloch Gruneissen” temperature for
these fluctuations and the resistivity shows linear temperature
dependence beyond that scale. The question of a breakdown
of Fermi liquid theory in a metal due to quantum fluctuations
near a critical point is a matter of great theoretical interest and
has been studied using sophisticated formalisms [34,37–42].
Here we propose that the presence of small Fermi surfaces
in these systems undergoing phase transitions ensures that
the non-Fermi liquid behavior shows up in low-temperature
transport as a nonanalytic temperature dependence of the re-
sistivity. Thus we propose that the magic angle tDBLG is not
a garden-variety metal; rather, there is strong experimental
evidence for an underlying non-Fermi liquid state formed due
to interactions in a compensated semimetal.

In this paper, we review the formation of electron and hole
pockets in tDBLG in Sec. II. Section III provides the details
of the mean-field theory of the excitonic condensate near the
CNP. In Sec. IV, we show how the electronic reorganization
due to exciton formation leads to peaks in the inverse density
of states and compare it to experiments. In Sec. V, we discuss
how the Landau damping near a critical point leads to a non-
Fermi liquid behavior. We also discuss the connection of this
underlying non-Fermi liquid state to the sublinear temperature
dependence in resistivity. Finally, in Sec. VI, we conclude
with a summary of our results.

II. ELECTRON AND HOLE POCKETS IN tDBLG

The low-energy electronic states of tDBLG at magic angle
at and around the CNP consist of both electron and hole
pockets. This is in contrast to other members of the twisted

FIG. 1. (a) Schematic of Bernal stacked bilayer graphene and rel-
evant intralayer (γ0) and interlayer (γ1(3)(4)) tunnelings. (b) Brillouin
zone of two bilayer graphene sheets rotated with respect to each other
by a small twist angle. Three transfer momenta (q1(2)(3)) between the
Dirac points of each layer are marked. (c), (d) The smaller moiré
Brillouin zone created by the twist. The zoomed-in image shows the
construction of consecutive shells and the momentum cutoff used in
the continuum model.

graphene family (tBLG or tTLG), which form a Dirac node
at the CNP and show either electron- or holelike states when
doped away from the CNP [1,3,10,32,48,49]. As a result,
tDBLG shows metallic behavior near the CNP, while the other
moiré graphene systems show weakly insulating (R ∼ 10–50
k�) behavior [11,13–15,19,24,29,50]. There are a number
of theoretical works [43–47] which propose a particle-hole
asymmetric band structure even for tBLG and tTLG with
the possible formation of electron-hole (e-h) pockets near the
CNP. In this case, one would again expect the formation of
excitons due to the attraction of electrons and holes. Experi-
mental evidence [11,13–15,23,26] shows insulating behavior
near the CNP in these materials, which indicates that these
states are gapped out. The gap could be either due to the
formation of an excitonic insulator or the breaking of other
symmetries.

Since tDBLG is made of two layers of bilayer graphene
(BLG) with a twist between them, it is useful to start with
the band structure of BLG. A schematic of a Bernal (A-
B) stacked BLG is shown in Fig. 1(a). The carbon atoms
in each layer form a honeycomb lattice and are coupled
by a nearest-neighbor in-plane hopping γ0, where

√
3

2 γ0 =
h̄v0/a ∼ 2.1354 eV [32], while the out-of-plane hopping is
primarily between atoms which sit on top of each other (in the
so-called dimer sites) with a scale γ1 = 400 meV. A simpli-
fied model of BLG with only γ0 and γ1 produces a Dirac point
where two quadratic bands touch each other, with a Berry
monopole of charge 2 located at the Dirac point. However,
if one considers additional interlayer hoppings between the
nondimerized sites (the trigonal warping γ3 = 320 meV), or
between dimerized and nondimerized sites (γ4 = 44 meV),
this simple picture changes at low energies. The single band
touching point splits into a central Dirac point and three
satellite Dirac points, where linearly dispersing bands touch
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FIG. 2. (a) Noninteracting band dispersion of tDBLG along high-symmetry directions in the moiré Brillouin zone. The valence (red)
and conduction (blue) bands are plotted. The shaded region denotes the energies where the bands overlap. (b) A 3D depiction of the energy
dispersion in the mBZ to show the six satellite Dirac points around the �M point. (c) Valence (red) and conduction (blue) bands’ density of
states at the Fermi level are plotted with the normalized carrier density. The bands overlap between carrier densities (marked) ≈ −0.20 and
0.13. (d), (e) Contour plots of the valence (red) and conduction (blue) bands, respectively, with Fermi surfaces at the CNP marked separately.
The blue pocket in (d) and the red pocket in (e) denote the hole and electron pocket, respectively. (f) The electron (red) and hole (blue) pockets
at two different carrier densities around the CNP are shown to point out that one of the pockets shrinks and another one inflates as one moves
away from the CNP. The Q1(2)(3) vectors connect the e-h pocket centers and are related by C3 symmetry.

each other [51]. The central and the satellite Dirac points
carry Berry monopoles of opposite charges. The formation of
the satellite Dirac points and associated Lifshitz transitions in
BLG have been probed both theoretically and experimentally
[52,53]. We also include an on-site potential of dimerized sites
with respect to nondimerized sites, δ′ = 50 meV [32].

We consider the AB-AB stacked tDBLG. In this case,
the graphene Brillouin zone is tiled by the moiré Brillouin
zone (mBZ), with a reciprocal lattice vector of size kM =
kD sin θ/2, where kD is the reciprocal lattice vector of the BLG
Brillouin zone and θ is the twist angle, as shown in Fig. 1(b).
The two twisted layers are tunnel coupled with tunneling
between the same sublattices, uAA = uBB = 79.7 meV, and
the tunneling between different sublattices, uAB = 97.5 meV.
For these sets of parameters, used in a wide range of earlier
papers [10,24,32], the magic angle is 1.2◦, which matches
with experimental estimates of the magic angle for tDBLG
[33]. The inter-BLG tunnelings couple momentum states in
one mBZ to those in nearby zones, as shown in Ref. [1] and
Figs. 1(c) and 1(d). One can limit the number of Brillouin
zones used to calculate the band dispersion of the moiré
system at low twist angles [1]. We use the five nearest shells,
which lead to a 184-dimensional continuum Hamiltonian to
obtain the low-energy band dispersion of tDBLG within an
accuracy of 1%.

The low-energy band structure of tDBLG near the magic
angle consists of a valence and a conduction band with a

bandwidth ∼20 meV. In Fig. 2(a), we plot the dispersion of
the conduction and valence bands along the principal direc-
tions of the mBZ (KM − �M − MM − K ′

M). We clearly see
that the bands overlap in energy along the �M − MM line
[shown by the shaded region in Fig. 2(a)]; hence, at the charge
neutrality point, one would expect a compensated metal with
electron and hole pockets. We would like to note that particle-
hole symmetric band structures, obtained from a simplified
description of BLG with only γ0 and γ1, do not show this
band overlap [9,10]. The presence of trigonal warping γ3 is
crucial in obtaining this overlap. In Fig. 2(b), we show a
three-dimensional (3D) plot of the dispersion of the valence
and the conduction bands, which clearly shows that the bands
do not cross each other; rather, they touch each other at two
anisotropic Dirac points along the � − M line at slightly dif-
ferent energies, leading to the band overlap. The valence and
conduction band dispersions are plotted as color plots in the
full Brillouin zone in Figs. 2(d) and 2(e). The thick lines mark
the Fermi surfaces (curves) of the electron (conduction band)
and hole (valence band) pockets at the CNP. We clearly see
that there are three electron and three hole pockets related
by C3 symmetry. The pockets are centered around the points
where the bands touch each other. We note that we have plot-
ted the moiré bands around one valley of the original BLG
dispersion. The band touchings and electron-hole pockets of
the other valley can be obtained by applying a rotation of
π to this figure. As we move away from the CNP on the
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electron-doped side, the size of the electron pocket increases,
while the hole pocket shrinks. At an electron density n/ns ∼
0.13, the hole pocket shrinks to a point and beyond this den-
sity the system only has three electron pockets. Here, ns ≈
3.3 × 1012 cm−2 is the density where the conduction band is
fully filled (including spin and valley degeneracies). On the
other hand, with hole doping, the hole pocket grows and the
electron pocket shrinks, until it disappears at n/ns ∼ −0.2.
Figure 2(f) plots the Fermi surfaces for the electron and hole
pockets on either side of the CNP at densities n/ns = −0.17
and n/ns = 0.12 to show the evolution described above. Note
that the centers of the pockets do not change with density and
the wave vectors joining the centers of the nearest electron and
hole pockets, Q1, Q2, and Q3, are clearly shown in Fig. 2(f).
While there is an interesting evolution of the Fermi surface
at higher densities, in this paper, we will focus on densities
between n/ns = −0.2 and n/ns = 0.13, where both electron
and hole pockets are present.

The finite density of states at the Fermi level coming from
these electron and hole pockets lead to metallic behavior
in tDBLG [17–19,24,50] in the absence of a perpendicular
electric field. We note that the waxing and waning of the
electron and hole pockets compensate each other to keep the
total density of states at the Fermi level finite and independent
of the carrier density near the CNP, as shown in Fig. 2(c).
Recently, the strong magnetic field dependence of the low-
temperature resistance and thermopower in these systems [33]
have provided concrete evidence of the existence of these
electron and hole pockets in tDBLG.

In our model, we have checked that for a twist angle range
of 1.1 to 1.7 degrees, the e-h pockets can be present.

We note that some calculations [54–56] predict a gap in the
spectrum of tDBLG in the presence of a crystal field, in which
case our description will not work. However, there is strong
experimental evidence [17,19,24,50] for metallic behavior at
the CNP for tDBLG which is contradictory to the large gap
predicted by these calculations.

III. EXCITON CONDENSATES NEAR CNP

An important question in systems with low electronic den-
sity is the following: What is the fate of the system when the
strong electronic interactions are taken into account? While
earlier experiments in tDBLG [17–19,24,50] showed a fairly
standard metallic behavior in the absence of perpendicular
electric fields (correlated states were found at finite electric
fields), a recent experiment [33] at very low temperatures
(T < 2 K) has shown a double-peak structure in the resis-
tance as a function of carrier density near the CNP where
both electron and hole pockets are present. These double-peak
structures cannot be explained by a noninteracting theory
since electrons and holes contribute additively to the electrical
response, and the total density of states near the CNP is almost
independent of doping, as seen in Fig. 2(c). These are concrete
experimental signatures that electronic correlations play an
important role in tDBLG near the CNP.

In systems with electron and hole states at the Fermi
level, the Coulomb attraction between the oppositely charged
electrons and holes often leads to the formation of charge
neutral electron-hole pairs called excitons. The formation of

exciton states is commonly seen in semiconductor systems
[57,58], as well as van der Waals heterostructures [59,60].
Coherent condensation of these particle-hole pairs, leading
to superfluidity of charge neutral objects, has been predicted
and demonstrated in bilayer quantum Hall systems [61–64],
as well as bilayer graphene [65]. The electron-hole pockets
in tDBLG, which are separated by a small momentum |Qi| ∼
0.01 Å−1, are ideal candidates for the formation of excitonic
condensates with finite momentum (indirect excitons). We
will now explore this possibility within mean-field theory.

We consider the two-band Hamiltonian,

H =
∑
kη

(
εc

k − μ
)
Cc†

k,η
Cc

k,η + (
εv

k − μ
)
Cv†

k,η
Cv

k,η

+ 1

�

∑
k,k′,q,ηη′

V (q)Cv†
k+q,ηCv

k,ηCc†
k′−q,η′Cc

k′,η′ , (1)

where Cc(v) denotes the electron annihilation operator in the
conduction (valence) band, η is a composite spin and valley
index, and ε

c(v)
k is the conduction and valence band dis-

persions shown in the previous section. Here, V (q) is the
screened Coulomb interaction between the conduction and
valence band electrons. We note that we have neglected repul-
sive interaction between electrons in the same band since our
primary focus is on understanding the formation of interband
excitons. We note that in contrast to tBLG, where the nor-
mal state band structure is strongly renormalized by repulsive
interaction in a doping-dependent manner [66–68], the band
structure in tDBLG is robust to such interaction effects [69].
This allows us to neglect repulsive intraband interactions.
Since the interaction scales are comparable to Fermi energy,
one can also worry whether the repulsive interaction can lead
to alternate symmetry-broken states. Note that there is no
nesting of Fermi surfaces in the problem. Hence, one expects
the attractive BCS-type interaction (which we have kept) to be
the leading instability, in contrast to the repulsive interaction
which we have left out. We have also assumed that the large
momentum connecting the two valleys of BLG, ∼1 Å−1,
makes it unfavorable for Coulomb interaction to scatter elec-
trons from one valley to the other. Note that although excitons
are often understood as the pairing of electrons and holes,
where the hole can be obtained by a particle-hole transfor-
mation on the valence band, i.e., Cv → hv†, we prefer to work
with electron coordinates in both bands. The size of the small
Fermi pockets as well as the momentum separating the center
of the electron and hole pockets are ∼0.01 Å−1. We assume
that V (q) does not change rapidly over this scale and can be
approximated by a constant value V0 for our calculation. Note
that the extended Kang-Vafek-like terms vanish in the absence
of flat band topology in this system [70]. For our calculations,
we will use u0 = 10.9 meV, where u0 = V0/�. We will later
try to constrain its value both from theoretical and experimen-
tal estimates. If we denote the density of states per electron
pocket by χ , this gives V0χ ∼ 0.2. If we assume the intraband
interaction has a similar magnitude, we are far away from any
possible Stoner instability, which further justifies the omitting
of intraband interaction in our model.

From Fig. 2(f), we see that there are three electron and
hole pockets in the mBZ, and three wave vectors Q1(2)(3)
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FIG. 3. (a) Schematic showing the formation of indirect excitons
from the two bands. (b) Mean field order parameter (�) plotted with
carrier density. � has a peak at the CNP and goes down on either
side of the CNP. (c) The temperature dependence of � is shown for
three values of n/ns = 0.00, 0.09, −0.07. Inset: The variation of Tc

with density around the CNP. Tc is weakly dependent on n/ns, with a
peak at the CNP. (d) � (in units of temperature) (red) and mean field
Tc (blue) plotted as a function of the interaction strength u0. The pink
line is the experimentally observed Tc. The black line indicates �c,
where the system forms an excitonic insulator rather than a metal for
� > �c.

connecting them. We will consider a mean-field description of
the finite momentum interband excitonic condensate, which
has an equal amplitude at each of the momenta Qi, i.e.,
V0
�

∑
k〈C†c

k,ηCv
k+Qi,η

〉 = � [see Fig. 3(a) for a schematic of
the finite momentum exciton]. We note that the formation
of finite momentum excitonic condensates in this system
is equivalent to the appearance of a charge density wave
(CDW) order in the system. Since

∑
i Qi = 0, our ansatz

of equal condensates for all momenta ensures that there is
no underlying valley current in the ground state of the sys-
tem. It also ensures that the C3 symmetry of each valley
remains unbroken in the system. Further, in Appendix C,
we discuss within a Landau-Ginzburg theory why the equal
amplitude order is likely to be the lowest-energy state. Note
that Qi → −Qi, if the valley is flipped, and the net current
summed over valleys would have been zero even for an ansatz
with unequal condensates. With this ansatz, using the basis
(Cc

k, Cv
k+Q1

, Cc
k′ , Cv

k′+Q2
, Cc

k′′ , Cv
k′′+Q3

), we obtain the 6 × 6
mean-field Hamiltonian,

H =
⎡
⎣dQ1 (k) 0 0

0 dQ2 (k′) 0
0 0 dQ3 (k′′)

⎤
⎦, (2)

where

dQi (k) =
[

εc
k
3 − μ �

�
εv

k+Qi
3 − μ

]
. (3)

Here, k′ and k′′ vectors are generated by rotating the k vector
by 2π/3 and 4π/3, respectively. The quasiparticle excitation

spectrum of the mean-field theory is

E±
Qi

(k) = εc
k + εv

k+Qi

6
− μ ±

√(
εc

k − εv
k+Qi

)2

36
+ �2. (4)

The self-consistency equations, which determine the order
parameter � and the chemical potential μ, are given by

1 = V0

2 �

∑
k,Qi

−1

EQi
k

[ f (E+
Qi

(k)) − f (E−
Qi

(k))],

n = 1

3

∑
k,Qi

[ f (E+
Qi

(k)) + f (E−
Qi

(k))], (5)

where f is the Fermi function. Here, EQi
k is defined as,

[
√

(εc
k − εv

k+Qi
)2/36 + �2]. In Fig. 3(b), we plot the self-

consistent � at T = 0 as a function of the carrier density
n/ns for a system with u0 = 10.9 meV. The order parameter
shows a maxima around the CNP (∼0.9 meV) and decreases
on either side of the CNP, finally vanishing through a sharp
jump at the boundaries where the electron-hole pockets cease
to exist simultaneously. The electron and hole pockets are
matched in size (albeit shifted in momentum) at the CNP. As
we move away, the electron (hole) pocket grows, while the
hole (electron) pocket shrinks. This mismatch of the Fermi
pockets leads to a weakening of the order parameter at finite
carrier densities. The temperature dependence of the order
parameter at three different densities is shown in Fig. 3(c).
From the vanishing of the order parameter, one can obtain the
mean-field Tc of the system, which is plotted in the Fig. 3(c)
inset as a function of carrier density. We see that Tc is very
weakly dependent on carrier density and hovers around 5 K
for our chosen set of parameters. Our estimate is in the same
ballpark as the experimentally obtained TC ∼ 2 K [33], where
the resistance peaks disappear. We would like to note that
this mean-field estimate is an upper bound for the real Tc,
which will be further degraded by fluctuations and disorder.
In Fig. 3(d), we have shown the u0 dependence of �(T = 0)
and Tc at the CNP. The magenta horizontal line is the exper-
imentally observed Tc ∼ 2 K [33]. The black horizontal line
corresponds to the maximum value of �(T = 0) for which
the system remains metallic (see discussion in Sec. IV for
details). These two lines thus provide lower and upper bounds
on u0 (9.1 meV and 13.6 meV, respectively) to be used in the
calculation. We have used u0 = 10.9 meV in the middle of
this range.

IV. EXCITON CONDENSATES AND ELECTRONIC
STRUCTURE

The occurrence of excitonic condensates in materials
[57–59,71] often leads to the underlying Fermi surface be-
ing gapped out, leading to an excitonic insulator. This is
inevitably the case when the condensate is formed with zero
net momentum, as is the case in quantum Hall bilayers and
bilayer graphene [61–65]. However, the shift between the
center of the electron and hole pockets in tDBLG near the
CNP naturally leads to excitonic condensates with finite mo-
menta. This leads to the possibility of having either metallic
or insulating behavior depending on the magnitude of the
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FIG. 4. (a) Inverse DOS at the Fermi energy for the excitonic metal is plotted with �. For � > �c ∼ 1.6 meV (marked by the blue dotted
line), the system shows insulating behavior with zero density of states at the Fermi level. (b) Experimentally obtained longitudinal resistivity
of tDBLG as a function of carrier density at 200 mK exhibiting the double-peak structure. (c) Inverse DOS at the Fermi level for the excitonic
metal (red) and the noninteracting state (brown) as a function of carrier density. The excitonic condensate leads to two peaks in the inverse
DOS similar to the experimental data in (b), whereas the noninteracting DOS at the Fermi level is almost independent of density in this regime.
(d) Inverse DOS at the Fermi level of the excitonic metal for different interaction strengths plotted as a function of carrier density. The fact
that the two-peak structure disappears at low interaction strength, while the system is insulating at large interaction strength, allows a small
range of the interaction parameter which is compatible with the existing experimental data. We will use u0 = 10.9 meV for our calculations,
unless otherwise stated. (e)–(h) The evolution of the Fermi surfaces of the two exciton bands (E+(−)) [green (pink)] in the mBZ with changing
densities. For 0 < n/ns < +0.06, the green contours increase while the pink contours shrink. This leads to an increase in the resistivity. At
n/ns = 0.10, the Fermi level enters a higher miniband of the excitonic state. The additional density of states leads to a decrease in the resistivity,
thus giving rise to the peak as a function of density. A similar story plays out on the other side of the CNP, leading to the double-peak structure
in resistivity.

excitonic order in the system and the resulting quasiparti-
cle spectrum E±

Qi
. Note that the original two-band system is

mapped to a six-band system in the presence of excitonic
order.

A simple measure of metallicity of the system is the density
of states at the Fermi level, g(εF ) = ∑

±,i,k δ[E±
Qi

(k) − εF ].
For metals, we expect g(εF ) to be finite, while it should go
to zero for insulators. We now consider how g(εF ) behaves
with carrier density for different values of �. These � values
are not obtained from a self-consistent solution of the gap
equation; rather, our intention is to vary � and understand
the range of values for which we can recover the metallic
behavior seen in the experiments. For each �, we solve the
number equation to obtain the Fermi level for the excitonic
quasiparticles. In Fig. 4(a), we plot g0/g(εF ) as a function of
the order parameter � at the CNP. Here, g0 is the density of
states at the Fermi level of the noninteracting system at the
CNP. For � > 1.63 meV, the system is insulating in nature
and below that it is a metal. Since the experimental data [33]
clearly show metallic behavior at low temperatures for all
densities near the CNP, this provides an upper bound for the
possible values of �. Within the mean-field theory, this in turn
provides an upper bound on the interaction strength u0. For

�CNP < 1.63 meV, we obtain u0 < 13.6 meV. In this work,
we use a value of u0 = 10.9 meV, which is consistent with
earlier work [72].

In recent experiments, the resistance of tDBLG at low tem-
peratures has shown a distinct two-peak structure as a function
of carrier density near the CNP. This is seen in the region
where electron and hole pockets are simultaneously present.
Representative experimental data are shown in Fig. 4(b). We
will use the inverse of the density of states (DOS) at the Fermi
level as a proxy for the resistivity of the system. This assumes
that Fermi velocity is not sharply anisotropic in the density
range considered, which is valid for tDBLG near the CNP
with its small electron and hole pockets. In Fig. 4(c), we plot
g−1(εF ) as a function of carrier density for a system with
indirect excitonic condensate (u0 = 10.9 meV). We clearly
see the presence of two peaks, as seen in the experiments.
For comparison, we have also plotted g−1(εF ) for the non-
interacting system, which does not show any structure in the
relevant density range. This shows that the presence of exci-
tonic condensate can explain the double-peak structure seen in
experiments. In Fig. 4(d), we plot g−1(εF ) with carrier density
for different interaction strengths and see that the two-peak
feature is lost for u0 < 10 meV. This is close to the lower
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FIG. 5. The experimental data for the temperature dependence of longitudinal resistivity near and away from the CNP. Note that the
noninteracting Fermi temperature TF ∼ 23 K. In (a) and (c), a fit to the data of the form R0 + A T α gives α ∼ 2, showing Fermi liquid scaling.
The data near the CNP in (b) clearly show sublinear behavior of the resistivity below 10 K and an almost linear behavior above it. Here the data
up to 10 K are fitted to R0 + A T α , yielding α = 0.67. This sublinear temperature dependence is a manifestation of an underlying non-Fermi
liquid in the system.

bound obtained from experimental Tc discussed in the earlier
section.

In order to theoretically understand the origin of the two
peaks, we look at the dispersion of the six bands in the pres-
ence of the excitonic condensate (the detailed band dispersion
of all six bands is plotted in Appendix B). In Figs. 4(e)–4(h),
we plot the Fermi surfaces of the quasiparticles [with spec-
trum E±

Qi
(k)] in the mBZ for four different carrier densities,

n/ns = 0, 0.03, 0.06, 0.10. At the CNP [Fig. 4(e)], we find
that both E+ and E− bands pass through the Fermi level, and
hence give rise to their respective Fermi surfaces (shown by
green and pink lines, respectively). This leads to the finite
density of states at the Fermi energy and hence to metallic
behavior in the system. As we move away from the CNP
on the electron-doped side, the Fermi surfaces corresponding
to E− reduce, while those of E+ bands increases in size
[Figs. 4(e)–4(h)]. This leads to a reduction in the density of
states at the Fermi level and hence to an increase in resistivity
until the E− Fermi surface vanishes at n/ns = 0.06 [Fig. 4(g)],
which corresponds to the peak in the inverse density of states.
Beyond this point, we see additional Fermi surfaces as the
chemical potential enters one of the bands which was gapped
at the CNP. This leads to a large increase in the density of
states at the Fermi level and consequently a sharp decrease
in the resistivity, explaining the peak seen in the resistivity
for n > 0. A similar argument, with the roles of E+ and
E− reversed, explains the peak for n < 0. We would like
to note that the transport features are expected to be more
smeared than single-particle features due to the presence of
inhomogeneities in the system. This is consistent with the
experiments, which see relatively smoother features compared
to the theoretical estimates.

V. TEMPERATURE DEPENDENCE OF RESISTIVITY
AND NON-FERMI LIQUID BEHAVIOR

An intriguing signature of strong electronic correlations is
seen in recent experiments [33] on the temperature depen-
dence of the resistance of tDBLG near the charge neutrality
point. The resistance shows a sublinear (R = R0 + A T α with

α ≈ 2/3) behavior up to T ∼ 10 K, and an almost linear
behavior above that temperature [Fig. 5(b)]. In contrast, the
temperature dependence of resistance at larger electron (hole)
densities, n/ns = +0.335 and n/ns = −0.369, are superlinear
and can be fitted to the standard quadratic Fermi liquid scal-
ing, R = R0 + A T α with α ≈ 2, expected for a 2D system
with small Fermi pockets, both from electron-electron and
electron-phonon scattering. This is shown in Figs. 5(a) and
5(c).

This sublinear behavior cannot be explained within a Fermi
liquid paradigm of perturbative effects of electronic interac-
tions around a free Fermi gas. Electron-electron interactions
lead to a ∼T 2 dependence of the resistivity. In two dimen-
sions, the density of states of longitudinal phonons ρ(ω) ∼ ω.
This leads to ∼T 4 dependence of resistivity when small angle
scattering dominates at low temperatures and ∼T 2 behavior
of resistivity when scattering at all angles contributes. For
compensated semimetals such as tDBLG, with small Fermi
surfaces, one would expect the resistivity ∼T 2. At higher
temperatures (beyond the Bloch Gruneissen temperature), the
scattering from classical phonons would lead to a linear T
dependence of resistivity [73]. None of these mechanisms can
explain a sublinear temperature dependence of resistivity, as
is seen in the experiments.

In this section, we will show that a tDBLG system near the
CNP, which is at the precipice of a quantum criticality towards
the formation of an excitonic condensate, will show a sublin-
ear T 2/3 temperature dependence of resistance. At criticality,
the low-energy gapless fluctuations of the excitonic (CDW)
order parameter would be strongly Landau damped due to the
presence of the electronic states of the metal around the Fermi
surfaces. The scattering between electrons and the Landau
damped fluctuations leads to a nonanalytic low-energy decay
rate for the single-particle electronic excitations, resulting in
non-Fermi liquid behavior. For compensated semimetals such
as tDBLG, with small Fermi surfaces, the transport scattering
rate and the quasiparticle scattering rate have the same energy
dependence. This nonanalytic frequency dependence of the
scattering rate leads to the sublinear temperature dependence
of resistivity in this system. We note that this mechanism is an
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alternate to theories of Planckian metal [74], which predicts
linear temperature dependence of resistivity all the way down
to T = 0.

The fluctuations of the order parameter, φ(q, ω), are gov-
erned by an action,

S f l =
∫

d2q
∫

dωφ∗(q, ω)�−1
inter (q, ω)φ(−q,−ω), (6)

where �inter is the (interacting) interband polarizability of the
system. When driven to the critical point, �−1

inter (Q, 0) = 0,
i.e., the gap vanishes [this can be seen within a simple ran-
dom phase approximation (RPA)-like theory], generically we
would have

�−1
inter ∼

[
ω2 − c2q̄2 − iγ

|ω|
|q̄|

]
, (7)

where q̄ = q − Q, and c and γ are constants denoting the
speed of the fluctuation waves and the scale of damping. The
singular |ω

q̄ | damping is a consequence of the presence of
low-energy fermions and derives from the imaginary part of
the noninteracting interband polarizability.

The noninteracting interband polarizability of the system is
given by

�0
inter (q, ω) =

∑
k

f [εc(k)] − f [εv (k + q)]

ω + iη + εc(k) − εv (k + q)

× |〈ψc(k)|ψv (k + q)〉|2 + c ↔ v, (8)

where f is the Fermi function and |ψc(v)(k)〉 is the Bloch
wave function of the corresponding band in the mBZ. To
see the Landau damping, in Fig. 6(a) we plot the imaginary
part of �0

inter as a function of ω for several values of q along
the [1,0] direction. Note that Q1 ∼ [0.016, 0]A−1 is along the
[1,0] direction, so we will be crossing the exciton wave vector
in the process. At low ω, the plots are linear and we extract a
slope from this linear part of the graph. The slope is plotted
as a function of q in Fig. 6(b). The slope diverges at q = Q1,
showing the singular nature of the Landau damping. We have
checked, by taking momentum cuts along other directions
passing through Q1, that the divergence of the slope happens
whenever we approach Q1 along any direction, i.e., there is no
difference in the scaling between directions along and perpen-
dicular to the exciton/CDW wave vector (see Appendix A for
details).

We can understand this further by constructing a simple
model for the valence and conduction bands. The electron
pocket of the conduction band is modeled by a Dirac disper-
sion centered around k = 0, i.e., εc(k) = vF |k|, while the hole
pocket in the valence band is modeled by an inverted Dirac
dispersion centered around Q, i.e., εv (k) = ε0 − vF |k − Q|, in
Fig. 6(c). Here, ε0 is the energy difference between the Dirac
points. At the CNP, the chemical potential sits at μ = ε0/2,
giving a Fermi wave vector kF = μ/vF for electrons and
holes. Usually, the orthogonality of the band wave functions
as q → 0 plays an important role in determining the low ω, q
behavior of �0

inter in graphene. However, here we are inter-
ested in �0

inter near q = Q where orthogonality considerations
do not play a role. The band overlaps do not change the scaling
of the various terms (although they can change the value of the
coefficients such as γ , etc.). Hence we ignore band overlaps in

FIG. 6. (a) Imaginary part of the interband polarizability function
plotted with frequency for different qx values. Note that the direction
of the �q variation has been taken along the [1,0] direction, and around
Q1 ≈ (0.016, 0), which is the connecting wave vector between one
of the e-h pockets. The low-frequency behavior is linear with the
slope, showing a huge increase near Q1. (b) The slope at different
qx from (a) is plotted here to show the divergence at �q = Q1 (or
q̄ = 0). (c) A simple theoretical model of the electron and hole
pockets for calculating the interband polarizability of the system.
The conduction (blue) and valence (red) Dirac bands are separated
by Q0 momentum inverted with respect to each other. The Dirac
points are separated in energy by ε0. At the CNP, the chemical
potential μ = ε0/2. (d) Schematic showing the regions in the q̄ − ω

plane, where the imaginary part of the polarizability of the simple
model shows (i) singular Landau damping Im(�0

inter ) ≈ ω

|q̄| and (ii) a
constant damping rate. The non-Fermi liquid behavior resulting from
the Landau damping leads to the T 2/3 dependence of the resistivity.

our calculation of �0
inter. In this case, the polarization function

can be calculated exactly and the detailed formulas are given
in Appendix A. Near Q, the imaginary part of �0

inter has the
following form:

−Im�0
inter (q, ω) ∼ k3

F

4πμ2

∣∣∣∣ωq̄
∣∣∣∣; (ω < vF q̄ when q̄ < kF ) or

(ω < ε0 − vF q̄ when q̄ > kF ),

∼ k2
F

8μ
; ε0 − vF q̄ > ω > vF q̄. (9)

Thus both the numerical calculation on the full model
and the analytic calculation with the simple model show the
presence of the singular Landau damping around q ∼ Q. The
Landau damped fluctuations have an energy momentum re-
lation ω ∼ q̄3, leading to a density of states ρ(ω) ∼ ω−1/3.
The scattering of electrons by these fluctuations leads to a
single-particle scattering rate,

�qp ∝
∫ ω

0
dω′ ρ(ω′) ∼ ω2/3 at T = 0, (10)

∝
∫ ωc

0
dω ρ(ω) coth

(
ω

2T

)
∼ T 2/3 at T �= 0, (11)
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where ωc is a cutoff below which the long wavelength de-
scription mentioned above holds with the condition ωc � T .
The damping rate ω2/3 is larger than the energy of excitations
leading to non-Fermi liquid behavior. Since the Fermi pockets
in tDBLG near the CNP are small, scattering at all angles
contributes to transport and hence the transport scattering rate
�tr ∼ �qp ∼ T 2/3. This is the origin of the T 2/3 dependence
of resistance in the system. Thus the sublinear temperature
dependence is a reflection of an underlying non-Fermi liquid
state in a quantum critical metal. We note that such a Fermi
golden rule calculation assumes that once the momentum is
lost to the Landau damped fluctuations, it is never recovered
by the electrons. If one considers the coherent process where
the fluctuations simply mediate scattering between electrons,
several authors [75–79] have shown that in a single Fermi sur-
face case, the coefficient of the T 2/3 term in transport vanishes
in two dimensions for convex Fermi surfaces. In our case, that
would correspond to an exact particle-hole symmetry, i.e., the
particle and hole Fermi surfaces are exactly aligned and the
effective mass and scattering rate of the particles and holes
are the same. However, in tDBLG, particle-hole symmetry is
broken and the Fermi surfaces are not exactly aligned. More
importantly, the mass and the scattering rate of the particles
and holes are very different. This can be seen from the fact that
in experiments, the resistance as a function of carrier density
is particle-hole asymmetric (roughly by a factor of ∼1.5–2.0)
[33]. The effective mass calculated from band dispersions also
shows a similar magnitude of asymmetry. Thus our case is
closer to the s-d model discussed in Ref. [75], where a T 2/3

resistivity would be recovered.
Starting with the work of Hertz and Millis [35,36], the

non-Fermi liquid behavior of itinerant quantum critical sys-
tems has been studied in the context of high-temperature
superconductivity [39,40,80] for the antiferromagnetic metal
[38,81,82] and for the nematic transition in metals [34,83],
using sophisticated renormalization group techniques. The
general conclusion is that the imaginary part of the electron
self-energy is ∼ω2/3 when the order parameter is at zero wave
vector [34] (as in nematic transition), while we get a ∼ω1/2

dependence for a finite Q wave-vector order like spin density
waves [42]. We note that in our case, the finite wave vector
relates the center of the electron pocket to the center of the
hole pocket, so the electron and hole Fermi surfaces lie on
top of each other when shifted by this wave vector. Thus, al-
though the CDW is formed at finite wave vector, our itinerant
quantum criticality is similar to the nematic case with effective
q = 0 and we recover the ∼ω2/3 scaling of the self-energy.

In the experiments, it is seen that the resistivity shows
a linear temperature dependence above T = 10 K. We note
that the Fermi temperature corresponding to the e-h pockets
is TF ∼ 20–25 K and one would expect quantum behaviors
to vanish beyond this temperature. For a two-dimensional
system with small Fermi surfaces, a more relevant scale would
be the effective “Bloch Gruneissen” temperature of these crit-
ical fluctuations, i.e., their energy for q̄ ∼ 2kF . While this
requires interaction renormalized estimates of γ and c, which
are beyond the scope of this paper, one would expect this
temperature to be lower than TF . If we assume that beyond
T = 10 K these fluctuations are classical, we can obtain the
linear temperature dependence of resistivity in this regime.

As we move away from the CNP on either side, the mis-
match between the electron and hole Fermi surfaces increases,
and the Landau damping would be shifted to finite q̄ > �kF ,
where �kF is the mismatch of the Fermi wave vectors of the
electron and hole pockets. In this case, the low-temperature
behavior of resistivity would deviate from the T 2/3 scaling.
Assuming the |ω/q̄| scaling of the Landau damping is cut off
on the scale of �kF , i.e., it scales as |ω/�kF |, one would get a
linear T dependence of the resistivity. However, this exponent
would be strongly influenced by disorder and Fermi surface
anisotropies. In general, one would expect the exponent to
increase as one goes away from the CNP. Once the simulta-
neous presence of electron and hole pockets vanishes at larger
doping, one gets back the standard T 2 scaling of the Fermi
liquid theory.

VI. CONCLUSION

Strong electronic interactions determine the plethora of
symmetry-broken phases in magic angle tBLG and tTLG. In
contrast, tDBLG is usually thought of as a conventional metal
in the absence of electric/magnetic fields. The metallicity of
magic angle tDBLG near the CNP comes from the overlap
of flat conduction and valence bands, which creates small
electron and hole pockets at the Fermi surface.

In this paper, we have considered the possible effects
of Coulomb interaction on these small e-h pockets in the
compensated semimetal near the CNP. We show that the
interactions lead to the formation of indirect excitons (i.e.,
particle-hole pairs with finite momenta). The condensation of
such pairs leads to the formation of CDW states. We show that
for a reasonable range of interaction parameters, this ordered
state has reorganized Fermi pockets and hence metallic be-
havior is expected. However, the density of electronic states
is strongly renormalized in the process. The inverse density
of states at the Fermi level shows peaks at finite doping on
either side of the CNP. This can explain the peaks in the resis-
tance as a function of density seen in recent low-temperature
experiments [33]. We further show that the Landau damped
critical fluctuations of the excitonic order can give rise to
non-Fermi liquid behavior of the electrons with a scattering
rate � ∼ T 2/3. For systems such as tDBLG, with small Fermi
pockets, this can give rise to sublinear T 2/3 resistance seen
in recent experiments [33]. Although we have used a simple
mean-field (MF) approximation to treat the system, the fact
that the MF theory can explain the two distinct and unusual
features of the low-T transport data in tDBLG gives us confi-
dence that it is qualitatively correct in describing the system.

We would like to note that we have neglected the intraband
e-e interaction while considering the formation of excitons in
our calculation. This is justified by the fact that if one works
in an electron coordinate for the conduction band and in a
hole coordinate for the valence band, one will immediately
realize that the interband e-e interaction leads to an attractive
interaction, whereas the intraband e-e gives a repulsive inter-
action. The attractive interaction is usually large compared
to its counterpart and leads to instability in the system. The
repulsive intraband interaction might change the quantitative
nature of the itinerant Fermi liquid, but cannot change the na-
ture of the singularity brought by the exciton condensate. This
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argument is also backed by the fact that unlike tBLG [66–68],
this tDBLG system has much less doping-dependent band
structure deformation [69] from Hartree interaction. Thus it
is sufficient to use a noninteracting band structure and add an
interband attractive type of quasielectron quasihole interaction
to study the nontrivial phases of the system.

Our theoretical predictions thus strongly indicate that the
effect of excitonic/CDW order and its fluctuations has already
been observed through the non-Fermi liquid temperature de-
pendence of the resistivity. A hallmark of CDW insulators
is the current produced by the sliding mode when the order
is depinned by finite energy probes (nonlinear/AC conduc-
tivity). However, in a metallic system such as tDBLG, these
contributions would be masked by the usual single-particle
contributions. We believe that the fluctuations of the finite
particle-hole condensate should give additional contributions
to current noise, but we leave this calculation for a future
manuscript. There are other systems in the moiré family such
as mono-bilayer graphene [84] and mono-trilayer graphene
[85] which host similar e-h pockets at the Fermi surface
and metallic states at the CNP like tDBLG. In general, one
would expect similar electron-hole pairing in these systems;
however, their bandwidth is larger than magic angle tDBLG
and they would have a weaker interaction to the kinetic energy
ratio. Thus the energy scales for exciton formation may be
exponentially smaller in these cases. We note that till now
there are no experimental data to either support or disprove
exciton formation in these systems.
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APPENDIX A: INTERBAND POLARIZABILITY
AND LANDAU DAMPING

We are interested in the low-energy dispersion of valence
and conduction bands in tDBLG, especially the modes which

constitute the electron and hole pockets near the CNP. For
these modes, the energy dispersion can be approximated as
two Dirac cones separated in momentum and energy, as shown
in Fig. 6(c). We use the hole band of the Dirac cone inverted
around the higher Dirac point and the electron band around
the lower Dirac point as

εc
k = vF |k|,

εv
k = 2 μ − vF |k − Q0|. (A1)

Here, εc(v)
k is the energy dispersion of the conduction (valence)

band, μ is the chemical potential at the CNP, vF denotes the
Fermi velocity of the effective Dirac points, and the momen-
tum separation wave vector between two Dirac cones is given
by Q0. Also, one can note that the exciton order parameter
�(q) ∼ ∑

k〈C†c
k Cv

k+q〉, so its fluctuations, χ��(q, t − t ′) =
iθ (t − t ′)

∑
kk′ 〈[Cc†

k (t )Cv
k+q(t ),Cv†

k′ (t ′)Cc
k′−q(t ′)]〉, are related

to the noninteracting interband polarizability,

�0
cv (q, ω) =

∑
k∈mBZ

f
(
εc

k − μ
) − f

(
εv

k+q − μ
)

ω + εc
k − εv

k+q

∣∣ 〈ψc
k

∣∣ ψv
k+q

〉 ∣∣2
,

(A2)

where the total polarizability �0
inter = �0

cv + �0
vc. Usually the

orthogonality of the band wave functions as q → 0 plays an
important role in determining the low ω, q behavior of �0

inter
in graphene. However, here we are interested in �0

inter near
q = Q, where orthogonality considerations do not play a role.
The band overlaps do not change the scaling of various terms.
Hence we can drop the term | 〈ψc

k | ψv
k+q〉 |2 from Eq. (A2)

and write it as

�0
cv (q, ω) ∼

∫
d2k
4π2

f (εc
k − μ)

ω + εc
k−q̄ + εc

k − 2μ

−
∫

d2k
4π2

1 − f
(
εc

k − μ
)

ω + εc
k + εc

k+q̄ − 2μ
, (A3)

where q̄ = q − Q0. Now using dimensionless parameters,
X = k/kF , Y = q̄/kF , and Z = ω/μ, Eq. (A3) can be rewrit-
ten as

�0
cv (q, ω) ∼ − k2

F

4π2μ

[
−

∫ 1

0
XdX

∫
dφ

1

Z − 2 + X +
√

X 2 + Y 2 − 2XY cos φ

+
∫ �

1
XdX

∫
dφ

1

Z − 2 + X +
√

X 2 + Y 2 + 2XY cos φ

]
.

Here, φ is the azimuthal angle between k and q̄, and � is an ultraviolet cutoff. We note that the Landau damping we calculate
is a low-energy property, which is independent of �. We are interested in the imaginary part of the polarizability, �′′ ≡ Im[�0

cv],
which then becomes

�′′ ∼ − k2
F

4πμ

{∫ 1

0
XdX

∫ +1

−1

du√
1 − u2

δ[Z − 2 + X +
√

X 2 + Y 2 − 2XYu]

−
∫ �

1
XdX

∫ +1

−1

du√
1 − u2

δ[Z − 2 + X +
√

X 2 + Y 2 + 2XYu]

}
.
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FIG. 7. (a) A schematic of the three C3 symmetric critical points in the momentum space. Around the Q1 point, we have taken the q-cuts of
d �′′
dω

|ω→0 along the directions drawn and plotted them in (b). Notice that q has been scaled to q̄ = q − Q1. The slope along all three directions,
[1,0] (blue), [1,1] (red), and [0,1] (green), shows divergence at the critical point and a very small anisotropy on top of the isotropic background.
One thing to note is that for (b), we have used a different set of parameters (momentum grid 350 × 350 and broadening η = 0.05 meV) than
for Fig. 6(b), where we used momentum grid 800 × 800 and broadening η = 0.02 meV. That is the reason the divergence scale of the slopes
is different for these two figures, which is expected.

Here, u = cos φ. This azimuthal integral can be done analytically to get

�′′ ∼ − k2
F

4πμ

[∫ 1

0
−

∫ �

1

]
XdX

θ{4X 2Y 2 − [X 2 + Y 2 − (2 − Z − X )2]2}√
4X 2Y 2 − [X 2 + Y 2 − (2 − Z − X )2]2

,

which can also be written as

�′′ ∼ − k2
F

4πμ

[∫ 1

0
−

∫ �

1

]
XdX

θ [{(2 − Z )2 − Y 2}(X + − X )(X − X −)]√
4{(2 − Z )2 − Y 2}(X + − X )(X − X −)

, (A4)

where X ± = [(2 − Z ) ± Y ]/2. We will work with Y, Z > 0
and Y, Z << 1 so that Z < 2 and Y < 2 − Z . In this case,
X + > X − > 0. Now, depending on the value of Y, Z , we can
have different regions in the phase space where the integrals
take qualitatively different forms, as follows.

Case (i). 0 < Z < 1 and 0 < Y < Z
or 1 < Z < 2 and 0 < Y < 2 − Z ,

−�′′ ∼ k2
F (2 − Z )

16μ
√

(2 − Z )2 − Y 2

≈ k2
F

16μ
; (Y � 2 − Z ). (A5)

Case (ii). 0 < Z < 1 and Z < Y < 2 − Z ,

−�′′ ∼ k2
F

8πμ
√

(2 − Z )2 − Y 2

×
[

(2 − Z ) sin−1

(
Z

Y

)
−

√
Y 2 − Z2

]

≈ k2
F

8πμ

Z

Y
; (Y → 0, Z/Y → 0)

∼ k3
F

8πμ2

|ω|
|q̄| . (A6)

Therefore, we analytically show the Landau damping factor
( |ω|

|q̄| ) arising from the imaginary part of the interband polariz-
ability function assuming two simple Dirac bands separated
from each other in energy and momentum space. One can
easily see that �0

vc will give the same contribution. Collecting
all these,

−Im �0
inter (q, ω) ∼ k2

F

8μ
; Y < Z < 2 − Y for Y < 1

(A7)

∼ k3
F

4πμ2

|ω|
|q̄| ; (Z <Y for Y < 1) or (Z < 2 −Y for Y > 1).

(A8)

As shown in the main text, the numerical evaluation of �′′
using the actual tDBLG dispersion and wave functions also
give rise to similar singular damping. In the main text, we
looked at d �′′(q,ω)

dω
|ω→0 as a function of q. Here, in Fig. 7(b),

we additionally plot the slope d �′′
dω

|ω→0 along a cut in q which
passes through Q0 and moves along the [0,1] (90◦) and [1,1]
(45◦) directions [the directions are schematically shown in
Fig. 7(a)]. We see that the slope diverges at Q0 irrespective
of the direction in which it is approached. Thus the Landau
damping has only small anisotropies riding on an isotropic
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FIG. 8. (a)–(c) Color plots of the renormalized conduction bands due to the presence of excitonic order parameters for the three e-h pocket
connecting wave vectors Q1(2)(3), respectively, at the CNP. (d)–(f) The renormalized valence bands at the CNP. The solid lines represent the
Fermi surface at the CNP. Here both the electron and hole pockets contribute to the resistivity of the system.

background, even though the Fermi velocities at the Dirac
points are anisotropic. This isotropy is important for scaling
arguments used to explain T 2/3 resistivity.

APPENDIX B: BAND RENORMALIZATION
DUE TO EXCITON FORMATION

In the main text, we had shown that the presence of exci-
tonic order leads to the formation of six minibands out of the
original tDBLG dispersion. Here, we present the detailed dis-
persion of these six bands and how they change with density
around the CNP in Figs. 8–10. In Fig. 8, we plot the dispersion
of the six bands (three conduction bands in the top row and
three valence bands in the bottom row) at the CNP as a color
plot. The electron and hole Fermi surfaces are shown as solid
lines. Note that the dispersion of the bands is not C3 symmetric
for individual Q′

is. The e-h pocket that is coupled by the exci-
tonic order is gapped out. Figure 9 plots the same dispersion
at n/ns = 0.06. One can see that the electron pockets have
grown, while the hole pockets have shrunk to zero. Finally,
Fig. 10 plots the dispersion at n/ns = 0.10. The hole pockets
from the valence band have vanished and electron pockets
are still present. But additional electron pockets appear in the
conduction band. The extra density of states from these new
pockets lead to a suppression of resistivity, giving rise to the
two-peak structure in the resistivity vs density data [33].

APPENDIX C: LANDAU-GINZBURG (LG) ANALYSIS
FOR MEAN FIELD

In this Appendix, we write a Landau-Ginzburg theory for
three charge density order parameters �1,2,3, where �i is the
mean-field parameter for the ith e-h pocket in the 3-Q model

that we have considered. which carry wave vectors Qi. The
free energy density in this case must be invariant under the
U(1) symmetry that gives phase rotation to the conduction
and valence electron operators separately; it also needs to be
translationally invariant. In addition, the C3 symmetry within a
valley needs to be respected. Note that since Q1 + Q2 + Q3 =
0, the terms that conserve translation invariance up to fourth
order in the order parameters is given by

F = −|r|
∑

i

|�i|2 + λ2

∑
i

|�i|4 + λ3

∑
i �= j

|�i|2|� j |2.

(C1)
Note that C3 symmetry implies that the mass terms and the
self-couplings for the three order parameters must be the
same. Minimization of the free energy with respect to �∗

i
leads to

δF

δ�∗
i

= −|r|�i + 2λ2�i|�i|2 + λ3

∑
j �=i

�i|� j |2 = 0. (C2)

The above equation gives the following conditions for non-
trivial values of �i (the trivial solution �i = 0 is always a
possibility):

2λ2|�1|2 + λ3(|�2|2 + |�3|2) = |r|, (C3)

2λ2|�2|2 + λ3(|�3|2 + |�1|2) = |r|, (C4)

2λ2|�3|2 + λ3(|�1|2 + |�2|2) = |r|. (C5)

We now look at different patterns of solutions for these
equations and consider the free energy of those states. We note
that these equations are independent of the relative phases
of the order parameters and cannot determine them. The
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FIG. 9. Similar to Fig. 8, here we have plotted the exciton bands for density n/ns = 0.06. One can notice that the hole pockets have
vanished, which explains the suppression of the density of states which leads to an increase in the resistivity.

first term that cares about relative phases has six powers of
order parameters (and is doped here since three order param-
eters multiplied together can give a translationally invariant
quantity).

Case (i). �1,�2,�3 �= 0.
Subcase (i). �1 = �2 = �3 = �.

Using this in Eq. (C3), we get |�|2 = |r|
2(λ2+λ3 ) . Hence the

free energy for this case becomes

F��� = −3|r|2
4(λ2 + λ3)

. (C6)

Subcase (ii). �1 = �2 = � �= �3. Let |�3|2 = |�|2 + ε.

FIG. 10. Similar to Fig. 8, here we have plotted the exciton bands for density n/ns = 0.10. Here one can notice that extra electron pockets
have emerged from higher bands, which causes the increment of the density of states that leads to a decrease in the resistivity. Figures 8–10
thus explain the double-peak feature seen in recent experiments [33].
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Using this in Eq. (C3), we get

2|�|2(λ2 + λ3) + λ3ε = |r|. (C7)

Similarly, from Eq. (C5), we get

2|�|2(λ2 + λ3) + 2λ2ε = |r|. (C8)

Subtracting Eq. (C8) from Eq. (C7), we get (λ3 − 2λ2)ε = 0.
Therefore, to get a nontrivial solution of ε, we need a very
fine-tuned condition of λ′

is. Hence this case can be neglected
in general.

Subcase (iii). �1 �= �2 �= �3. Let |�1|2 = |�|2, |�2|2 =
|�|2 + ε1, and |�3|2 = |�|2 + ε2.

Subtracting Eq. (C3) from Eq. (C4), we get (2λ2 −
λ3)(|�2|2 − |�1|2) = 0. Then, using the above definition of
�′

is, we get (2λ2 − λ3)ε1 = 0. Similarly, subtracting Eq. (C3)
from Eq. (C5), we get (2λ2 − λ3)(|�3|2 − |�1|2) = 0. Then,
using the above definition of �′

is, we get (2λ2 − λ3)ε2 = 0.
Therefore, we need the same stringent condition of λ′

is to get
a nontrivial solution of ε1 and ε2. Hence this case can also be
neglected in general.

Case (ii). �1,�2 �= 0 and �3 = 0.
Subcase (i). �1 = �2 = �.
Using this in Eq. (C3), we get |�|2 = |r|

2λ2+λ3
. Hence the

free energy for this case becomes

F��0 = −|r|2
2λ2 + λ3

. (C9)

In order to show that all three e-h pockets having same mag-
nitude of mean field is the minimum energy solution we need,
|F��0|
|F���| < 1. This leads to the condition

4(λ2 + λ3)

3(2λ2 + λ3)
< 1 ⇒ λ3

λ2
< 2. (C10)

Subcase (ii). �1 �= �2 and �3 = 0. Let |�1|2 =
|�|2, |�2|2 = |�|2 + ε.

Using this in Eq. (C3), we get

2λ2|�|2 + λ3(|�|2 + ε) = |r|. (C11)

And from Eq. (C4), we get

2λ2(|�|2 + ε) + λ3|�|2 = |r|. (C12)

Subtracting Eq. (C12) from Eq. (C11), we get (λ3 − 2λ2)ε =
0. Therefore, following our previous argument, this case can
also be neglected in general.

Case (iii). �1 = � �= 0 and �2 = �3 = 0.
Using this in Eq. (C3), we get |�|2 = |r|

2λ2
. Hence the free

energy for this case becomes

F�00 = −|r|2
4λ2

. (C13)

Again, in order to show that all three e-h pockets having same
magnitude of mean field is the minimum energy solution we
need, |F�00|

|F���| < 1. This leads to the condition

λ2 + λ3

3λ2
< 1 ⇒ λ3

λ2
< 2. (C14)

Therefore, if λ3
λ2

< 2, the minimum free energy solution of the
LG problem is the case where all �′

is are equal in magnitude,
which was our ansatz in the main text. This is true as long as
the quartic coupling between order parameters with different
wave vectors (λ3) is less than twice the quartic coupling be-
tween the order parameter with same wave vector (λ2). We
note that these couplings are, at best, equal to each other;
more likely, the coupling between the order parameters with
different Q is smaller since they require connecting electron
pockets with hole pockets further from them. Thus the equal
amplitude solution is the lowest-energy solution.
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