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Given the considerable theoretical challenges in understanding strongly coupled metals and non-Fermi liquids,
it is valuable to have a framework to understand properties of metals that are universal, in the sense that they must
hold in any metal. It has previously been argued that an infinite-dimensional emergent symmetry group is such
a property, at least for clean, compressible metals. In this paper, we will show that such an emergent symmetry
group has very strong implications for the dynamics of the metal. Specifically, we show that consideration of
the hydrodynamics of the associated infinitely many emergent conserved quantities automatically recovers the
collisionless Boltzmann equation that governs the dynamics of a Fermi liquid. Therefore the hydrodynamic
prediction is that in the low-temperature, collisionless regime where the emergent conservation laws hold, the
dynamics and response to external fields of a general spinless metal will be identical to a Fermi liquid. We discuss
some potential limitations to this general statement, including the possibility of nonhydrodynamic modes. We
also report some interesting differences in the case of spinful metals.
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I. INTRODUCTION

A metal is one of the basic categories of phases of matter
that a many-body system of electrons can be in. The low-
energy physics of metals can exhibit many rich phenomena.
Fermi liquid theory [1,2] is a highly successful effective field
theory that captures the low-energy physics of many metallic
materials in terms of the dynamics of quasiparticles. Nev-
ertheless, Fermi liquid theory has turned out not to be an
adequate description of so-called “non-Fermi liquid” metals
that have been observed in various classes of materials.

Theoretical progress in understanding non-Fermi liquids
has been slow despite intense interest. A major focus has been
in studying models of fermions coupled to a critically fluctu-
ating bosons [3–5]. In two spatial dimensions, by deforming
the theory in certain ways (for example by introducing N
fermion flavors in a particular way), certain limits have been
found in which perturbatively controlled calculations may be
possible [6–9]. However, the physics in these limits may be
qualitatively different from the more physical undeformed
models [10,11]. Moreover, there is no reason to believe that
these “Hertz-Millis” type models exhaust the possibilities of
non-Fermi liquids or are necessarily the appropriate descrip-
tion of the non-Fermi liquids seen in experiment.

A dramatically different way to think about the problem
is to ask which properties of metals are universal1 in the
sense that they are common to all (or at least most) metals,

1Here we are not using “universal” in the common sense of prop-
erties captured by a single renormalization-group (RG) fixed point;
rather we are talking about properties that are common to many
different RG fixed points of metals. Perhaps a better term would be
“multiversal.”

even strongly interacting ones? Some progress in addressing
this question has been made in Refs. [12–14]. The main idea
is that in clean systems, i.e., systems with at least a lattice
translation symmetry, one can use compressibility as a proxy
for metallicity, where “compressibility” here is defined as the
ability of the microscopic filling, i.e., the number of electrons
per unit cell, to be tuned continuously, possibly in tandem
with other microscopic parameters, while remaining in the
same phase. Compressibility is a feature of all known theo-
ries of metals, and to our knowledge is compatible with all
experimental observations of metals as well. (One exception
is the so-called “composite Fermi liquids” that occur in the
context of the fractional quantum Hall effect [15,16], though
whether these should even be called metals is debatable since
the longitudinal conductivity is zero at zero temperature in a
clean system).

Reference [12] showed that compressibility in fact has
dramatic consequences for the low-energy theory: in spatial
dimension d > 1, the emergent symmetry group must either
include a so-called higher-form symmetry (which is what hap-
pens in superfluids, another example of a compressible phase),
or else it must be infinite-dimensional. The latter possibility is
realized by Fermi liquid theory: in which at temperatures low
enough that quasiparticle scattering can be disregarded, the
charge at each point on the Fermi surface is conserved.

These considerations led us in Ref. [12] to introduce the
concept of an ersatz Fermi liquid, which is a system with
the same emergent symmetry group (and hence, the same
structure of emergent conserved quantities) as a Fermi liq-
uid. It is an important open question to determine whether
ersatz Fermi liquids and variations thereof capture all possible
compressible metals, or whether there are other fundamentally
different possibilities. Nevertheless, ersatz Fermi liquids at
least represent a large class of non-Fermi liquids (including,
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in particular, Hertz-Millis type models). We will restrict our-
selves to ersatz Fermi liquids in this paper.

Reference [12] demonstrated that a number of properties
of Fermi liquids can, in fact, be deduced strictly from the
emergent symmetry, and therefore constitute universal prop-
erties of any ersatz Fermi liquid. These properties included,
for example, Luttinger’s theorem. In the present work, we will
considerably extend these results by turning our attention to
the dynamical properties of the system; that is, the oscillation
modes at low frequencies and wavelengths, as well as the
responses to external electric fields, such as the conductivity
tensor σ (ω, q). These are the properties that in Fermi liquid
theory can be analyzed through the kinetic equation of the
quasiparticles.

It should not be surprising that the infinitely many emer-
gent conservation laws will have important implications
for the dynamical properties of the system. In this paper,
we show that the constraint is actually maximally strong: to
the extent that the dynamics of the system is governed by the
hydrodynamics of the conserved quantities (an assumption we
will re-examine towards the end), the linearized dynamics of
a general ersatz Fermi liquid is in fact identical to that of a
Fermi liquid with suitable Fermi velocity and Landau inter-
action parameters. Thus all the dynamical features of Fermi
liquids such as the collective “zero sound” mode and the
particle-hole continuum will carry over. This work represents
a clear demonstration of the power of the compressibility and
emergent symmetry concepts in understanding the dynamics
of non-Fermi liquids.

Finally, let us remark that this paper can in many ways
be viewed as a sequel to Ref. [17]. In that paper it was
shown that the Goldstone modes of a superfluid can in fact
be derived solely from the emergent symmetry [in that case,
in d spatial dimensions it is a (d − 1)-form symmetry] and
its mixed anomaly with the charge 0-form symmetry; as a
consequence, they are present even in systems where the U(1)
charge conservation symmetry is not actually spontaneously
broken (which we could refer to as “ersatz superfluids”). In
this paper, we are implementing an analogous program for
ersatz Fermi liquids. However, as the emergent symmetry
group in this case is much larger, the dynamical modes that
one can obtain are richer, as we will see.

The outline of the remainder of this paper is as follows. In
Sec. II, we will review the dynamics of a Fermi liquid from the
Boltzmann equation. In Sec. III, we will review the concept
of an ersatz Fermi liquid. In Sec. IV, we will state the precise
result for the equation of motion that we are going to establish
in a general ersatz Fermi liquid, and then in Sec. V, we will
derive this result from the hydrodynamics of the emergent
conserved quantities. In Sec. VI, we will compare with results
obtained from the quantum Boltzmann equation approach,
and reveal how nonhydrodynamic modes can arise in certain
regions of (ω, q) space. In Sec. VII, we will discuss how the
solutions of the hydrodynamic equations of motion may have
different qualitative character at quantum critical points due to
special values of the parameters. In Sec. VIII, we will discuss
possible extensions of our results to spinful systems and to
the response to magnetic fields. In Sec. IX, we will discuss
limitations of our results and future directions.

II. REVIEW: DYNAMICS OF A FERMI LIQUID

As is well known, in (spinless) Fermi liquid theory, in
the collisionless regime where quasiparticle scattering can be
disregarded, the quasiparticle distribution function f (x, k, t )
obeys the collisionless Boltzmann equation

∂ f

∂t
−

(
E + ∂ε

∂x

)
· ∂ f

∂k
+ ∂ε

∂k
· ∂ f

∂x
= 0, (1)

where

ε(k, x, t ) = ε0(k) +
∫

F (k, k′)δ f (k′, x, t )dd k′ (2)

is the energy of a single quasiparticle. Here ε0(k) is the equi-
librium value of the quasiparticle energy, F (k, k′) the Landau
interaction, and δ f = f − f0 is the deviation from the distri-
bution function in the ground state. For generality, we have
included an electric field E which could depend on space and
time. In the majority of the paper we will set the magnetic field
to zero (however, we will make some comments on magnetic
fields towards the end).

We work in general spatial dimension d . We parametrize
the ground state Fermi surface in momentum space by
kF (θ ), where θ is a parameter that lives in some closed
(d − 1)-dimensional manifold S with the appropriate topol-
ogy [for example a (d − 1)-sphere.] The long-wavelength,
low-frequency dynamics of the system can be described in
terms of a perturbed Fermi surface K(θ ) that differs by a small
amount from kF (θ ) and could depend on space and time.
In particular, at zero temperature we can set f (x, k, t ) to be
1/(2π )d when k is inside the perturbed Fermi surface at (x, t )
and zero outside. If we substitute into Eq. (1) and linearize in
the perturbation (treating the external electric field to linear
order as well), we obtain a linear equation of motion for the
Fermi surface.

The equation of motion will involve the component of
the perturbation perpendicular to the Fermi surface, namely
ŵ(θ ) · (K(θ ) − kF (θ )), where ŵ(θ ) is a unit vector normal
to the Fermi surface. [The components of K(θ ) − kF (θ ) par-
allel to the Fermi surface can be eliminated by a time- and
space-dependent reparameterization of θ and have no physical
content.] For reasons that will become clear later, we will
prefer to introduce a nonunit vector w(θ ) that is normal to
the Fermi surface and define

n(θ ) = 1

(2π )d
w(θ ) · [K(θ ) − kF (θ )]. (3)

The idea is that
∫

n(θ )dθ will be equal to the total excess
charge density. Furthermore,

∫
	

n(θ )dθ , where the integral is
restricted to a region 	 of the Fermi surface, will give the
contribution to the excess charge density from that portion of
the Fermi surface. Here

∫
dθ denotes integration with respect

to some arbitrarily chosen volume form on S . Integrals will
be assumed to be over the whole manifold S unless otherwise
stated.

In order to define w(θ ), suppose that in some infinitesimal
neighborhood in θ space, we choose some coordinate system
θ1, . . . , θd−1, normalized such that within this local neighbor-
hood, the integration measure

∫
dθ coincides with the usual

integration measure in Rd . Then within this neighborhood we
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FIG. 1. The oscillation mode spectrum for a Fermi liquid (the
zero sound mode may or may not be present depending on the value
of the Landau parameters).

can define

wi(θ ) = εi j1··· jd−1∂θ1 (kF ) j1 (θ ) · · · ∂θd−1 (kF ) jd−1 (θ ), (4)

where ε denotes the Levi-Civita symbol, and we use the re-
peated index summation convention.

In terms of n(θ ), the linearized equation of motion can be
written as

∂n(θ )

∂t
+ vF (θ ) · ∇n(θ ) − 1

(2π )d
w(θ ) · E

(5)

+ 1

(2π )d

∫
dθ ′F (θ, θ ′)w(θ ) · ∇n(θ ′)dθ ′ = 0,

where vF (θ ) := ∂ε0
∂k |k=kF (θ ) is the Fermi velocity, and

F (θ, θ ′) := F (kF (θ ), kF (θ ′)) is the Landau integration eval-
uated at the Fermi surface. [Note that by the definition of the
Fermi surface, vF (θ ) must be normal to the Fermi surface
and hence parallel to w(θ ).] Since we are only considering
the linearized equation of motion, it is not necessary to take
into account the variation of the Fermi wave vector from the
equilibrium value kF (θ ) in defining F (θ, θ ′), vF (θ ) and w(θ ).
We remark that while above we talked about zero temperature,
Eq. (5) actually holds at nonzero temperature as well, up to
leading order in T (and ignoring collisions).

All of the low-frequency, long wavelength dynamical prop-
erties of a Fermi liquid at zero temperature (except those
relating to magnetic fields) can be determined by solving
Eq. (5). For example, one can compute the conductivity
tensor σ i j (ω, q) and the density-density response function
Gnn(ω, q). Moreover, by solving Eq. (5) in the absence of any
external fields, one finds the oscillation modes of the system
at given frequency ω and wave vector q. What one generally
finds, as shown in Fig. 1, is a continuum of modes referred to
as the “particle-hole continuum.” (Depending on the specific
parameter values, there can be an additional collective mode
called “zero sound”). The particle-hole continuum exists at ω

and q such that there exists a point θ on the Fermi surface with

ω = v(θ ) · q. (In particular, for an isotropic system it exists
for |ω|/q < vF ).

III. REVIEW: ERSATZ FERMI LIQUIDS

In Fermi liquid theory, the total charge N (θ ) =∫
n(θ, x)dd x associated with each point on the Fermi surface

is a conserved quantity, reflecting the fact that quasiparticles
do not scatter. [Specifically, this is a property of the RG
fixed-point theory. Irrelevant operators not included in the
fixed-point theory would lead to quasiparticle scattering at
nonzero temperature or frequency.] In other words, we can
think of the N (θ )′s as the generators of an infinite-dimensional
emergent symmetry group, which in d = 2 be identified as
the so-called “loop group” LU(1) [12]. For general d ,
the emergent symmetry group is LSU(1), the group whose
elements are smooth maps into U(1) from the closed manifold
S that parameterizes the Fermi surface.

An ersatz Fermi liquid is defined to be any system that
has the same LSU(1) emergent symmetry group, for some
(d − 1)-dimensional closed manifold S . In particular, we will
refer to the generators of this group as N (θ ), with θ living
in S , as in a Fermi liquid. Note that, by examining how
the microscopic lattice translation group maps into LSU(1),
one immediately obtains a concept of “Fermi surface” that
applies in an arbitrary Fermi liquid [12]. We will continue to
parametrize this Fermi surface by kF (θ ) as in a Fermi liquid.

An important property of this emergent symmetry group
is its ’t Hooft anomaly. In this context, we can think of a
’t Hooft anomaly as a nonconservation of charge in re-
sponse to a background gauge field. An example would be
the anomaly of a chiral fermion in (1 + 1)-D where charge
becomes nonconserved in the presence of an applied electric
field. As the details get somewhat technical, we refer the
reader to Ref. [12] for a general definition of the ’t Hooft
anomaly of LSU(1). Here we will simply mention some of its
consequences. Among them is that the charge N (θ ) becomes
nonconserved when a background electric field is applied,
according to2

∂t n(θ ) + ∇ · j(θ ) = m

(2π )d
w(θ ) · E, (6)

where w(θ ) is defined by Eq. (4), n(θ ) is the local density
of N (θ ), and j(θ ) is the corresponding current density. We
have introduced the anomaly coefficient m, which is quantized
to be an integer. For single-component Fermi liquid theory,
m = ±1. More generally, if there are N fermion species that
share a Fermi surface, then |m| = N in Fermi liquid theory.

Another consequence of the anomaly (though not one we
will need to use in the current paper) is Luttinger’s theorem,
which holds in any ersatz Fermi liquid that has a microscopic
lattice translation symmetry and U(1) charge conservation

2In Ref. [12], there was an additional factor of q in this equation,
where q is an integer that reflects how the microscopic U(1) charge
conservation symmetry maps into LSU(1). In Fermi liquid theory, q
represents the charge carried by a quasiparticle. In this paper we will
just absorb q into the definition of the electric field, as we already did
implicitly in Sec. II.
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symmetry3:

mVF

(2π )d
= ν (mod 1), (7)

where VF is the volume enclosed by the Fermi surface, and ν

is the microscopic filling, i.e., the average charge per unit cell.

IV. DYNAMICS OF ERSATZ FERMI LIQUIDS

The emergent conservation laws in an ersatz Fermi liquid
have important consequences for the dynamics. In particular,
whenever we have conserved quantities, then we can treat the
dynamics of the densities of the conserved quantities from
the point of view of hydrodynamics, by assuming that for
sufficiently low frequency ω and wave vector q, the system
can be regarded as reaching local thermal equilibrium at any
given point in space and time, characterized solely by the
local values of the densities of the conserved quantities (or
equivalently, their thermodynamically conjugate variables).
One supplements this with constitutive relations that relate
the densities and currents of the conserved quantities to the
thermodynamically conjugate quantities and their derivatives.
One can view these constitutive relations in terms of a deriva-
tive expansion, where one truncates the series by retaining
only terms with a small number of derivatives.

A familiar example of hydrodynamics is the case where
the only conserved quantities are charge/mass, energy, and
momentum. This gives the usual hydrodynamics of fluids. If
we truncate the derivative expansion to “zeroth” order, where
one discards all terms in the constitutive relations that involve
derivatives, then one obtains the Euler equations of fluid dy-
namics; going to first-order in the derivative expansion instead
gives the Navier-Stokes equations that include viscosity terms.
(In general, zeroth-order hyrodynamics will always be nondis-
sipative, while dissipation effects enter at higher orders).

The central result of this paper is that, if we formulate
hydrodynamics taking into account the emergent conserved
quantities of ersatz Fermi liquids, and if one truncates the
derivative expansion at “zeroth” order, then one precisely ob-
tains equation of motion for n(θ ) that corresponds to Eq. (5).

The precise statement that we are going to prove is the
following. A thermal equilibrium state can be characterized
by the expectation values of the densities of all conserved
quantities. Suppose that the conserved quantities of the sys-
tem are N (θ ), the energy E , and potentially some additional
“spectator” conserved quantities O1, O2, . . . (we will clarify
what exactly qualifies as a “spectator” quantity later; here we
just remark that an example would be total spin in systems
of spinful electrons—see Sec. VIII A). We define a thermody-
namic variable μ(θ ) conjugate to n(θ ) according to

μ(θ ) =
[

δε

δn(θ )

]
s,o

, (8)

where ε is the energy density, and the notation indicates that
the derivative is taken with the entropy density s, as well as

3Here there again should technically be an additional factor of q,
see the previous footnote.

the densities of all the spectator quantities, held fixed. Then
we define a function ξ according to

ξ (θ, θ ′) =
[

δμ(θ )

δn(θ ′)

]
s,o

. (9)

We can essentially think of ξ as related to the thermodynamic
susceptibilities, although taking the derivative with entropy
held fixed is not quite how susceptibilities are normally de-
fined. (However, the Third law of Thermodynamics ensures
that this at zero temperature, derivatives with entropy held
fixed are equivalent to derivatives with temperature held fixed,
so this distinction only matters at nonzero temperature.) By
exchanging the order of derivatives one immediately finds that
ξ is symmetric, that is, ξ (θ, θ ′) = ξ (θ ′, θ ).

What we will show is that truncating to the zeroth order of
the hydrodynamic expansion gives the equation of motion

∂n(θ )

∂t
+ m

(2π )d

∫
dθ ′ξ (θ, θ ′)w(θ ) · ∇n(θ ′)dθ ′

= m

(2π )d
w(θ ) · E. (10)

In particular, if one sets m = 1 and substitutes the value of ξ

in single-component Fermi liquid theory, which can be shown
(see Appendix A) to be

ξ (θ, θ ′) = (2π )d vF (θ )

|w(θ )|δ(θ − θ ′) + F (θ, θ ′), (11)

then one recovers Eq. (5). However, our derivation is much
more general and applies to any ersatz Fermi liquid.

It seems reasonable to assume that in a general ersatz Fermi
liquid, ξ (θ, θ ′) will be the sum of a nonsingular contribution
and a delta function contact term. In that case we can take
Eq. (11) to be the definition of an effective “Fermi velocity”
vF (θ ) and “Landau interaction” F (θ, θ ′), such that the Fermi-
liquid-like equation of motion Eq. (5) is precisely satisfied.

Let us caution that the above terminology may perhaps lead
to some confusion in the case of metallic quantum critical
points. Suppose that, as one approaches the quantum critical
point by tuning some parameter of the Hamiltonian, for any
deviation from the quantum critical point, the system remains
a Fermi liquid at the lowest energy scales. Such a Fermi liquid
can be characterized by the “effective mass” (or equivalently,
the Fermi velocity) and the Landau interactions. Generally
one expects the effective mass to diverge, and hence the Fermi
velocity to go to zero, as one approaches the quantum critical
point. However, there is generally also a contribution to the
Landau interaction F (θ, θ ′) that becomes increasingly sharply
peaked near θ ≈ θ ′ as one approaches the critical point. At the
critical point, this contribution becomes a delta function [18]
and hence would be re-interpreted as a nonzero contribution to
the Fermi velocity, rather than a Landau interaction, accord-
ing to the above definition. This may not always agree with
terminology used in previous literature.

V. ZEROTH-ORDER HYDRODYNAMICS IN AN ERSATZ
FERMI LIQUID

We imagine performing a derivative expansion on the con-
stitutive relations. In the present work, we will only retain
the zeroth order of this expansion; that is, the terms that do
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not involve any derivatives at all. These terms just involve
thermodynamic susceptibilities. Thus we have, for example,
to linear order in the perturbation about the initial state:

δμ(θ ) =
∫

ξ (θ, θ ′)δn(θ ′)dθ ′ + u(θ )δs +
∑

a

γ aδoa, (12)

where s is the entropy density, and the oa’s are the densities
of the spectator conserved quantities. Here ξ was defined by
Eq. (9), γ a = [ ∂μ(θ )

∂oa
]n,s, and

u(θ ) =
[
∂μ(θ )

∂s

]
n,o

=
[

δT

δn(θ )

]
s.o

. (13)

The Third law of Thermodynamics implies that u(θ ) → 0 at
zero temperature. Therefore we will for the moment just set
u(θ ) = 0, though we will return to the nonzero temperature
case later. We will also temporarily assume that there are no
spectator quantities so the last term in Eq. (12) goes away.

Now we need to consider the constitutive relations for the
currents. A crucial point is that the zeroth-order constitutive
relation for j(θ ) is actually completely fixed by general con-
siderations. Since we are dropping all terms in the constitutive
relation involving spatial derivatives, it is sufficient to know
the expectation value of the current in a thermal equilibrium
state. Naively one might think that this is zero due to Bloch’s
theorem [19,20] but as described in Ref. [14] the Bloch’s
theorem result must be modified in cases where the conserved
quantities have an anomaly. In particular, in the present case
the arguments of Ref. [14] show that the expectation value of
the current in an equilibrium state is given by

j(θ ) = m

(2π )d
w(θ )μ(θ ). (14)

Equations (12) and (14), combined with the conservation
Eq. (6), immediately implies Eq. (10).

Let us now explain how the arguments get modified if there
are additional “spectator” conserved quantities O1, . . . , On.
What we mean by “spectator” is that these quantities do
not have any mixed anomaly with each other or with N (θ ).
Therefore Bloch’s theorem will imply that the corresponding
currents are zero in an equilibrium state, and therefore can
be set to zero in the zeroth-order hydrodynamics that we are
considering. From this it follows that in studying dynamics
we can simply set the perturbation δoa of the densities of
these quantities to zero. The absence of a mixed anomaly also
implies that there is no correction to Eq. (14). The derivation
then proceeds as before, and we again obtain Eq. (10).

Finally, let us consider the case of nonzero temperature, in
which one cannot set u(θ ) = 0 in Eq. (12). We then need to
take into account the energy transport. One might think that
the energy current in an equilibrium state must be zero—in
fact, this is what is proved for lattice models in Ref. [21]. The
problem is that the state with μ(θ ) not a constant function of θ

is not an equilibrium state of a Hamiltonian that can be defined
at the lattice level. We give (not entirely rigorous) arguments
in Appendix B that the correct value of the energy current in
the thermal equilibrium state is

jε =
∫

μ(θ )j(θ )dθ. (15)

Hence, the energy conservation equation gives for the energy
density

∂tε = E · j − ∇ · jε (16)

=
∫ [

E ·
(

j(θ ) − m

(2π )d
μ(θ )w(θ )

)
+ μ(θ )∂t n(θ )

]
,

(17)

=
∫

μ(θ )∂t n(θ )dθ, (18)

where in the second line we invoked Eq. (15) and the con-
servation Eq. (6), and in the third line we invoked Eq. (14).
Hence, for the entropy density, we have from a thermody-
namic identity that

∂t s = 1

T

(
∂tε −

∫
μ(θ )∂t n(θ )dθ

)
(19)

= 0. (20)

From Eq. (20) we see that we can set δs = 0 in Eq. (12), and
the rest of the derivation proceeds as before. As a side note we
remark that Eq. (20) shows that there is no entropy production;
in other words, at the level of zeroth-order hydrodynamics, the
dynamics is completely dissipationless.

VI. COMPARING WITH THE “QUANTUM BOLTZMANN
EQUATION” FORMALISM: NONHYDRODYNAMIC

MODES

In this section, we will compare the results of this paper
with those obtained from the “Quantum Boltzmann equation”
(QBE) formalism [22], which uses nonequilibrium Green’s
function methods to derive a Boltzmann equation in particular
models of fermions coupled to a fluctuating boson. This ap-
proach requires the form of the boson and fermion self-energy
as input, so it can only be applied in a theory in which these
quantities can be computed in a controlled way. The original
calculations of Ref. [22] invoked the “random-phase approxi-
mation” (RPA), but it is now understood [23] that this does not
represent a controlled approximation even in the limit where
the number of fermion species Nf is taken to infinity.

On the other hand, we can apply the QBE in the particular
case of the large-N limit of the “random-flavor” model dis-
cussed in Refs. [9,24,25]. In this limit, a controlled calculation
of the fermion and boson self-energies is possible, and the
model manifestly preserves the LU(1) conservation laws4 so it
is possible to make a direct comparison between the QBE and
the hydrodynamic equations (see also the numerical results of
Ref. [26]). In particular, from the QBE one obtains [27] 5 an
equation similar to Eq. (5); however an important difference is

4This is contrast to some other approaches such as the dimensional
regularization of Ref. [7], which violates these conservation laws and
hence risks disrupting the hydrodynamics.

5The calculations in Ref. [27] were actually framed in terms of the
dimensional regularization of Ref. [7], but as this gives the same form
of the fermion and boson self-energy as the random-flavor large-N
model, up to different values of constants, the results should be the
same.
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that the “Landau parameters” in this equation have a nontrivial
frequency dependence, while in our equation of motion the
Landau parameters are defined in terms of a static suscepti-
bility and have no frequency dependence. Thus we need to
examine this issue more closely to determine whether there is
an inconsistency with the hydrodynamic result.

In Appendix C, we analyze the solution of the QBE. (Our
conclusions are similar to those of Ref. [22] which analyzed
essentially the same equation, though we go into a bit more
detail.) We show that if n(θ ) varies sufficiently smoothly with
θ , then these equations of motion reduce to the hydrodynamic
equations of motion Eq. (5), with the effective Landau interac-
tions F (θ, θ ′) being zero.6 As a result, there is no zero sound
mode, for instance. (While Ref. [27] claimed to obtain a zero
sound mode, a more careful analysis of the solutions to their
equations does not support their claim—see Appendix C).

There are two points to be made about this. Firstly, the
calculations of Ref. [27] are computed with respect to a
“patch” action that, while it is believed to capture the leading
singularities associated with the critical fluctuations, is not
necessarily expected to capture all of the IR properties of the
system. Thus the more appropriate interpretation of F (θ, θ ′)
being zero for this action is that in an actual microscopic
system, the F (θ, θ ′) in the IR theory would be nonzero but
does not acquire any singular behavior due to the critical
fluctuations. However, even this is probably not the physically
correct statement. An essential feature of the quantum critical
point is [10,11] that ξ , given by Eq. (9), has a zero mode
in the sense that there is a nontrivial function u(θ ) such that∫

ξ (θ, θ ′)u(θ )u(θ ′)dθdθ ′ = 0. Since ξ can be thought of as
the inverse of the (infinite-dimensional) susceptibility matrix
of the N (θ )′s, this is equivalent to saying that susceptibility di-
verges in some channel, reflecting the fact that the N (θ )′s mix
with the order parameter at the critical point. These properties
cannot be satisfied unless there is a relation between F (θ, θ ′)
and vF (θ ) enforced by the criticality. Thus we feel that there is
something that the QBE calculations as currently formulated
are missing. We leave it for future work to ascertain which
of the assumptions and approximations involved in the QBE
calculations breaks down. Since, as we shall see, the QBE
equations of motion do seem to give qualitatively reasonable
results for modes where n(θ ) is sharply peaked near some
point of the Fermi surface, our suspicion is that there may
be some subtle correlation between different patches on the
Fermi surface, mediated by the boson, that is being missed.

Let us now return to analyzing the results obtained from
the QBE equations of motion. One kind of mode that results
are the so-called “rough” modes for which n(θ ) becomes
singular at particular points on the Fermi surface. (Another
way to say this is that the Fourier-transformed quantities
nl = 1

2π

∫
e−ilθ n(θ )dθ , labeled by the angular momentum l ,

are not localized in angular momentum space but rather have a
plane wave structure as l → ±∞). These exist as a continuum
when ω < Cq3/2, where C is a constant. Such modes are not
predicted by the zeroth-order hydrodynamics, and going to

6In interpreting this statement, the reader should keep in mind
the terminological point made at the end of Sec. IV regarding our
definition of “Landau interactions.”

higher orders in the derivative expansion presumably cannot
give a fractional power in the dispersion relation. Thus we
are forced to conclude that the rough modes are completely
invisible to hydrodynamics.

There is a simple physical picture for why one should
not have expected these rough modes to be captured by
hydrodynamics. The starting point of hydrodynamics is the
assumption that the N (θ )′s are conserved quantities. However,
at nonzero frequency it is not strictly the case that N (θ ) is
conserved for each θ , because the boson can scatter fermions
between nearby points of the Fermi surface that are sepa-
rated by less than �θcrit (ω) ∝ ωα [where α is some positive
scaling exponent]. In other words, if we assume θ ranges
over [0, 2π ] and define the Fourier transformed quantities
Nl = 1

2π

∫
e−ilθ N (θ )dθ , Nl is approximately conserved only

when |l| � �θcrit (ω)−1. However, the fact that �θ (ω) → 0
as ω → 0 means that the Nl ’s are at least emergent conserved
quantities in the sense that for any fixed l , the relaxation rate
of nl goes to zero as ω → 0. The problem for hydrodynamics
is that with regard to the relaxation rate, the limits l → ∞
and ω → 0 do not commute. Because the rough modes extend
infinitely far in the l space, they are very sensitive to this issue,
while “smooth” modes that vary over the Fermi surface only
on a scale � �θcrit (ω) should not be sensitive to this issue and
thus are expected to be correctly described by hydrodynamics.
(We emphasize that, since �θcrit (ω) → 0 as ω → 0, even very
sharply peaked modes can still be described by hydrodynam-
ics in the low-frequency limit.)

Thus the mode spectrum predicted by zeroth-order hydro-
dynamics and depicted in Fig. 1 at the very least needs to be
supplemented by adding in the nonhydrodynamic “nonquasi-
particle continuum” for ω < Cq3/2. Let us discuss the fate
of particle-hole spectrum as predicted from hydrodynamics.
One might be concerned about the fact that according to
the solution of the hydrodynamic equations of motion, the
particle-hole spectrum involves modes that also appear to
be “rough.” One might have viewed this as hydrodynamics
predicting its own breakdown.

In fact, however, this is not really the case, and we do ex-
pect on general grounds that the particle-hole continuum will
survive. One argument for this is as follows. Suppose that we
drive the system at frequency ω and wave vector q, somewhere
within the particle-hole spectrum region, with q ∼ vF ω, but
where the temporal driving is not strictly monochromatic, i.e.,
in frequency space there it has some small spread �ω. Then
according to the hydrodynamic equations, the prediction is
that one would excite a superposition of particle-hole contin-
uum modes spread over a range �θ ∼ �ω/qvF on the Fermi
surface. So long as �θ � �θcrit (ω), this superposition will be
well described by hydrodynamics. But, since �θcrit (ω) → 0
as ω → 0, it follows that if we hold ω/q fixed and take the
limit as ω → 0, we can make the driving, and thus the modes
that are excited, increasingly monochromatic as ω → 0 while
still being well-captured by hydrodynamics. Thus, if for a
given q, hydrodynamics breaks down for ω < ωhydro(q) [for
example, ωhydro(q) ∼ q3/2 in the QBE result described above],
it must be the case that ωhydro(q)/q → 0 as q → 0.

Notwithstanding our concerns about the validity of the
QBE calculations, one can verify that the above scenario is
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Zero sound

Particle-hole
(pseudo)continuum

Non-hydrodynamic
modes

ω

q

FIG. 2. The expected features of the mode spectrum for a general
ersatz Fermi liquid without quasiparticles (the zero sound mode will
be present if and only if it is predicted to exist from the zeroth-order
hydrodynamics.)

actually what occurs when solving the QBE equations of
motion. More precisely, in Appendix C, we find that for
ω > ωhydro(q), the particle-hole continuum gets replaced by
a “pseudocontinuum” comprising a set of discrete modes, but
where the dispersion relations of neighboring modes have a
relative spacing δ = �ω/ω that is proportional to ω1/6 and
hence goes to zero as ω → 0. The modes in this region are
smeared out by an amount ∼δ over the Fermi surface.

Let us summarize the lessons that we have learned for
a general ersatz Fermi liquid, going beyond the particular
models that we have been discussing in this section. By the
definition of emergent symmetry, it must be the case that for
a fixed l , the relaxation rate of Nl goes to zero as ω → 0,
but it is certainly possible that the limits l → ∞ and ω → 0
do not commute. Nevertheless, the general arguments de-
scribed above suggest that any breakdown of hydrodynamics
can only happen for ω < ωhydro(q), with ωhydro(q)/q → 0 as
q → 0. Outside of this region, hydrodynamics will remain
valid (modulo the subtle issues about the particle-hole “pseu-
docontinuum”). The general features expected of the mode
spectrum are depicted in Fig. 2.

VII. EFFECT OF QUANTUM CRITICALITY
ON THE DYNAMICS

Even though the zeroth-order hydrodynamics of ersatz
Fermi liquids is described by the same equation of motion
as Fermi liquids, there is still one sense in which quantum
critical points could conceivably exhibit qualitatively differ-
ent dynamics compared to Fermi liquids. This is because
a Fermi liquid always satisfies the property that ξ (θ, θ ′)
(thought of as an infinite-dimensional matrix) is positive-
definite, as this is equivalent to the condition for absence
of a Pomeranchuk instability. More generally, in any ersatz

Fermi liquid, thermodynamic stability requires that ξ (θ, θ ′) is
always positive-semidefinite. But at a quantum critical point
one generally expects ξ to support a nontrivial zero mode
(for example see the computations of the susceptibility in
Refs. [10,11]), i.e., it is positive-semidefinite but not positive-
definite. One can ask how this affects the dynamics.

Let us for simplicity first consider the case where the
system is rotationally invariant. Then defining the Fourier co-
efficients ξ (θ, θ ′) = ∑

l ξl eil (θ−θ ′ ) and n(θ ) = ∑
l nl eilθ , and

writing kF (θ ) = kF (cos θ, sin θ ), Eq. (10) (setting E = 0)
becomes

ωnl + mqkF

2(2π )d
(ξl−1nl−1 + ξl+1nl+1) = 0. (21)

Here we have taken the Fourier transform in space and time,
introducing frequency ω and wave vector q = (q, 0). It is
convenient to rewrite this in terms of the chemical potential
μl = ξl nl , which gives

ωξ−1
l μl + mqkF

2(2π )d
(μl−1 + μl+1) = 0. (22)

This takes the form of a Schrödinger equation for a particle
hopping on an infinite 1-D lattice with on-site potential ∝ ξ−1

l .
Hence, in particular, if there is quantum criticality in a partic-
ular angular momentum channel ±l∗ so that ξl∗ = ξ−l∗ = 0,
then we see that the on-site potential on sites ±l∗ is infinite.
Thus we see that there are three different regions between
which the particle cannot tunnel: l > l∗, −l∗ < l < l∗, and
l < −l∗. This implies, for example, that the particle-hole
(pseudo)continuum will consist entirely of electrically neu-
tral states since these modes (which correspond to unbound
states which do not decay as l → ∞) cannot penetrate the
interior region, and hence have n0 = 0. If l∗ = 1, we also
find that there is an electrically charged mode which does not
propagate, i.e., ω = 0 regardless of q (of course in general
this mode will presumably have diffusive dynamics ω ∝ iq2

once one includes higher-order terms in the hydrodynamic
expansion). This can be regarded as closely related to the
physics of “critical drag” [13,14] which suppresses the DC
conductivity that would otherwise be infinite.

It is worth asking whether these properties are robust to
anisotropy. Among other things, we can think of anisotropy
as introducing beyond-nearest neighbor hopping in Eq. (22).
This allows the infinite potential barrier to be bypassed. There-
fore, for generic ξ (θ, θ ′), we expect that many of the peculiar
properties discussed above will disappear in anisotropic sys-
tems and the dynamics will be qualitatively similar to a
Fermi liquid. For example, as pointed out in Ref. [11], for an
anisotropic system critical drag does not suppress the infinite
DC conductivity without fine-tuning ξ (θ, θ ′) [whether there
might be reasons in a particular model why ξ (θ, θ ′) would
take special values, we leave as an open question].

VIII. EXTENSIONS

A. Spinful systems

So far we have focused on spinless metals. Let us discuss
extensions to the spinful case. As pointed out in Ref. [12] the
emergent symmetry group of a spinful Fermi liquid (without
spin-orbit coupling) is the group LU(1)spin defined by taking
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the quotient of U(2) × LU(1) by the diagonal U(1) subgroup.
This has the same Lie algebra (though a different global struc-
ture) as SU(2) × LU(1), which reflects the fact that the charge
at each point on the Fermi surface is conserved, but only the
total spin is conserved, not the spin at each point on the Fermi
surface.

One can therefore define a spinful ersatz Fermi liquid to be
a non-Fermi liquid with the same emergent symmetry group
LU(1)spin and attempt to study its hydrodynamics. In general,
hydrodynamics of noncommuting conserved quantities is a
much more challenging topic compared to Abelian hydrody-
namics [28]. However, for the zeroth-order hydrodynamics we
are considering in this paper the situation remains straightfor-
ward. The generators of the emergent symmetry group are the
three components of the spin, which we write as a vector �S,
and the charge N (θ ) at each point on the Fermi surface. We
can introduce the thermodynamically conjugate variables �h
and μ(θ ) respectively, such that a thermal equilibrium state
is can be written as

1

Z exp

(
−β

[
H −

∫
μ(θ )N (θ )dθ − �h · �S

])
. (23)

The spin does not have any mixed anomaly with N (θ ). There-
fore the spin falls into the category of “spectator” conserved
quantity that we discussed in Sec. V. For spectator conserved
quantities it does not matter that they do not commute, and
accordingly, we find that the zeroth-order hydrodynamics of
the Fermi surface charges is again given by the identical form
as in Sec. IV.

We can compare this with Fermi liquid theory, where the
dynamics is not the same in the spinful case as in the spinless
case, and in particular in the spinful case it is expressed [1] in
terms of the charge and spin at each point of the Fermi surface
[or equivalently a 2 × 2 matrix-valued Nαβ (θ )], despite the
fact that the spin at each point on the Fermi surface is not
a conserved quantity and therefore ought not to appear in
hydrodynamics. Thus, unlike in the case of spinless Fermi
liquid theory, spinful Fermi liquid cannot be interpreted as a
hydrodynamic theory in the usual sense where only the densi-
ties of conserved quantities enter, though there could perhaps
be some way to generalize the concept of hydrodynamics to
accommodate it.

Going beyond Fermi liquids, in spinful non-Fermi liquids it
is possible that the strict hydrodynamic description is recov-
ered, giving dynamics different from spinful Fermi liquids.
However, it is also possible that strict hydrodynamics will
continue to break down and the dynamics could be more like
that of a spinful Fermi liquid. We leave the exploration of
these issues for future work.

B. Magnetic fields

In (spinless) Fermi liquid theory, in the presence of a
weak magnetic field there is a flow of quasiparticles not
just in the spatial directions, but also in momentum space
along the Fermi surface. Thus, restricting for simplicity to
two spatial dimensions one is led to introduce also a current
jθ along the Fermi surface. The conservation Eq. (6) gets

generalized to

∂t n(θ ) + ∂i ji(θ ) + ∂θ jθ (θ ) = m

(2π )d
w(θ ) · E. (24)

In some ways we can think of the θ direction as being anal-
ogous to an extra spatial dimension. In particular, in Fermi
liquid theory, one can show that the result Eq. (25) for the
current can be extended to

ja = μ(θ )εabc∂bAc, (25)

where the indices vary over the three dimensions x, y, θ , and
we have defined the vector potential Ac(x, t, θ ) in the fol-
lowing way: Ai = (kF )i(θ ) + Ai for i = x, y, where Ai is the
external electromagnetic vector potential. Formally one would
expect that Aθ represents the quasiparticle Berry connection
on the Fermi surface, but we are assuming that this is inde-
pendent of x and y and therefore does not enter Eq. (25).

In particular, the θ component of Eq. (25) is jθ = μ(θ )B,
where B = εi j∂iA j is the magnetic field, while the spatial
component gives j(θ ) = μ(θ )w(θ ) as before. From this, one
can recover the usual collisionless Boltzmann equation for
quasiparticles in a Fermi liquid moving in a magnetic field.

Does Eq. (25) also hold in a general ersatz Fermi liquid in
an equilibrium state? Observe that Eq. (25) is precisely what
one would get from applying the Bloch’s theorem argument
discussed above if one naively treats the θ direction as an extra
spatial dimension. Unfortunately, however, the θ dimension
is not really an extra spatial dimension; in particular, the θ

dimension is compact and its size cannot be sent to infinity.
Therefore the Bloch’s theorem arguments do not strictly ap-
ply, and we do not know how to prove that Eq. (25) holds in
a general ersatz Fermi liquid. Nevertheless, it seems to be a
plausible conjecture. If this conjecture holds, it would imply
that any ersatz Fermi liquid has the same dynamics as a Fermi
liquid in zeroth-order hydrodynamics, even in the presence of
a weak magnetic field.7

IX. DISCUSSION

A. Regime of validity for hydrodynamics

Since our results have been based on hydrodynamics, we
should consider when exactly one should expect hydrodynam-
ics to work. First of all, since we are assuming the quantities
N (θ ) are conserved, it is necessary to be at sufficiently low
frequencies and temperatures, otherwise the conservation law
can be broken by irrelevant operators. (Of course, as we saw in
Sec. VI, even in the limit as frequency and temperature go to
zero, there can be some subtle issues of order of limits lead-
ing to the possibility of nonhydrodynamic “rough” modes).
Therefore, if there are interesting non-Fermi liquid regimes at

7Note that in linearizing the hydrodynamic equations of motion,
we do not formally treat the magnetic field as being of the order of
the perturbation, unlike the electric field. Otherwise Eq. (25) would
satisfy ∂θ jθ = 0 to linear order and not contribute to dynamics,
assuming that μ(θ ) is independent of θ in the unperturbed state.
Of course, as in Fermi liquid theory, the Boltzmann equation will
presumably only be valid when the magnetic field is sufficiently
small.
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intermediate temperatures and frequencies then their dynam-
ics [26] is not necessarily accessible using the techniques of
this paper. In the remainder of this section, we will assume
that we are in a regime where we can take the conservation
laws to hold, and consider the conditions for hydrodynamics
to be a valid description of the dynamics of the densities of
the conserved quantities.

Firstly, we note that for temperature T > 0, there will
likely be a thermalization timescale τth(T ). Generally in
strongly coupled systems one expects τth(T ) ∼ T −1. For fre-
quencies ω � τth(T )−1, one certainly expects hydrodynamics
to be valid. There is reason to suspect, however, that our
hydrodynamic equations may in fact hold more generally than
this. For one thing, in Fermi liquid theory, one can show
that the quasiparticle distribution function actually remains
thermal even for frequencies ω � T , provided that ω and T
remain sufficiently small. This explains why the collisionless
Boltzmann equation still holds in Fermi liquid theory even at
T = 0.

Beyond Fermi liquid theory, it is harder to make any
general arguments. However, it is instructive to consider the
results on metallic quantum critical points in Refs. [10,11].
There, the optical conductivity σ (ω) [at q = 0], was com-
puted at T = 0. It was found that

Re σ (ω) = Dδ(ω) + σinc(ω), (26)

where the Drude weight D can be related to the susceptibilities
of the N (θ )′s. The first term is precisely what one would find
as the prediction of the zeroth-order hydrodynamics of this
paper. The second term describes the corrections to zeroth-
order hydrodynamics. Ref. [10] showed that in the model
with a single-component fermion, σinc(ω) is actually zero (up
to the effects of irrelevant operators that were discarded).
Thus the hydrodynamic prediction is exactly correct in this
case, even though ω � T is not satisfied. Meanwhile, in the
“random-flavor large N” model considered in Ref. [11], it was
found that σinc(ω) ∼ ω−2/3. Such a fractional power presum-
ably cannot be captured by hydrodynamics even going beyond
zeroth order in the gradient expansion. However, as ω → 0,
one can still think of this result as subleading compared to
the hydrodynamic term (since if we pass to the full complex
conductivity rather than just the real part, the hydrodynamic
term will scale like ∼i/ω, which diverges more rapidly than
ω−2/3 as ω → 0).

B. Properties not constrained by our arguments

What we have seen in this paper is that Fermi liq-
uids and ersatz Fermi liquids in fact have many similarities
in their dynamics. Let us, however, highlight areas where,
notwithstanding our results, there remains a possibility for a
difference between Fermi liquid and non-Fermi liquid behav-
ior, or between different non-Fermi liquids. One of them, of
course, is the nonhydrodynamic modes that we discussed in
Sec. VI, as well as the possible corrections to hydrodynamics
for ω � T discussed in Sec. IX A. Another potential differ-
ence is in quantities related to the fermion Green’s function, as
measured for example in photoemission. This is not a hydro-
dynamic probe and is not constrained by the results discussed
here. Moreover, at nonzero temperature or frequency, the rate

at which the conservation law of the N (θ )′s will be violated
due to irrelevant operators can be different between Fermi
liquids and non-Fermi liquids.

We also note that the constraints we have derived have only
applied to the zeroth-order hydrodynamics. To illustrate this
limitation, consider the optical conductivity σ (ω), at q = 0.
In general, one expects this to have the form (26), where
the delta function part can be derived from zeroth-order hy-
drodynamics. Meanwhile, σinc(ω) could potentially have a
hydrodynamic description, at least for ω � T , but it would re-
quire going to the next order in the hydrodynamic expansion.
The first-order hydrodynamics is probably not constrained
purely from the emergent symmetry and anomaly in the way
that the zeroth-order hydrodynamics is.

Finally, we note that we have only considered the lin-
earized equations of motion. It is an interesting question for
the future to determine whether there are any statements that
can be made about nonlinear dynamics. Along these lines,
see Ref. [29] for an intriguing perspective on the nonlinear
dynamics in the case of Fermi liquid theory, in which it was
argued that the loop-group anomaly of Ref. [12] that we
leveraged in the current work can be viewed as a linearized
approximation to a more general structure.

C. Relation with Refs. [10,11]

Here we want to add a note of clarification regarding the
relation between our results and those of Refs. [10,11]. In both
cases, the results were presented roughly as arising “due to the
emergent symmetries and anomalies.” We wish to emphasize,
however, that the arguments of Refs. [10,11], though they
invoked emergent symmetries, were still tied to the specific
Hertz-Millis type models under consideration. Therefore the
results of Refs. [10,11] were much less general than those
of the current work, which apply to any ersatz Fermi liquid.
On the other hand, Refs. [10,11] also determined quantities
such the incoherent part of the conductivity in Eq. (26), which
are not captured by the zeroth-order hydrodynamics of this
paper.

D. Comparison with other approaches to metallic transport

It is worth contrasting our results with those obtained from
other approaches. Specifically, most previous works have not
taken into account the emergent LU(1) symmetry and asso-
ciated conservation laws. For example, the memory-matrix
description of magnetotransport in Ref. [30] only took into
account approximate conservation of energy and momentum.
Such approaches may be valid in some regime of frequencies
and temperatures, assuming that there is some separation be-
tween the timescale at which the LU(1) charges relax and the
timescale at which momentum relaxes. But since the present
paper is looking at the regime in which we can treat the LU(1)
charges as conserved, our results are not directly comparable.

Similarly, there has been considerable interest in un-
derstanding transport in strongly coupled metals from the
perspective of holography [31], where the system is viewed
as being dual to a weakly coupled gravitational theory in one
higher dimension. The problem is that such models never
seem to exhibit any sign of an emergent LU(1) symmetry.
In our opinion, this should be viewed as a pathology of such
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models, given the general arguments for why an emergent
LU(1) symmetry should be a generic feature of a compress-
ible metal [12]. In any case, this issue means that results from
holography are not directly comparable to our results.

E. Outlook: when does an emergent symmetry
and its anomaly lead to dynamical modes?

The fact that we get nontrivial dynamical modes from
zeroth-order hydrodynamics applied to the conserved quan-
tities N (θ ) is striking, because more commonly zeroth-order
hydrodynamics for conserved quantities arising from inter-
nal symmetries is just trivial. (The situation is different for
systems with momentum conservation, which arises from the
noninternal continuous translation symmetry; for example one
can think of the Euler equations of fluid dynamics as aris-
ing from zeroth-order hydrodynamics.) The reason is that
normally there will be some Bloch’s theorem-like argument
implying that the corresponding current density is zero in
equilibrium, and therefore in zeroth-order hydrodynamics. If
all the currents are zero then the conservation equations just
tell us that the local density of the conserved quantities is
time-independent, i.e., we just have an equilibrium state.

As we saw, the reason why this does not apply for er-
satz Fermi liquids is that the emergent symmetry has a
’t Hooft anomaly, leading to a loophole in Bloch’s theorem.
Furthermore, in this case the anomaly actually dictates the
zeroth-order form of the constitutive relation for the current,
so one ends up with dynamical modes in zeroth-order hy-
drodynamics whose equations of motion are completely fixed
(up to some thermodynamic susceptibility parameters) by the
emergent symmetry and anomaly. This is precisely the same
mechanism that is at work in the superfluid case [17].

We emphasize, however, that it is not the case that any
emergent symmetry and ’t Hooft anomaly will lead to non-
trivial zeroth-order hydrodynamics. For example, a Weyl
semimetal in 3 spatial dimensions has an emergent U(1) ×
U(1) symmetry corresponding to conservation of charge at
each Weyl point. These emergent U(1) symmetries have a
’t Hooft anomaly. However, there is no loophole to Bloch’s
theorem in this case, and the currents are always zero in an
equilibrium state.

An interesting question for future work will be to deter-
mine whether there are any other systems where an emergent
symmetry and anomaly leads to a loophole in Bloch’s the-
orem, and hence to nontrivial zeroth-order hydrodynamics.
It was conjectured in Ref. [14] that this will occur in any
compressible system; that is, a system with microscopic lattice
translation symmetry and charge conservation symmetry, such
that the microscopic charge per unit cell, the filling ν, can
be continuously tuned. Ersatz Fermi liquids (and variations
thereof) and superfluids are the main classes of compressible
systems currently known: a more obscure case is the “Bose-
Luttinger liquid” discussed in Refs. [32,33] (see Ref. [14]
for the complete identification of the emergent symmetries
and anomalies of the Bose-Luttinger liquid). An important
open question is whether there are any fundamentally different
possibilities.

In any case, let us note the following variations on ersatz
Fermi liquids to which our arguments either apply directly, or

could probably be extended. One example is the so-called FL∗

[34], in which a Fermi liquid coexists with a discrete topolog-
ical sector leading to a violation of Luttinger’s theorem. In
this case, in addition to the emergent LU(1) symmetry, there
is also a finite 1-form symmetry. However, finite symmetries
do not enter hydrodynamics, so our results will carry over
directly to this case. A more subtle example is a Fermi surface
built from fractionally charged particles (which are allowed if
there is also a topological sector). The precise nature of the
emergent symmetry group in this case has not been spelled
out in the literature, which would be a minimal prerequisite
to extending our results to this case. A final case that can be
considered is that of a Fermi surface coupled to a fluctuating
gauge field, as occurs in the case of spinon Fermi surfaces, or
in the composite Fermi liquids of the fractional quantum Hall
effect [15,16]. In this case, the symmetry group was argued
in Ref. [12] to be a non-Abelian central extension of LU(1).
The noncommutativity of the conserved quantities may make
constructing the zeroth-order hydrodynamics in this case a
more challenging task, but it would be interesting to see if
it leads to any differences in the dynamics.
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APPENDIX A: SUSCEPTIBILITIES IN FERMI LIQUID
THEORY

Here we will compute ξ (θ, θ ′) in Fermi liquid theory. In
Fermi liquid theory in equilibrium at inverse temperature β,
the distribution function f follows a Fermi-Dirac distribution

f (k) = 1

(2π )d

1

1 + eβ(ε(k)−μ)
(A1)

with ε(k) given by Eq. (2) [Thus this is actually an implicit
equation for f ]. If we apply a θ -dependent chemical potential,
we can generalize this to

f (k) = 1

(2π )d

1

1 + eβ(ε(k)−μ(θk ))
(A2)

where θk describes the point on the Fermi surface to which k
is closest. Now we want to introduce a perturbation μ(θ ) =
μ + δμ(θ ) and compute the corresponding change δn(θ ) at
linear order, keeping the temperature T fixed. To this end, we
can approximate

ε(k) = ε0(θk ) + δε(θk ) + vF (θk ) · (k − kF (θk )), (A3)

where we have dropped terms that are higher order in k −
kF (θ ) and in the perturbation, and we defined

δε(θ ) =
∫

F (θ, θ ′)δn(θ ′)dθ ′. (A4)
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Substituting into Eq. (A2), we find the effect of the per-
turbation on the distribution function in the vicinity of any
given θk is only to translate it by an amount δkF (θk )ŵ(θk ) in
momentum space, where

δkF (θ ) = 1

vF (θ )
[−δε(θ ) + δμ(θ )]. (A5)

It follows that

δn(θ ) = 1

(2π )dvF (θ )
|w(θ )|[−δε(θ ) + δμ(θ )]. (A6)

Substituting Eq. (A4) and rearranging, we find

δμ(θ ) = (2π )d vF (θ )

|w(θ )|δn(θ ) +
∫

F (θ, θ ′)δn(θ ′)dθ ′ (A7)

from which we can read off that[
∂μ(θ )

∂n(θ ′)

]
T

= (2π )d vF (θ )

|w(θ )|δ(θ − θ ′) + F (θ, θ ′). (A8)

This almost gives Eq. (9); we just need to worry about the fact
that Eq. (9) involves a derivative at constant entropy rather
than constant temperature. However, recall that in Fermi liq-
uid theory the entropy density is proportional to∫

{n(k) log n(k) + [1 − n(k)] log[1 − n(k)]}dd k, (A9)

where n(k) = (2π )d f (k). Substituting Eqs. (A2) and (A3)
into Eq. (A9), we find, using the observation about the dis-
tribution just getting shifted, that the entropy density does
not change due to the perturbation at this order. Hence, the
derivative at constant entropy is also given by Eq. (A8).

APPENDIX B: ENERGY CURRENT IN THE EQUILIBRIUM
STATE

Here we will consider a system with microscopic energy
conservation and charge conservation, and an emergent LU(1)
symmetry for which the microscopic U(1) embeds a sub-
group, i.e., the microscopic charge QUV can be expressed in
the low-energy theory as

∫
N (θ )dθ . We wish to determine

the expectation value of the energy current in the thermal
equilibrium state

ρ = 1

Z exp

[
−β

(
HIR −

∫
μ(θ )N (θ )dθ

)]
, (B1)

where HIR is the Hamiltonian of the low-energy theory. In
Ref. [21], it was proven that the energy current in a thermal
equilibrium state of a lattice model is zero. The issue with
applying this result in the present context is that, although we
can assume that the low-energy Hamiltonian HIR can emerge
out of a microscopic lattice model with Hamiltonian HUV, the
argument of Ref. [21] only applies to thermal equilibrium
states of the form Z−1e−βHUV , and hence by extension to
Z−1e−βHIR , and not Eq. (B1). It would not be so bad if μ(θ )
were independent of θ because we could then simply apply
the arguments of Ref. [21] to the Hamiltonian HUV − μQUV.
Otherwise, the situation is trickier.

Nevertheless, we expect that if μ(θ ) is at most a small per-
turbation on top of a θ -independent μ (which is the situation

for which we want to compute the dynamics in the current pa-
per), it will be possible to deform the lattice Hamiltonian HUV

to a different lattice Hamiltonian H ′
UV for which H ′

IR = HIR −∫
[μ(θ ) − μ] captures the low-energy theory. For example, in

a noninteracting Fermi gas, H ′
IR just corresponds to shifting

the dispersion relation near the Fermi surface by εk → εk +
[μ(θk ) − μ]. If we define a smooth function δεk in momentum
space such that δεk = μ(θk ) − μ near the Fermi surface, then
we can define H ′

UV = HUV + ∑
k δεkψ

†
kψk (where the added

term is local on the lattice with at most exponentially decaying
tails by the smoothness of δεk).

In general, if it is true that one can find such an H ′
UV,

then we can define KUV = H ′
UV + μQUV, for which the cor-

responding low-energy Hamiltonian is

KIR = HIR −
∫

μ(θ )N (θ )dθ (B2)

and apply the arguments of Ref. [21] to KUV to conclude that
the energy current is zero. The one remaining issue is that,
although ρ = Z−1e−βKIR gives the same state as Eq. (B1),
the definition of the energy current operator depends on the
Hamiltonian. Therefore we need to take into account the rela-
tion between the energy current operators jKIR and jHIR . It is
clear that we should set

jKIR = jHIR −
∫

μ(θ )j(θ )dθ, (B3)

where j(θ ) is the current of N (θ ). Therefore, if 〈jKIR 〉 = 0 in
the state ρ, we conclude that

〈jHIR 〉 =
∫

μ(θ )〈j(θ )〉dθ. (B4)

APPENDIX C: SOLVING THE EQUATIONS OF MOTION
ARISING FROM THE QBE

In this Appendix, we will solve the equations of motion
derived in Ref. [27] from the QBE. For simplicity, we will
focus on the rotationally invariant case. Then the equations of
motion are best expressed in terms of the coefficients of
the Fourier series, defined by n(θ ) = ∑

l nl eilθ . The result of
Ref. [27], upon also taking the Fourier transform in space and
time with frequency ω and wave vector q, is

ωnl = qvF

2

nl−1 + nl+1

1 + F̃0 − F̃l
, (C1)

where F̃l is the Fourier series of a function that can be approx-
imated as

F̃ (θ ) =
{ 1

πk2
F θ2

crit
|θ | < θcrit

1
πk2

F θ2 |θ | > θcrit
(C2)

with θcrit = (|ω|/ω0)1/3, and ω0 a constant.
Observe that this is not actually periodic in θ . Ultimately

this reflects the fact that F̃ (θ ) was computed within the theory
that is supposed to describe the dynamics of a pair of antipodal
patches on the Fermi surface rather than the whole Fermi
surface. However, for θcrit � 1 this function is sharply peaked
near θ = 0 and one can imagine that this singular behavior
within a patch should contain the important physics. Formally
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we can then replace F̃ (θ ) → F̃ (θ )periodic := ∑∞
n=−∞ F̃ (θ +

2πn) to get a periodic function. The important point, how-
ever, is that this implies that the Fourier series of F̃ periodic,
which formally is defined only for integer argument, can actu-
ally be lifted to a smooth function of a continuous argument,
namely the continuous Fourier transform of the original F̃ (θ )
given by Eq. (C2).

If θcrit � 1, then for |l| � 1/θcrit , we can approximate F̃l

by the first two terms of the Taylor series [keeping in mind
that the inversion symmetry of F̃ (θ ) implies that F̃l = F̃−l ]:

F̃l = 1

θcrit
(c0 − c1(θcritl )2 + · · · ), (C3)

where c0 and c1 are dimensionless constants of order 1. In
particular, we see that if |l| � 1/δ, where δ := √

θcrit , then
|F̃0 − F̃l | � 1. So in that case we can approximate Eq. (C1)
by

ωnl = qvF

2
(nl−1 + nl+1), (C4)

which agrees with Eq. (5) setting Fl = 0.
Next we will go beyond this approximation and find the so-

lutions to Eq. (C1). Defining � = ω/(qvF ), Eq. (C1) becomes

nl (1 + F̃0 − F̃l ) = 1

2�
(nl−1 + nl+1). (C5)

We can view this as an effective Schrödinger equation for a
particle hopping on 1D lattice with potential Vl = 1 + F̃0 −
F̃l . Bound states of this potential will correspond to dis-
crete modes in the oscillation spectrum, while unbound states
will correspond to a continuum. Let us first observe that
for |l| � 1/θcrit , Vl ≈ 1, while for l → ±∞, Vl → 1 + F̃0 =
1 + c0θ

−1
crit .

1. Unbound states: nonquasiparticle continuum

An unbound state will have the asymptotic form as
l → ∞:

nl = A+ei�l + B+e−i�l (C6)

and as l → −∞:

nl = A−ei�l + B−e−i�l (C7)

for some constants A±, B±, and where ±� are the real solu-
tions to cos � = �(1 + c0θ

−1
crit ). For any given �, there will

be some scattering matrix S(�) such that the coefficients are
required to obey [

A+
B+

]
= S(�)

[
A−
B−

]
, (C8)

which will generically have solutions. Thus we find that there
are continuum modes whenever cos � = �(1 + c0θ

−1
crit ) has a

solution for �; or in other words whenever |�|(1 + c0θ
−1
crit ) �

1. This defines what in the main text we called the “nonquasi-
particle continuum,” and its boundary occurs at |ω|/(qvF ) =
(1 + c0θ

−1
crit )

−1. As θcrit = (|ω|/ω0)1/3. the asymptotic form of
the boundary as ω → 0 scales like |ω| ∝ q3/2.

2. Bound states: pseudocontinuum

For θcrit � 1, Vl defines a very flat potential well. Therefore
the “bound states” will actually be very spread out in the

l space. and moreover we can imagine solving the problem
through a lattice version of the WKB approximation, in which
the wave function is approximated locally near a given point
l0 as nl = A(l0) cos(κ (l0)l + φ(l0)), where A(l ) and φ(l ) are
slowly varying functions of l , and κ (l ) satisfies

cos κ (l ) = �Vl . (C9)

Since Vl → 1 as l → 0, a necessary condition for a solution is
that |�| < 1. The lattice equivalent of the “classical turning
points”, where the wave function crosses over from being
oscillatory to exponentially decaying, occur at l = ±l∗, where
|�|Vl∗ = 1.

For our purposes, the only thing we will be interested
in is the quantization condition that determines the discrete
values of � for which a bound-state solution exists. We can
determine this approximately by demanding that the lattice
version of the semiclassical quantization condition be satis-
fied, namely,

1

2π

∫ l∗

−l∗
cos−1 (�Vl )dl = n + 1

2
, (C10)

where n is an integer.
For θcrit � 1 and � ∼ 1, the particle will be confined to the

region where l � θ−1
crit . Hence we can again invoke the Taylor

series (C3), but we now keep the quadratic term. Then the
solution for the turning point can be written as

l∗ =
√

c−1
1 θ−1

crit (|�|−1 − 1). (C11)

Making the change of variables u = l/l∗, Eq. (C10) can
then be rewritten as

I (�) =
√

θcrit (n + 1/2), (C12)

where we defined

I (�) :=
√

c−1
1 (�−1 − 1)

∫ 1

−1
cos−1(� − (� − 1)u2)du.

(C13)
This implies that for θcrit � 1, the oscillation modes occur
at � = �n, where �n is the solution to Eq. (C12). The
spacing between adjacent solutions for � is given by �� ≈
|I ′(�)|−1

√
θcrit , and in particular is proportional to δ := √

θcrit

as stated in the main text.
Finally, we note that the spatial extent of the wave function

in l space is ∼l∗ ∝ θ
−1/2
crit . Hence, the mode occupies a region

of width �θ ∝ √
θcrit = δ on the Fermi surface.

3. Edge of the particle-hole pseudocontinuum

Near the upper edge of the particle-hole pseudocontinuum,
where � ≈ 1, the WKB approximation will begin to break
down. Instead, let us assume that nl varies slowly on the lattice
scale as a function of l . Then we can Taylor expand nl±1 =
nl ± ∂l nl + 1

2∂2
l nl in Eq. (C1), giving

nlVl� = nl + 1
2∂2

l nl . (C14)

Let us furthermore assume that the particle is confined to
the region where l � θ−1

crit . Hence, again keeping terms up to
quadratic order in l in Eq. (C3), we obtain

nl�c1θcritl
2 − 1

2∂2
l nl = nl (1 − �). (C15)
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This can be interpreted as the Schrödinger equation (now in
continuous space) for a harmonic oscillator. We conclude that
it has solutions when

1 − � =
√

2c1θcrit�(n + 1/2). (C16)

for some integer n � 0. When θcrit � 1 and n ∼ 1, we can
approximate � ≈ 1 on the right-hand side, giving

1 − � =
√

2c1θcrit (n + 1/2). (C17)

For θcrit � 1, n � 1, and � ≈ 1, we can verify that the
assumptions we have made are self-consistent. Like the solu-
tions deeper inside the particle-hole pseudo-continuum, these

solutions are also spread out by an amount ∼δ on the Fermi
surface. As n becomes larger (and hence � moves away
from 1), these solutions will transition into the WKB solutions
found earlier.

4. Absence of zero sound

Observe that none of the solutions that we have found
correspond to zero sound, contrary to the claim of Ref. [27].
The issue is that Ref. [27] did not properly solve Eq. (C1)
and instead made an “ansatz” nl = e−κ|l| for |l| > 1 that is
not actually a solution because Vl is not a constant function
of l , except in the limit θcrit → 0. If one takes this limit then
Vl → 1 and there is still no zero sound.
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