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Validity of SLAC fermions for the (1 + 1)-dimensional helical Luttinger liquid
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The Nielson-Ninomiya theorem states that a chirally invariant free fermion lattice action, which is local,
translation invariant, and real, necessarily has fermion doubling. The SLAC approach gives up on locality, and
long-range hopping leads to a linear dispersion with singularity at the zone boundary. We introduce a SLAC
Hamiltonian formulation that is expected to realize a U(1) helical Luttinger liquid in a naive continuum limit.
We argue that nonlocality and concomitant singularity at the zone edge have important implications. Large
momentum transfers yield spurious features already in the noninteracting case. Upon switching on interactions,
nonlocality invalidates the Mermin-Wagner theorem and allows for long-ranged magnetic ordering. In fact, in
the strong-coupling limit the model maps onto an XXZ-spin chain with 1/r2 exchange. Here, both spin-wave and
DMRG calculations support long-ranged order. While the long-ranged order opens a single-particle gap at the
Dirac point, the singularity at the zone boundary persists for any finite value of the interaction strength such that
the ground state remains metallic. Hence, the SLAC Hamiltonian does not flow to the 1D helical Luttinger liquid
fixed point. Aside from DMRG simulations, we have used auxiliary field quantum Monte Carlo simulations to
arrive at the above conclusions.
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I. INTRODUCTION

The Nielson-Ninomiya theorem states that a chirally in-
variant free fermion lattice action, which is local, translation
invariant, and real, necessarily has fermion doubling [1]. How
should one then carry out simulations of a single Dirac cone?
A possible route is to consider higher dimensions. A single
Dirac cone in say 1 + 1 dimensions can be realized as a
surface state of a (2 + 1)-dimensional topological insulator.
The other Dirac cone lies on the other surface and as the
system size grows, mixing between the cones will vanish such
that the physics of a single cone can be studied. In the realm of
high-energy physics, this construction is referred to as domain
wall fermions [2]. In the domain of the solid state, this idea
has been used to study correlation effects in helical Luttinger
liquids [3,4].

Alternatively one can violate the assumption of the locality
of the fermion lattice action. This idea was put forward in the
so-called SLAC lattice fermions, introduced in the 1970s and
bearing the name derived from Stanford Linear Accelerator
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Center [5]. In this formulation, the locality of the lattice action
is broken by the long-range hoppings, which decay as a power
law of the distance between lattice sites. One can arrange this
decay in a way that the Fermi velocity at one of the Dirac
cones diverges and this “doubler” eventually shrinks into a
singularity at the Brillouin zone boundary. This singularity is
inevitable since, on a Bravais lattice, the dispersion relation is
a periodic function of the reciprocal lattice vector. The ques-
tion we will address in this article is whether the singularity at
the zone boundary is a relevant perturbation. So-called SLAC
fermions have been used in a number of solid-state [6–9] and
high-energy physics [10–12] setups, and seem to provide a
simple route to simulate a single Dirac cone in a lattice model
with finite lattice constant a. In particular, this avoids the
potentially expensive step of dealing with higher-dimensional
systems. SLAC fermions come with a singularity at the Bril-
louin zone boundary at k = ±π/a in one dimension. The
question we will ask in this article is how the nonlocality and
concomitant singularity at the zone edge effects the physical
results, in comparison to a domain wall fermion approach.

To do so, we will consider the simplest possible model,
the helical Luttinger liquid emerging at the boundary of a
2D quantum spin Hall insulator as realized by the Kane-Mele
model [13]. In particular we will consider a setup with U(1)
symmetry, corresponding to conservation of z-total spin. This
choice is challenging for SLAC fermions. For short-ranged
interactions the Mermin-Wagner theorem states that contin-
uous symmetries cannot be spontaneously broken in 1 + 1
dimensions even in the zero-temperature limit. In fact, in
conjunction with the intrinsic nesting instabilities of (1 + 1)-
dimensional systems this impossibility of ordering leads to the
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fluctuation-dominated physics of the Luttinger liquid [14,15].
The nonlocality of SLAC fermions violates the assumptions
of the Mermin-Wagner theorem and can hence lead to artifacts
especially in the strong-coupling limit. We note that this has
recently been pointed out in Ref. [9].

Another reason for the choice of this model is that its
naive continuum limit, corresponding to ignoring the zone
boundary singularity, can be solved exactly since only forward
scattering is allowed. The results of the bosonization approach
have been favorably compared to calculations based on do-
main wall fermions [3,4]. In this article we formulate a SLAC
Hamiltonian that allows for negative-sign-free auxiliary field
quantum Monte Carlo (QMC) simulations. The key question
that we want to ask is, is it meaningful to compare between
the physics of the SLAC Hamiltonian and the Luttinger liquid
one?

The article is organized as follows. In Sec. II, we will
discuss the SLAC formulation of the helical Luttinger liq-
uid. Before discussing our results for the noninteracting and
interacting cases in Sec. V, we will summarize the bosoniza-
tion results in Sec. III and the technicalities of the Monte
Carlo simulations in Sec. IV. In Sec. VI we discuss a simple
model to understand our strong-coupling results. In Sec. VII
we summarize the implications of our results. The article
contains several appendices that demonstrate the absence of
the negative-sign problem (Appendix A), discuss the scal-
ing dimension of Ŝz

i as a function of the coupling strength
(Appendix B), and provide a spin wave analysis of the long-
ranged XXZ model (Appendix C).

II. SLAC FORMULATION OF THE HELICAL LIQUID

We consider the following one-dimensional model of
length L and lattice constant a:

Ĥ = − vF

L∑
i=1

L/2∑
r=−L/2

t (r)(â†
i b̂i+r + b̂†

i+r âi )

+ U
∑

i

(
n̂a

i − 1

2

)(
n̂b

i − 1

2

)
(1)

with

t (r) = (−1)r π

L sin (rπ/L)
for r �= 0 and t (0) = 0. (2)

Each unit cell harbors two orbitals, and â†
i , b̂†

i are spinless
fermion creation operators.

Using periodic boundary conditions and Fourier transfor-
mation (

âk

b̂k

)
= 1√

N

L∑
j=1

eik j

(
â j

b̂ j

)
(3)

gives, up to a constant,

Ĥ = − vF

π
a∑

k=− π
a

t (k)(â†
k, b̂†

k )σy

(
âk
b̂k

)

− U

2

∑
i

[
(â†

i , b̂†
i )σx

(
âi

b̂i

)]2

(4)

FIG. 1. t (k) for even and odd lattices. The Gibbs phenomenon is
apparent on even lattices. Here we set a = 1.

with

t (k) = i
L/2∑

r=−L/2

e−ikrt (r). (5)

In the above, L = Na. For any lattice size, t (k) is a real and
odd function. It is plotted in Fig. 1 and as apparent scales
to t (k) = k for k in the f Brillouin zone (BZ) and in the
thermodynamic limit. One will also notice the Gibbs phe-
nomenon (on even lattices) at the zone boundary associated
to the discontinuity of t (k). The rotation(

âi

b̂i

)
= 1√

2
(1 + σx )

(
ĉi,↑
ĉi,↓

)
(6)

gives

Ĥ = −vF

∑
k∈BZ,σ

σkĉ†
k,σ

ĉk,σ + U
∑

i

(n̂i,↑ − 1/2)(n̂i,↓ − 1/2),

(7)
corresponding to a helical liquid with Hubbard interaction.
Our goal is to investigate whether the SLAC approach indeed
reproduces the expected results obtained from bosonization of
the helical liquid.

III. RESULTS FROM BOSONIZATION

Let us start by stating the bosonization [4,15] results valid
in the continuum limit, a → 0. In this limit, the fermion field
operator reads

�̂σ (x) = eik f xR̂(x)δσ,↑ + e−ik f xL̂(x)δσ,↓, (8)

where R̂(x) and L̂(x) are independent right- and left-
propagating fermion operators with spin and direction of
motion locked in. Inserting the above form in Eq. (7) gives

Ĥ = − vF

∑
k

k(R̂†
k R̂k − L̂†

k L̂k )

+ Ua
∫ L

0
dx R̂†(x)R̂(x)L̂†(x)L̂ (x), (9)
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where R̂k = 1
L

∫ L
0 dx eik xR̂(x). For a short-ranged model with

nearest-neighbor hopping matrix element t , vF = 2ta. Hence,
to obtain a well-defined continuum limit, we scale both t and
U as 1/a. Since we have taken the continuum limit, the sum
over momenta is unbounded. The above forward-scattering
model can be solved with bosonization techniques reviewed
in Ref. [15]. Correlation functions are given by

Cn(r) ≡ 〈n̂(r)n̂(0)〉 ∝ 1

r2
,

CSz (r) ≡ 〈Ŝz(r)Ŝz(0)〉 ∝ 1

r2
,

CSx (r) ≡ 〈Ŝx(r)Ŝx(0)〉 ∝ cos(2k f r)

r2Kρ
,

C�(r) ≡ 〈Re�̂†
r Re�̂0〉 ∝ 1

r2/Kρ
. (10)

In the above Kρ is an interaction-strength-dependent Luttinger
liquid exponent, n̂(r) = ∑

σ ĉ†
r,σ ĉr,σ , S(r) = 1

2 c†
r σcr with σ a

vector of Pauli spin matrices, and �̂†
r = ĉ†

r,↑ĉ†
r,↓. Here, 2k f

denotes the momentum difference of the left spin-up and right
spin-down movers. This wave vector is naturally picked up in
CSx (r) since it involves scattering between the two branches.
In our construction, k f = 0. Before proceeding and as men-
tioned earlier the bosonization results are consistent with the
domain wall fermion approach of [3,4] even in the rather
strong coupling limit. The above will be our reference result
and we will ask the question under which conditions we can
reproduce it with the SLAC lattice regularization.

IV. QUANTUM MONTE CARLO SIMULATIONS

The Hamiltonian of Eq. (1) does not suffer from a negative-
sign problem in QMC simulations [16,17]. To see this, one
will rewrite the model as

Ĥ = − vF

L∑
i=1

L/2∑
r=−L/2

t (r)(â†
i b̂i+r + b̂†

i+r âi )

− U

2

∑
i

(â†
i b̂i + b̂†

i âi )2, (11)

where we have omitted a constant. Next we adopt a Majorana
representation,

âi = 1

2
(γ̂i,1,1 + iγ̂i,2,1), b̂i = − i

2
(γ̂i,1,2 + iγ̂i,2,2), (12)

to obtain

Ĥ = vF

L∑
i=1

L/2∑
r=−L/2

t (r)
i

4
γ̂T

i τxγ̂ i+r−
U

2

∑
i

(
1

4
γ̂T

i τyγ̂ i

)2

,

(13)

where γ̂T
i = (γ̂i,1,1, γ̂i,2,1, γ̂i,1,2, γ̂i,2,2). Here we have used the

fact that t (r) is an odd function of r and adopted the notation
γ̂i,σ,τ where the Pauli τ (σ ) matrices act of the τ (σ ) indices.
A global O(2) symmetry in the σ indices now becomes ap-
parent. After a real Hubbard-Stratonovich transformation of

the perfect square, the fermion determinant will be given by
the square of a Pfaffian. Since one will show that the Pfaffian
is real, we will conclude in the absence of the negative-sign
problem. Hence the absence of the sign problem for this
SLAC model of the helical liquid follows the same logic as for
the so-called spinless t-V model [18,19]. In Appendix A we
show the absence of the sign problem for the generic model:

Ĥ = − vF

L∑
i=1

L/2∑
r=−L/2

t (r)(â†
i b̂i+r + b̂†

i+r âi )

− U

2

∑
i

[(â†
i , b̂†

i )σα (b̂i , âi )T ]2, (14)

where σα is a Pauli spin matrix. Note that after computing
the square one will explicitly see that the Hamiltonian is
α independent. For any value of α, we can use the ALF
[20] implementation of the finite-temperature auxiliary field
QMC algorithm [21–24]. In fact, Eq. (14), which formulates
the interaction in terms of a perfect square, has the required
form for usage of the ALF library, and concomitant Hubbard-
Stratonovich transformation.

As mentioned above, the results are α independent. How-
ever, the Monte Carlo Markov chain will have a strong α

dependence. We have seen that we obtain the best results
when considering the σy formulation. This stems from the
fact that after the rotation of Eq. (6) the U(1) symmetry of
the helical liquid is satisfied for each Hubbard-Stratonovich
field configuration.

We also would like to stress that since we are working
in the Hamiltonian formulation, the resulting Lagrangian has
SLAC hoppings only in the spatial direction and is local along
the Euclidean time direction.

We used the interaction strength (bandwidth) as the energy
unit for simulations at large (small) values of U/vF . For
U/vF � 4 we choose vF β = L and vF �τ = 0.1, whereas for
U/vF > 4 we considered Uβ/4 = L and U�τ/4 = 0.1.

V. RESULTS

We will show that the SLAC approach suffers from two
basic issues.

The first one can be seen already in the noninteracting
limit and originates from processes with large momentum
transfer. This deficiency can be illustrated as the violation
of the anomaly relation in the lattice Schwinger model with
SLAC fermions [25]. If we consider the continuum theory
and turn on a constant electrical field pointing to the right,
the right movers will acquire momentum and energy and will
fill their branch of the dispersion relation up to some positive
level. At the same time the left movers will lose energy and
hence their branch of the cone will be filled only up to the
same but negative level. Thus the axial charge will appear
as an imbalance between the right and left movers. However,
this is not true for the SLAC fermions due to the finite size
of the Brillouin zone and finite depth of the Dirac sea; e.g.,
the right movers at the bottom of the Dirac sea will also
acquire energy and thus the very bottom of this branch of the
dispersion relation will not be filled anymore. These effects
will compensate the difference between right and left movers
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FIG. 2. k dependence of tξ (k) for length scale ξ = 1, 5, 10, 25,
and ∞. We took L = 257.

in the low-momentum modes leading to the axial charge being
always zero. Though this is only a qualitative illustration, it
shows the presence of the nontrivial dynamics near the edge
of the Brillouin zone.

Another issue can be seen upon switching on intermediate
to strong correlations as measured in unit of the bandwidth. In
this case we observe a long-ranged order again contradicting
the results from continuum theory.

Both points will be carefully studied in the subsequent
subsections.

A. The noninteracting case

SLAC fermions become very transparent when introducing
a length scale ξ in the hopping:

tξ (r) = t0(ξ )
(−1)r/aπ

L
a sin(rπ/L)

e− sin(rπ/L)/ξ (15)

(see Fig. 2). In the above, we adjust t0(ξ ) so as to fix the
bandwidth to 2π . Clearly, the Fourier transform of a short-
range function has to be smooth and one will see that for
any finite value of ξ we observe two crossings of the Fermi
surface albeit with very different values of the velocity. In
fact the velocity at the zone boundary diverges with growing
values of ξ . In principle, for any finite value of ξ we expect
umklapp processes to be relevant such that any finite value
of U should lead to an insulating state. However, since the
velocity at the zone boundary diverges as ξ , the phase space
available to these umklapp processes will vanish in the ξ →
∞ limit. Another consequence of the singularity at the zone
boundary is that large momentum transfer will always provide
a discrepancy with the bosonization even in the noninteracting
case. One can illustrate this by considering the charge-charge
correlation functions for the SLAC Hamiltonian for the half-
filled case, μ = 0, at zero temperature:

〈n̂(r)n̂(0)〉 = 1

2π2

cos(πr) − 1

r2
. (16)

In the above n̂(r) = ∑
σ ĉ†

r,σ ĉr,σ . This result is independent of
the value of ξ and merely relies on the fact that the dispersion
relation intersects the Fermi energy at wave vectors k = 0
and k = π

a . The above expression already deviates from the
bosonization result Eq. (10) and shows that already at this
level one will obtain the same result as for the continuum
model, where the zone edge diverges, only if one blocks large
momentum transfers. This can be done by introducing point-
splitting operators on the lattice, as was already suggested in
[12,26].

B. Monte Carlo results

We have computed the structure factors

S•(k) =
∑

r

eikrC•(r), (17)

where the bullet refers to charge, spin along the z- or x-spin
quantization axis, or paring correlations [see Eq. (10)]. To
obtain an estimate of the power-law decay at a given wave
vector, one can consider

B•(k, L/2) ≡ 2C•(k) − C•(k + 2π/L) − C•(k − 2π/L).
(18)

L
2π

B•(k, L/2) corresponds to the left minus the right derivative
at a given k vector. Hence for a smooth function this quantity
scales to zero as a function of system size. However for k
vectors where one observes a cusp, it will scale to a finite
value. One will show that

C•(L/2) = 1

4L

∑
k

eikL/2B•(k, L/2) (19)

such that the scaling of B•(k, L/2) at wave vectors k where
one observes a cusp will reflect the decay of the correlation
function [27] at this wave vector.

Figure 3 plots the real- and k-space correlation functions
for the above-mentioned quantities. To better understand the
results, we consider the behavior of the cusps in the corre-
sponding structure factors by plotting B•(k = 0, L/2) as a
function of system size and coupling strength.

Let us start with the charge. From Fig. 3(a) we see that
irrespective of the coupling constant in the range U ∈ [0, 10]
the real-space charge correlation decays as 1/r2. In the weak-
coupling limit we observe a (−1)r modulation alongside the
uniform decay. This weak-coupling behavior gives way to
a uniform decay at strong coupling. In k space, Fig. 3(f),
we see that the cusp at k = π rounds off as a function of
growing interaction strength but that the cusp at q = 0 remains
robust. We also notice that as a function of growing interac-
tion strength the charge response is suppressed. We can pin
down the charge exponent by analyzing LBn(k = 0, L/2) in
Fig. 4(a). Irrespective of the interaction strength, it is to an
accurate degree L independent, thus reflecting a 1/r2 decay of
the charge correlations.

At weak coupling the z component of spin is very similar
to the charge (at U = 0 they are identical); see Figs. 3(c)
and 3(h). In contrast however, the cusp at k = 0 becomes
more pronounced at strong coupling. Figure 4(c) shows that
the z-spin correlations acquire a nontrivial exponent in the
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FIG. 3. Real-space correlation functions (a)–(e) and corresponding structure factors (f)–(j). Here we consider the charge, Cn, x (z)
component of spin CSx (CSz ), and pairing C� and single-particle G↑ correlation functions. All the panels share the same legend color as
the one in (a). For Cn, CSx , C�, and G↑, we chose L = 243, whereas for CSz , we considered L = 203. The reason for this mismatch is large
fluctuations in the QMC runs for CSz and for large sizes.
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FIG. 4. B(k = 0, L)L as function of 1/L for charge (a), Ŝx (b), Ŝz

(c), and pairing (d). (b) and (c) share the same legend color as the
one in (a).

strong-coupling limit. This stands at odds with the bosoniza-
tion result of Eq. (10).

The spin correlations along the x-spin quantization,
Figs. 3(b) and 3(g), direction are the most intriguing results.

At weak coupling and on our system sizes, this correla-
tion function follows roughly a 1/r2 form consistent with
LBSx (k = 0, L) constant, Fig. 4(b). LBSx (k = 0, L/2) has a
marked U dependence. It is remarkable to see that at strong
coupling LBSx (k = 0, L/2) ∝ L2, thus suggesting long-range
magnetic order as is confirmed by the very strong peak in
the structure factor at k = 0 and the lack of decay in real
space. We note that LBSx (k = 0, L/2) ∝ L2 is consistent with
CSx (k = 0) ∝ L. This result seems at odds with the Mermin-
Wagner theorem, which states that a continuous symmetry
cannot be broken at T = 0 in the ground state. However, the
assumptions for the theorem to be valid require short-ranged
interactions. The nonlocality of the SLAC fermions may very
well invalidate this assumption. We note that long-range or-
der can be stabilized by coupling spin chains locally to an
ohmic bath, thus introducing long-ranged interactions along
the imaginary time [28].

Long-ranged order along the x-spin quantization axis
breaks time-reversal symmetry and allows for elastic scat-
tering between the right-moving spin-down and left-moving
spin-up electrons. At the single-particle, mean-field level, we
expect

ĤMF =
π
a∑

k=− π
a

ĉ†
k[−v f kσz + mxσx]ĉk, (20)

where mx denotes the ordered moment. This symmetry break-
ing generates a mass gap at the Fermi momentum k f = 0:
Ek = ±√

(v f k)2 + (mx )2. Figure 3(j) plots the single-particle
equal-time Green function, Gσ (k) = 〈ĉ†

k,σ
ĉk,σ

〉. As U grows,
the singularity at k = 0 evolves to a smooth feature. Fig-
ure 3(e) confirms this: at weak coupling, Gσ (r) ∝ 1/r as
expected for Dirac electrons in (1 + 1)D, and in the strong-
coupling limit the L-independent form of LB(k = 0, L) is
consistent with a mass gap. Gσ (k) has another singularity
at k = π that dominates the long-ranged real-space behavior.
Putting all together, the data in the strong-coupling limit are
consistent with the form Gσ (r) ∝ [ae−r/ξ + (−1)r]/r, where
ξ is set by the inverse ordered moment mx. We also notice that
the overall amplitude of Gσ (r) diminishes as a function of U
in the strong coupling.

Finally, we consider the pairing correlations in Figs. 3(d)
and 3(i) as well as in Fig. 4(d). We again observe nonan-
alyticities at k = 0 and k = π in the structure factor. The
nonanalytical behavior at k = 0 survives the strong-coupling
limit, whereas C�(k) evolves toward a smooth function in the
vicinity of k = π . The singularity at k = 0 leads to a 1/r2

decay of the pair correlation, and again the overall ampli-
tude of the correlation function decreases as as function of
increasing U .

VI. INTERPRETATION OF THE STRONG-COUPLING
LIMIT

In this section, we provide a consistent interpretation of the
strong-coupling limit. In this limit the QMC data show long-
ranged magnetic ordering along the x-spin quantization axis.
The single-particle Green function decays as (−1)r/r, and
the density as well as the pairing correlations follow a 1/r2
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law. On the other hand the z component of spin correlations
has a power-law decay with the exponent depending on the
interaction strength. Clearly this behavior lies at odds with the
bosonization results.

Our simulations show that the ground is a metal with long-
ranged magnetic order. To best understand our results, let us
start with a mean-field representation of this strong-coupling
ground state:

|�0〉 =
∏

r

1√
2

(ĉ†
r,↑ + ĉ†

r,↓)|0〉. (21)

Since the above wave function has no charge fluctuations and
precisely one electron per site it is the ground state of the
Hubbard interaction term, ĤU , with energy E0.1 Consider the
small-hopping limit such that the ground-state wave function
can be estimated perturbatively in the hopping Ĥt [29]:

|�〉 = |�0〉 + Q̂0
1

ĤU − E0
Q̂0Ĥt |�0〉. (22)

In the above Q̂0 = 1 − |�0〉〈�0|. Let us now compute the
charge fluctuations, Cn(r) = 〈�|(n̂r − 1)(n̂0 − 1)|�〉 for r �=
0. The sole contribution reads

Cn(r) = 〈�0|Ĥt Q̂0
1

ĤU − E0
Q̂0(n̂r − 1)(n̂0 − 1)

× Q̂0
1

ĤU − E0
Q̂0Ĥt |�0〉. (23)

Since Ĥt has hopping processes on all length scales it con-
tains the operator t (r)

∑
σ σ ĉ†

r,σ ĉ0,σ . Applied on |�0〉 it will
generate a doublon-holon pair at distance r with an energy
cost with respect to E0 set by U . This charge fluctuation will
be picked up by (n̂r − 1)(n̂0 − 1). Finally the doublon-holon
pair will be destroyed by the operator t (r)

∑
σ σ ĉ†

0,σ ĉr,σ again
contained in Ĥt . As a result, we estimate

Cn(r)  t2(r)

U 2
∝ 1

U 2r2
. (24)

The power law is confirmed by the QMC data of Fig. 3(a).
It is also interesting to note that the magnitude of the
charge-charge correlations are predicted to scale as 1/U 2.
Comparison between the U = 6 and U = 10 data in Fig. 3(f)
supports this scaling.

The very same argument can be carried out for the pairing
correlations. Let us pick up the above argument at the point
where doublon is created on site r and a holon on site 0.
Applying the pairing operator �̂r�̂

†
0 on this state will yield

a nonzero result and transfer the doublon (holon) to the origin
(site r). The operator t (r)

∑
σ σ ĉ†

r,σ ĉ0,σ will then annihilate
the doublon-holon pair, and we will obtain a finite overlap
with the mean-field ground state. Hence we also expect

C�(r)  t2(r)

U 2
∝ 1

U 2r2
(25)

1Here we omit spin fluctuations discussed at length in Appen-
dices B and C.

in the strong-coupling limit, which is consistent with our
QMC data, but inconsistent with the bosonization results
Eq. (10).

We now consider the single-particle Green function. Here,
the relevant terms in 〈�|ĉ†

r,σ ĉ0,σ |�〉 are the mixed terms of the
form

〈�0|ĉ†
r,σ ĉ0,σ Q̂0

1

ĤU − E0
Q̂0Ĥt |�0〉. (26)

The doublon-holon pair created by Ĥt will be annihilated by
the single-particle transfer ĉ†

r,σ ĉ0,σ . In accordance with the
QMC results this approximation gives

Gσ (r) ∝ t (r)

U
∝ (−1)r

Ur
. (27)

We now comment on the nature, metallic or insulating,
of the strong-coupling wave function. The very fact that the
charge correlations follow a power law suggests a metal-
lic ground state. An accepted definition of an insulating or
metallic state is the Drude weight [30], which probes the
localization of the wave function. Here, one considers a ring
geometry and threads a magnetic flux  through the center
of the ring. Such a flux will have an effect if the charge
carriers are delocalized and can circle around it and, owing
to the Aharonov-Bohm effect, acquire a phase factor e2π i/0

where 0 is the flux quanta. Here we assume that the charge
carriers have the electron charge. The Drude weight in d
spatial dimensions is defined as

D(L) = 1

Ld−2

∂2E0()

∂2

∣∣∣∣
=0

. (28)

For the insulating state D(L) vanishes exponentially with L
reflecting the localization length of the wave function. For
a metallic state the Drude weight is finite. Let us now use
this accepted criterion to the SLAC fermions, in the strong-
coupling limit. A glimpse at the wave function in second-order
perturbation theory [see Eq. (22)] shows that it contains holon-
doublon excitations, at all length scales. The fact that they are
costly in energy means that they are short lived, but during
this short time, they can propagate over large distances due
to the nonlocality of the hopping. Hence we expect the Drude
weight to be finite. To substantiate this statement we carry
out the following estimations. The flux leads to a twist in the
boundary condition,

ĉr+L,σ = e2π i 
0 ĉr,σ , (29)

which we can get rid of with the canonical transformation

d̂r,σ = e−2π i 
0

r
L ĉr,σ . (30)

Under this canonical transformation, the Hubbard term re-
mains invariant, the hopping reads

Ĥt () = vF i
∑
i,σ

∑
r

σ t (r)d̂†
i,σ d̂i+r,σ e2π i 

0
r
L , (31)

and d̂r,σ satisfies periodic boundary conditions: d̂r,σ = d̂r+L,σ .
Let us now compute the second-order contribution to the
energy that will pick up the dependence on the flux:

E2() = 〈�0|Ĥt ()Q̂0
1

ĤU − E0
Q̂0Ĥt ()|�0〉. (32)
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Starting from |�0〉 one will create for example a holon at
position i and a doublon at position i + r by applying the

hopping. This process has matrix element ivFt (r)e−2π i 
0

r
L

and energy cost set by U . The only way to perceive the flux
is for the charge excitation to encircle it. Hence the second
hopping process should destroy the doublon in favor of single
occupancy at site i + r and create an electron at site i + L ≡ i
thereby restoring single occupancy on this site such that the
overlap with |�0〉 does not vanish. This second process comes

with the matrix element ivFt (L − r)e−2π i 
0

L−r
L . Putting every-

thing together one obtains

E2() ∝ −v2
F

U

∑
i

∑
r

t (r)t (L − r) cos

(
2π



0

)
. (33)

We hence see that in this approximation, the Drude weight
reads

D ∝ L2

(
2π

0

)2
v2

F

U

∑
r

t (r)t (L − r). (34)

One will check that
∑

r t (r)t (L − r) takes a finite value.
Hence we obtain the result that the Drude weight actually
diverges as L2, and only at U = ∞ will we have an insulating
state on any finite lattice.

The above real-space picture does not provide an explana-
tion of the observed power-law decay of the spin correlations
along the z-quantization axis. Our perturbative calculation
creates a doublon-holon pair, and since these excitations carry
no spin, CSz (r) vanishes identically. To go beyond this approx-
imation, we can consider the Hamiltonian of Eq. (20). In fact
in the limit U → ∞ this approximation will reproduce the
above perturbative results. Given Eq. (20) we can compute
CSz (r) to obtain

CSz (r) = −1

2

∣∣∣∣∣∣
1

L

π
a∑

p=− π
a

e−ipr vF p√
(vF p)2 + (Umx )2

∣∣∣∣∣∣
2

. (35)

The sum under the square corresponds to the single-particle
Green function, which, due to the singularity at the Brillouin
zone edge, decays as 1/r with a (−1)r modulation. Since
the spin correlation is a particle-hole excitation, it decays
as 1/r2 but with no spatial modulation. Furthermore, in the
strong-coupling limit, the amplitude of the spin-spin corre-
lations along the z-quantization axis would scale as 1/U 2.
The above stands at odds with the QMC data. As shown in
Fig. 4, CŜz seems to pick up a nontrivial scaling dimension
in the sense that it decays slower than 1/r2, as U increases
to a scale comparable to the bandwidth. Furthermore in the
strong-coupling limit Fig. 3(h) shows that the amplitude of
CSz (k) grows as a function of increasing U . Hence, the data
beg for another interpretation.

As seen above, in the limit U → ∞ charge fluctuations
are suppressed by a factor 1/U 2 such that we can carry out
a Schrieffer-Wolff transformation to obtain the Heisenberg
model:

ĤU→∞ = 4v2
f

U

L/2∑
i,r=−L/2

t2(r)
[
Ŝz

i Ŝz
i+r − Ŝx

i Ŝx
i+r − Ŝy

i Ŝy
i+r

]
.

(36)

Since t2(r) ∝ 1/r2 the conditions for the validity of the
Mermin-Wagner theorem [31] are not satisfied. Furthermore,
the spin interaction along the z direction is antiferromagnetic,
thus leading to frustration due to the long-ranged nature of
the exchange. Since in the transverse direction the coupling
is ferromagnetic, frustration can be avoided by ordering in the
x-y plane. In fact, spontaneous U(1) symmetry breaking of this
spin model has been confirmed by numerical and renormaliza-
tion group analysis [32], and naturally the magnetic ordering
is reproduced by our simulations at the large-U limit.

Furthermore, in Appendix B, we systemically show extrap-
olation of �̂Sz as function of U : �Ŝz starts to deviate from
1 at intermediate ranges of U and approaches around 0.7 at
the large-U limit. Hence fluctuations around the mean-field
approach have to be taken into consideration. At this point,
we only have solid understanding for the scaling behavior of
the XXZ chain in the large-U limit. In Appendices B and C
we carry out density matrix renormalization group simula-
tions and linear spin-wave calculations, to show the scaling
dimensions of Ŝz

i , �Ŝz = 3/4. As a consequence, the spin
structure factor CSz (k) ∝ √

k in the long-wavelength limit.
This is consistent with the decay of scaling dimension in the
SLAC system as strength of the interaction grows.

VII. DISCUSSION AND CONCLUSIONS

We introduce a one-dimensional toy model Hamiltonian
based on the SLAC fermion approach. Our SLAC model
differs from the (1 + 1)-dimensional helical liquid by a singu-
larity at the Brillouin zone boundary. Although we originally
aimed at benchmarking the validity of this approach in de-
scribing the (1 + 1)-dimensional helical liquid, a completely
different fixed point is found. For this very specific case, we
understand that the differences are present both in the weak-
and strong-coupling limits. Hence the singularity at the zone
boundary is a relevant perturbation at the (1 + 1)-dimensional
helical liquid fixed point.

One-dimensional systems are generically nested. For the
helical Luttinger liquid at U = 0 of Eq. (7), this leads to
χ⊥(k = 0, ω = 0) ∝ ln v f

kBT . As a consequence, a mean-field
approach to correlation effects will generate long-ranged mag-
netic order along the spin-x quantization axis and a charge
gap. Both the charge gap and the ordered moment will follow
an essential singularity in the weak-coupling limit.

For generic local one-dimensional models we know that
the above Stoner arguments cannot be made due to the
Mermin-Wagner theorem [31] that tells us that quantum fluc-
tuations will destroy the ordering even in the ground state. For
our specific case, continuous U(1) spin-symmetry breaking is
not allowed. This competition between the Stoner instability
and the Mermin-Wagner theorem is at the very origin of Lut-
tinger liquid behavior generic to (1 + 1)D interacting systems.
This is exemplified by the helical Luttinger liquid: a metallic
state with no single-particle gap and an interaction-strength-
dependent power-law decay of the spin-spin correlations in
the transverse direction. We note that due to U(1) spin sym-
metry, umklapp processes are symmetry forbidden such that
the system will remain metallic for arbitrary large interac-
tions. This understanding of the helical Luttinger liquid has
been confirmed numerically within a domain wall fermion

045105-8



VALIDITY OF SLAC FERMIONS FOR THE … PHYSICAL REVIEW B 108, 045105 (2023)

approach [3,4] in which interaction effects are included only
on one set of domain wall fermions.

The nonlocality of the SLAC fermion approach brings
major differences to the above picture. The key point is that
it violates the assumptions of the Mermin-Wagner theorem.
The violation of the Mermin-Wagner theorem in the realm
of SLAC fermions was recently pointed out in Ref. [9]. Our
numerical results explicitly confirm this in the strong-coupling
limit where long-ranged magnetic order along the x-spin
quantization axis and global U(1) spin symmetry breaking are
observed. This allows for a mass term and in fact we observe
a single-particle gap opening at the Fermi wave vector.

We should note that one can try to use the SLAC fermions
in the context in which the continuous chiral symmetry is
reduced to a Z2 discrete one. For instance, such situation
emerges when one considers more than one flavor of fermions
in (1 + 1)D. If the interaction term is written as (ψ̄aψa)2,
where ψ is a two-component spinor, the continuous symmetry
is broken and only Z2 symmetry remains. Analogously, the
spin-orbit coupling will reduce the U(1) continuous symmetry
to a Z2 discrete one. In this case, the aforementioned issues
of SLAC action with the Mermin-Wagner theorem will be
waived. However, some artifacts will likely survive even for
the discrete Z2 symmetry. In particular, the deviation of the
behavior of the correlation functions in Eq. (25) from the
strong-coupling limit does not involve a continuous symmetry
for its derivation. Hence these discrepancies will remain even
for models with discrete symmetries. Another important point
is the nature of the ordered state observed in our QMC simula-
tions. In contrast to Dirac systems where magnetic mass terms
are generated spontaneously [33], this ordered state remains
metallic. This is again a consequence of nonlocality inherent
to the SLAC approach that produces doublon-holon pairs at
any length scale. Equivalently, the current operator becomes
long-ranged. Strictly speaking Gross-Neveu transitions that
have been studied in the realm of SLAC fermions [6,8,9] are
not metal-to-insulator transitions but metal-to-metal ones.

At vanishing coupling strength, the results of the helical
Luttinger liquid with Kρ = 1 become exact provided that we
block large momentum transfers. As mentioned above, this
noninteracting point is unstable. An important question is
to assess whether there is a finite value of Uc below which
we will observe the physics of the helical Luttinger liquid.
We conjecture that Uc = 0. As mentioned above, the nonin-
teracting limit is unstable to ordering in the transverse spin
direction. Since the nonlocality of the model leads to a viola-
tion of the Mermin-Wagner theorem quantum fluctuations will
not destabilize the ordering and will not invalidate a Ginzburg-
Landau mean-field picture. In this case, the local moment will
be exponentially small in U/v f such that exponentially large
lattices will be required to detect it.
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APPENDIX A: ABSENCE OF NEGATIVE-SIGN PROBLEM

There are various ways of formulating the QMC. Although
in principle equivalent, the various formulations will lead to
different Markov time series. Thereby the autocorrelation time
for a given observable may be formulation dependent. The
various formulations stem from different ways of writing the
interaction term:

ĤU = −U

2

∑
i

[(â†
i , b̂†

i )σα (b̂i , âi )T ]2. (A1)

In the above, ĤU is independent of the choice of the Pauli spin
matrix σα . For the repulsive values of U > 0, we can carry out
a Hubbard-Stratonovich decomposition of the perfect square
term to obtain

Z ∝
∫

D{φ(i, τ )}e−Sα (φ(i,τ )) (A2)

with

Sα (φ(i, τ )) =
∫ β

0
dτ

∑
i

φ2(i, τ )

2U
− ln TrT e− ∫ β

0 dτ ĥ,α (τ ),

(A3)

ĥα (τ ) = Ĥ0 +
∑

i

φ(i, τ )(â†
i , b̂†

i )σα (b̂i , âi )T , (A4)

and

Ĥ0 = −vF

L∑
i=1

L/2∑
r=−L/2

t (r)(â†
i b̂i+r + b̂†

i+r âi ). (A5)

We again stress that the partition function is α independent but
that ĥα (τ ) has an explicit α dependency.

Using the Majorana representation of Eq. (12) we obtain
different expressions for various choices of α. Below we go
through them one by one.

(i) σx. In this case,

ĥx(τ ) = vF

L∑
i=1

L/2∑
r=−L/2

it (r)

4
γ̂T

i τxγ̂ i+r +
∑

i

φ(i, τ )

4
γ̂T

i τyγ̂ i.

(A6)
We see that the operators T̂ + and T̂ − with

T̂ +γiT̂
+,−1 = T +γi with T + = iτyτxσxK (A7)

and

T̂ −γiT̂
−,−1 = T −γi with T − = τziσyK, (A8)

where K denotes complex conjugation, leave ĥ(τ ) invariant.
Furthermore (T ±)2 = ±1 and {T +, T −} = 0. Hence accord-
ing to Ref. [16] the Hamiltonian falls into the so-called
Majorana class and does not suffer from the negative-sign
problem.
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(ii) σy. For this choice,

ĥy(τ ) = vF

L∑
i=1

L/2∑
r=−L/2

it (r)

4
γ̂T

i τxγ̂ i+r +
∑

i

φ(i, τ )

4
γ̂T

i σyτxγ̂ i,

(A9)
such that we have to choose

T − = iτyK and T + = τzK (A10)

to show that the model is in the Majorana class.
(iii) σz. For this choice,

ĥz(τ ) = vF

L∑
i=1

L/2∑
r=−L/2

it (r)

4
γ̂T

i τxγ̂ i+r −
∑

i

φ(i, τ )

4
γ̂T

i σyτzγ̂ i,

(A11)
such that we have to choose

T − = iτyK and T + = τzσxK (A12)

to show that the model is in the Majorana class.

APPENDIX B: SCALING DIMENSION OF Ŝz OPERATOR

Due to the systemic failure of the SLAC fermion approach
in describing the physics of the (1 + 1)-dimensional helical
Luttinger liquid, which is especially characterized by the
spontaneous breaking of U(1) symmetry, we cannot expect
the scaling behavior of the bosonization results of Eq. (10) to
hold. Taking the Ŝz operator as an example, its equal-time
structure factor shows a sharp (or smooth) cusp around k = 0
(k = π ) as the interaction strength U increases, as depicted in
Fig. 3(h). This indicates a violation of the 1/r2 scaling relation
based on naive bosonization.

Generally the (equal-time) real-space correlation function
of the Ŝz operator is

CŜz (r) = ar−2�Ŝz
0 + b(−1)rr−2�Ŝz

π , (B1)

where �Ŝz

0 and �Ŝz

π are the scaling dimensions at k = 0 and
k = π , and a and b here are nonuniversal constants. We use
the quantity BŜz (k, L/2), as defined in Eq. (18), to extract the
scaling dimension. In particular in the L → ∞ limit we expect

BŜz (k = 0, L/2) ∝ L−2�Ŝz
0 +1,

BŜz (k = π, L/2) ∝ L−2�Ŝz
π +1. (B2)

This approach for determining the scaling dimension relies on
calculating the difference between the left and right deriva-
tives of the structure factor. Therefore, it provides correct
results within the range of 0.5 < � � 1. For � > 1, the
structure factor becomes a smooth function at the selected
momentum point, making it difficult for our approach to dis-
tinguish between an exponential or power-law decay.

Figures 5(a) and 5(b) show that BŜz (k = 0, L/2) scales
linearly as a function of 1/L, and its slope decreases in
the large-U case, while BŜz (k = π, L/2) behaves oppositely.
The extrapolated scaling dimension, obtained by fitting the
power-law function of Eq. (B2), is 1 within the error bars for
U < 3. For U > 3, the values of �Ŝz systematically decrease
(increase) for k = 0 (k = π ), as shown in Fig. 5(c).

To verify the consistency of our results, we also conducted
a density matrix renormalization group (DMRG) simulation

FIG. 5. 1/L dependence of BŜz (k = 0, L/2) (a) and BŜz (k =
π, L/2) (b). The dashed line is f (L) = 1/L, as a guide to the eye.
The extrapolated scaling dimension �0 and �π as a function of U is
plotted in (c). The dashed line is � = 1, as a guide to the eye.

of the one-dimensional XXZ chain with long-range interac-
tion, which corresponds to the perturbed Hamiltonian of the
SLAC system in the strong-coupling limit. Equation (36) in
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(a)

(b)

(c)

FIG. 6. Ground-state property of the XXZ chain based on
DMRG simulation. (a) Real-space correlation function of Ŝx oper-
ator originated from the left boundary of the chain. (b) Same as
(a), for Ŝz operator. The blue line plots function 0.02r−1.5 and is
a guide to the eye. (c) Structure factor of the Ŝz operator. (d) 1/L
dependence of BŜz

(k, L/2) for k = 0 and π in a logarithmic scale,
as well as the two fitted function based on Eq. (B2) as guides to the
eye.

the main text can be reformulated as

ĤXXZ = J
∑

i,r∈OBC

1

r2

[
Ŝz

i Ŝz
i+r − Ŝx

i Ŝx
i+r − Ŝy

i Ŝy
i+r

]
, (B3)

where J is the only energy scale of the Hamiltonian and we
set it to unity. Instead of the periodic boundary condition that
is considered for the SLAC Hamiltonian, we consider an open
boundary case here, such that the long-range interaction in
Eq. (B3) is truncated at the boundary. We implemented the
DMRG algorithm in the ITENSOR library [36]. The power-
law nature of interaction in this system does not lead to a
dramatic increase of entanglement in DMRG simulation, and
we checked convergence for bond dimensions up to χ = 400.

Figure 6(a) displays the long-range correlation of the Ŝx

(Ŝy) operator, which is consistent with our numerical results
of the SLAC Hamiltonian in the large-U regime. On the
other hand, the real-space decay of the Ŝz operator shows an
algebraic scaling behavior, as shown in Figs. 6(b) and 6(c).
It should be noted that the seemingly square root behavior of
CŜz

(k) at k ≈ 0 also fits well with the plot of the SLAC system
in the large-U limit, as depicted in Fig. 3(h).

Finally, we also performed a scaling analysis for
BŜz (k, L/2) based on Eq. (B2). As shown in Fig. 6(d),
BŜz (k, L/2) displays a nice power-law behavior as a function
of 1/L. A collective fit based on Eq. (B2), using system sizes
of L = 200, 300, 400, 500, 600, 800, and 1000, gives the scal-
ing dimension of the Ŝz operator at k = 0:

�Ŝz

0 = 0.762(2). (B4)

Note that at k = π the �Ŝz

π > 1 such that the structure factor
at k = π is a smooth function consistent with an exponential
decay of staggered fluctuations.

APPENDIX C: SPIN-WAVE ANALYSIS OF THE
1/r2 XXZ CHAIN

In this Appendix, we carry out a spin-wave analysis of the
XXZ model with 1/r2 exchange derived in Eq. (36). We will
see that the long-ranged interaction stabilizes the order and
that the scaling dimension of the Ŝz operator reproduces the
DMRG results. We first carry out a canonical transformation,

ˆ̃Si = R(ey, π/2)Ŝi, (C1)

where R(ey, π/2) is an SO(3) rotation around the axis ey and

with angle π/2 such that, e.g., ˆ̃Sz
i = Ŝx

i . Hence, Eq. (36) maps
onto

ĤXXZ =
L/2∑

i,r=−L/2

J (r)
[ ˜̂Sx

i
˜̂Sx

i+r − ˆ̃Sy
i

ˆ̃Sy
i+r − ˆ̃Sz

i
ˆ̃Sz

i+r

]
, (C2)

with J (r) = 4v2
f

U t2(r). We will assume long-ranged ferromag-

netic magnetic order along the ˆ̃Sz
i quantization axis and adopt

the Holstein-Primakov representation:

ˆ̃Sz
i = −b̂†

i b̂i + S,

ˆ̃S+
i =

√
2S − b̂†

i b̂i b̂i, (C3)
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with [b̂i, b̂†
j] = δi, j . For small fluctuations around the ordered

state, 〈b̂†
i b̂i 〉 � 2S, we obtain

ĤXXZ = EMF + S
∑

p

(
2J0b̂†

pb̂p + Jpb̂†
−pb̂†

p + J−pb̂−pb̂p

)
+ O(S0). (C4)

The first term corresponds to the Weiss mean-field energy,
EMF = −∑

i,r J (r)S2, and scales as S2. The second term
scales as S and describes spin-wave fluctuations with Jp =∑

r eiprJ (r) and b̂p = 1√
L

∑
i eipr b̂i. Lower orders in S are

neglected. We diagonalize the above Hamiltonian with the
Bogoliubov transformation,

â†
p = cosh(θp)b̂†

p + sinh(θp)b̂−p (C5)

and

tanh(2θp) = Jp

J0
, (C6)

to obtain

ĤXXZ = 2SJ0

∑
p

√
1 − J2

p

J2
0

â†
pâp + C (C7)

up to a constant C. For the SLAC hopping of Eq. (2), Jp

J0
is plotted in Fig. 7. As is apparent, in the vicinity of zero
momentum it scales as

Jp

J0
 1 − α|p|. (C8)

As a consequence,

1

L

∑
p

〈b̂†
pb̂p〉 = 1

2π

∫ π

−π

d p

(
1√

1 − (γp/γ0)2
− 1

)
. (C9)

FIG. 7. Jp/J0 for the SLAC hopping of Eq. (2).

In the vicinity of zero momentum, the integral takes the form,∫ �

0 d p 1√|p| , and converges. Thereby fluctuations around the
mean-field solution remain small and the spin-wave approx-
imation is justified. Note that for short-ranged hopping, Jp

J0


1 − αp2 such that 1
L 〈b̂†

pb̂p〉 diverges and fluctuations destroy
the order.

Finally we compute the transverse spin-spin correlations:

〈
Ŝz

r Ŝz
0

〉 = S

8π

∫ π

−π

d peipr 1 − Jp/J0√
1 − (Jp/J0)2

∝ S

8π

∫ π

−π

d peipr
√

α|p| ∝ 1

r1.5
. (C10)

This provides a very good match with the DMRG result.
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