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A simple effective screening parameter for the screened range-separated exchange-correlation hybrid func-
tional is constructed from the compressibility sum rule, in the context of the linear-response time-dependent
density functional theory. When applied to the dielectric-dependent hybrid (DDH), it becomes remarkably
accurate for bulk solids, compared to those obtained from fitting with the model dielectric function or depending
on the valence electron density of materials. The present construction of the screening parameter is simple and
realistic. The screening parameter developed in this way is physically appealing and practically useful as it
is straightforward to obtain using the average of the local Seitz radius over the unit-cell volume of the bulk
solid. Furthermore, we have obtained a very good accuracy for energy band gaps, positions of the occupied d
bands, ionization potentials, optical properties of semiconductors and insulators, and geometries of bulk solids
(equilibrium lattice constants and bulk moduli) from the constructed DDH.
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I. INTRODUCTION

Kohn-Sham (KS) density functional theory (DFT) [1,2] be-
comes the state-of-the-art method for the electronic structure
calculations of solids and materials [3–9]. Although it is an
exact theory, one must approximate the exchange-correlation
(xc) part of the KS potential, which includes all the many-
body interactions beyond the Hartree theory. The development
of new xc approximations that have insightful physical con-
tent and which are also accurate as well as efficient for
solids is always desirable [10–14]. In this respect, semilocal
xc approximations [15–32] are quite useful because of their
efficiency [33–46]. However, there are limitations when these
semilocal xc functionals are applied to calculate band gaps
for solids [35,47–53], optical spectrum [54–66], and semicon-
ductor defects [67–71]. All these deficiencies of the semilocal
xc functionals are related to the known delocalization error
[47,72], which leads to the construction of hybrid functions
with fractions of Hartree-Fock (HF) mixing [64,73–84]. Al-
though the hybrid xc approximations of DFT solve many
problems, they also have some limitations when a fixed HF
mixing is used [55,67,85].

Nowadays, hybrid functionals with system-dependent HF
mixing are fairly popular methods. Those are known as the
dielectric-dependent hybrids (DDHs) [86–92], where the HF
mixing is proportional to the inverse of the macroscopic
static dielectric constant of the system under study. Such
hybrids have been developed and applied to semiconduc-
tor and insulator bulk solids (but not for metals) for quite
some time [93–100]. DDHs can be considered as the higher

*subrata.niser@gmail.com

rung hybrids compared to those proposed from regular fixed
HF mixing. Unlike hybrid functionals with fixed mixing pa-
rameters, in the case of DDHs, one needs to calculate the
dielectric constant of the system beforehand. However, the
great advantages of DDHs are that they are smartly con-
structed using the same philosophy as local Coulomb hole
plus screened exchange (COH-SEX) [101] by fulfilling many
important constraints that the exact xc functional must ob-
serve. Therefore, those possess similar accuracy as GW for
band gaps and the Bethe-Salpeter equation (BSE) for optical
spectra [55].

Regarding the several recently proposed DDHs, we re-
call range-separated DDH (RS-DDH) [88,89], DDH based
on the Coulomb-attenuated method (DD-RSH-CAM) [90],
and doubly screened DD hybrid (DSH) [91] based on their
range separation. Also, there are other ways to implement
the DDHs such as satisfaction of the Koopmans theorem
[92]. A fairly good description and comparison of different
versions of hybrids are discussed in Ref. [100]. Although the
system-dependent macroscopic dielectric constant for DDHs
is calculated from first principles [such as Perdew-Burke-
Ernzerhof (PBE) or random-phase approximation (RPA) on
the top of the PBE calculations (RPA-PBE)], the screen-
ing parameters are constructed from several philosophies,
such as from the fitting of the long-wavelength limit of
highly accurate dielectric functions [55,90,100] calculated
from random-phase approximation (RPA) or nanoquanta ker-
nel and partially self-consistent GW calculations [55,100], or
from valence electron density [88,89,91,92]. Both are nonem-
pirical choices and require no optimization procedure.

In this work, we propose an alternative procedure for
obtaining the range-separated parameter for DDHs using a
simple and effective way via the compressibility sum rule,
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which connects the screening parameter with the exchange
energy density. It is a quite realistic way of obtaining the
screened parameter, where the relationship can be established
through the linear-response time-dependent DFT (TD-DFT).
Importantly, the present construction gives a very realistic
result similar to those obtained from the model dielectric
function. We assess the accuracy of screening parameters with
DD-RSH-CAM [90] for the electronic properties of solids,
especially band gaps, geometries, and optical properties.

The rest of the paper is organized as follows. Section II
describes the generalized formulation of the range-separated
DDH along with the construction of the screening param-
eter developed in this work. Section III presents results
obtained from nonempirical screening parameters using the
DD-RSH-CAM for solid properties. Section IV summarizes
and concludes the work of this paper.

II. THEORY

A. The theoretical background of range-separated DDHs

We start from the Coulomb attenuated method (CAM)-
style ansatz of the screened-range-separated hybrid (SRSH)
functional by partitioning the Coulomb interaction as [102]

1

r
= α + β erf (μr)

r
+ 1 − [α + β erf (μr)]

r
, (1)

and the corresponding range-separated exchange-correlation
(xc) functional becomes

ESRSH
xc = (1 − α)ESR−SL,μ

x + αESR−HF,μ
x

+ [1 − (α + β )]ELR−SL,μ
x + (α + β )ELR−HF,μ

x

+ ESL
c . (2)

Here, μ is the range-separation parameter. α and β control
the fraction of short-range and long-range exchange to the
above decomposition. In SRSH, the range separation is per-
formed both on the Fock-like operator as well as semilocal
exchange. In the present case, the semilocal (SL) short range
(SR) and long range (LR) is based on the decomposition
of the generalized gradient approximation (GGA) functional
(PBE). However, meta-GGA semilocal functionals can also
be used [78]. The aforementioned generalized decomposition
can take several forms depending on the tuning of the α and
β parameters. For example, (i) with β = −α, the screened
hybrid with SR-HF and LR-SL is recovered. This type of
hybrid is useful for solids [64,73,77]. (ii) With the choice of
α + β = 1, in LR, the HF is always recovered [81,103]. This
type of hybrid is useful for finite systems, especially for the
long-range excitation of molecules [104]. And, finally, (iii)
the global hybrid functional is obtained by considering β = 0
[105].

Though choice (i) is quite convenient for solids and pop-
ularly used in the name of Heyd-Scuseria-Ernzerhof (HSE)
[73], it underestimates the band gaps of the insulators [52,90]
and defect formation energies [67] because of the lack of
dielectric screening. Considering these limitations, the SRSH
hybrid has been constructed by incorporating the dielectric
screening of solids as α + β = ε−1

∞ , having the following ex-

pression:

ESRSH
xc = (1 − α)ESR−SL,μ

x + αESR−HF,μ
x

+ (
1 − ε−1

∞
)
ELR−SL,μ

x + ε−1
∞ ELR−HF,μ

x + ESL
c , (3)

where ε−1
∞ is the inverse of the macroscopic static di-

electric constant which is material specific. The main
motivation of the underlying approximation is followed
from Green’s-function-based many-body approaches (GW
exchange-correlation self-energy methods, �xc), where the
local Coulomb hole (COH) plus screened exchange (SEX)
(COH-SEX) are taken into account. (See Ref. [91] for the con-
nection between COH-SEX and DDHs.) The corresponding
potential of the screened exchange is given as

V SRSH
xc (r, r′) = [

α − (
α − ε−1

∞
)
erf (μr)

]
V Fock

x (r, r′)

−(
α − ε−1

∞
)
V SR−SL,μ

x (r)

+(
1 − ε−1

∞
)
V SL

x (r) + Vc(r), (4)

where V Fock
x (r, r′) is the full-range Fock exchange,

V Fock
x (r, r′) = −

∑
nk

wk fnk
φKS

nk (r′)φKS
nk (r)

|r − r′| , (5)

with φKS
nk (r) being the KS single-particle orbitals and fnk

their corresponding occupation numbers. Here, the sum is
performed over all k points that sample the Brillouin zone
(BZ) and n indicates the band indices at these k points with
corresponding weights wk . V SL

x (r) is the full-range semilocal
functional (which is a PBE functional in the present case),
V SR−SL,μ

x (r) is the short-range (SR) part of the PBE func-
tional, and Vc(r) is the PBE correlation. It may be noted
that for solids, the reciprocal space representation of erf (μr)
becomes e−|G|2/(4μ), where G is the reciprocal lattice vector.
Several choices of the α, ε−1, and μ exist and, based on those
choices, rungs of screened exchange or DDH functionals may
be constructed (see Ref. [100] for details).

In particular, we consider the case α = 1, which is used
in the doubly screened hybrid (DSH) [91] and the dielectric-
dependent range-separated hybrid functional based on the
Coulomb-attenuating method (CAM) (DD-RSH-CAM) [90],
where the model dielectric function is defined as

ε−1(G) = 1 − (
1 − ε−1

∞
)
e−|G|2/(4μ). (6)

However, the accuracy of Eq. (3) depends on two main as-
pects:

(i) The macroscopic static dielectric constant εM
∞ is mostly

calculated in a first-principles way using the linear-response
TD-DFT method [106–108]. Also, dielectric constants calcu-
lated from RPA-PBE are reasonably well described [90]. For
hybrids or DDHs, the dielectric constants are calculated using
RPA + fxc, where fxc is the xc kernel [90,100]. Although there
are several xc kernels (see Ref. [109] for a review), in the case
of DD-RSH-CAM, the bootstrap approximation of Sharma
et al. [60] ( f bootstrap

xc ) is used [90].
(ii) The screening parameter μ is obtained following sev-

eral procedures such as:
(a) from the fitting of the model dielectric function

[Eq. (6)] with that of the long-wavelength limit of the diag-
onal elements of dielectric function i.e., ε−1

G,G(q → 0, ω = 0),
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obtained from RPA calculations [90]. Thus, additional calcu-
lations within RPA (and/or a “nanoquanta” kernel combined
with partially self-consistent GW ) are required to obtain an
accurate dielectric function [90]. We recall this screening pa-
rameter as μ = μfit when used with DD-RSH-CAM and fitted
from the model dielectric function of Eq. (6).

(b) The screening parameter μ can also be calculated from
the valence electron density obtained for the range-separated
dielectric-dependent hybrid (RS-DDH) [89]. In this case, μ

is obtained from the Wigner-Seitz (WS) radius and Thomas-
Fermi (TF) screening parameter as [89]

RS − DDH : μ = μWS =
(

4πnv

3

)1/3

, (7)

μ = μTF =
(

3nv

π

)1/6

. (8)

On the other hand, for DSH [91], the screening parameter is
obtained as

DSH: μ = μDSH = 2

3

(
q2

TF

1.563
(
1 − ε−1∞

)
)1/2

,

where q2
TF = 4

(
3nv

π

)1/3

. (9)

Here, nv is the valence electron density of the system under
consideration [89,91].

(c) In Ref. [89], μWS and μTF are also obtained from the
fitting of the long-range decay of the diagonal elements of
the dielectric matrix calculated from the projective dielectric
eigenpotential (PDEP) approach [89,110]. However, this fit-
ting approach is similar to that of the method mentioned in
(a). We also recall from Ref. [90] that μ = μfit is also applied
to RSH-DDH, where the fitting method mentioned in (a) is
considered.

Alternatively, in the following, we propose a first-
principles approach to construct the screening parameter μ

from the linear-response TD-DFT.

B. A new formulation of the screening parameter

In the linear-response TD-DFT, the interacting [χ (r, r′; ω)]
and noninteracting [χ0(r, r′; ω)] density-density response
functions are connected by the following Dyson-like equa-
tion [111]:

χ (r, r′; ω) = χ0(r, r′; ω) +
∫

dr1dr2 χ0(r, r1; ω)

×veff [n](r1, r2; ω)χ (r2, r′; ω), (10)

where

veff [n](r, r′; ω) = 1

|r − r′| + fxc[n](r, r′; ω) (11)

is the Coulomb plus xc kernel known as the effective po-
tential. If fxc[n](r, r′; ω) is zero, then the RPA [112,113] is
recovered. Therefore, fxc[n](r, r′; ω) should account for the
short-range correlation, which is missing in RPA. Following
these considerations, Constantin and Pitarke (CP) proposed a
simple and accurate approximation of veff [n](r, r′; ω) for the
three-dimensional (3D) uniform electron gas (UEG), which is

given by [114,115]

vCP
eff [n](r, r′; ω) = erf (|r − r′|/√4kn,ω )

|r − r′| . (12)

Note that we already consider this type of splitting in the
Coulomb interaction of DDH construction. Also, 4kn,ω is a
frequency- and density-dependent function that controls the
long-range effects of bare Coulomb interaction. Therefore, a
direct connection between 4kn,ω and screening parameter μ

can be established as follows:

μ = μeff = 1√
4kn,ω=0

. (13)

Here, we denote μeff as the effective screening to distinguish
it from the actual screening parameter used in the DD-RSH-
CAM [90]. Note that for the DDH functionals of the ground-
state DFT, we have to consider the static (ω = 0) case.

The xc kernel for 3D UEG can be derived using the Fourier
transform of Eqs. (11) and (12) as

fxc(n; q, ω) = 4π

q2

[
e−kn,ωq2 − 1

]
. (14)

Thus, in the long-wavelength (q → 0) limit, one can obtain

kn,ω = − 1

4π
fxc(n; q → 0, ω). (15)

On the other hand, the long-wavelength limit of the static xc
kernel fxc(n; q → 0, ω = 0) satisfies the compressibility sum
rule [116],

fxc(n; q → 0, ω = 0) = d2

dn2
[nεxc(n)], (16)

where εxc(n) is the xc energy per particle of the 3D UEG.
For εxc(n), we use the Perdew and Wang parametrization
of the local density approximation (LDA) correlation energy
per particle [117]. Note that the LDA xc kernel is remark-
ably accurate for q < 2qF (qF = (3π2n)1/3 is the Fermi wave
vector), which explains the success of LDA (and semilocal
functionals that recover LDA for the 3D UEG) for bulk solids
[118,119].

Finally, Eqs. (15) and (16) give

kn,ω=0 = − 1

4π

d2

dn2
[nεxc(n)], (17)

and μeff can be found from Eq. (13). It is noteworthy that
Eq. (13) is the central equation of this paper, which establishes
a direct connection between the screening parameter and the
LDA xc energy per particle [εxc(n)] [117] that depends only
on the local Seitz radius, rs = ( 3

4πn )1/3, and the relative spin
polarization, ζ = n↑−n↓

n .
To simplify the computational implementation for bulk

solids, we consider the average of rs over the unit-cell volume,
�cell, as

〈rs〉 = 1

�cell

∫
cell

(
3

4π [n↑(r′) + n↓(r′)]

)1/3

d3r′. (18)

We recall that this averaging technique over the unit cell
has been considered earlier, e.g., in the construction of the
modified Becke-Johnson (MBJ) semilocal exchange potential
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FIG. 1. Upper panel: The μ(rs ) as a function of local Seitz
radius, rs, for 0 < rs < 10 bohr. Lower panel: Range-separation
function μfit

eff (r) for Ne2, plotted as a function of the distance.

[49,120–124], local range-separated hybrid functionals [125],
and xc kernel for optical properties of semiconductors [59].
For computational simplicity, we further fit the exact μeff (rs)
curve with the following formula (using the fact that μ ∼ 1

rs
):

μfit
eff = a1

〈rs〉 + a2〈rs〉
1 + a3〈rs〉2

, (19)

with a1 = 1.91718, a2 = −0.02817, and a3 = 0.14954.
In Fig. 1 (upper panel), we plot μ(rs) vs rs for 0 <

rs < 10 bohr. As one can see, μeff (rs) and μfit
eff agree very

well, with the curves being almost indistinguishable. We also
observe that μeff is significantly bigger than the HSE one

(μHSE = 0.11), and only in the low-density regime (rs > 10)
do they become comparable. As a side note, μeff (rs) also
seems very realistic for long-range corrected (LC)-type hy-
brid functionals, where μLC ≈ 0.50 bohr−1 (see, for example,
Table IV of Ref. [81]), because μeff (rs) > 0.5 bohr−1 for
rs < 3.6 bohr and μeff (rs) < 0.50 bohr−1 for rs > 3.6 bohr.

The constructed μfit
eff (r) is also useful for hybrid functionals

with local range separation [126]. In Fig. 1 (lower panel), we
present a plot of our screening function, μfit

eff (r), for an Ne2

dimer. As shown in Fig. 1, near the nucleus, μfit
eff (r) becomes

high (rs ∼ 0), uniform at the middle of the bonds (rs varies
slowly), and zero at the tail (rs → ∞). To use this func-
tion as a local range-separated parameter, one may possibly
use μlocal(r) = ημfit

eff (r), where η is an adjustable parameter
(0 < η < 1).

In Table I, we compare different range-separated DDH
methods along with different strategies for obtaining the
screening parameter. One may note that all the methods pro-
posed so far either depend on the valence electron density (nv)
or fitting the from dielectric function obtained using different
higher-level methods. However, μfit

eff , proposed here, can be
obtained using 〈rs〉 (or using the averaged density over the
unit cell).

III. RESULTS

We combine μfit
eff with DD-RSH-CAM to obtain the prop-

erties of solids. Unless otherwise stated, DD-RSH-CAM
denoted in this work is the original DDH presented in
Ref. [90], whereas DD-RSH-CAM(μfit

eff ) corresponds to the
present work.

A. Screening parameter

We first calculate μfit
eff for several solids. We consider the

same test set as considered in Ref. [90]. We use the all-
electron code ELK [127], which uses linearized augmented
plane waves (LAPWs) as a basis [128] to calculate μfit

eff . The
calculation of μfit

eff is performed using LDA densities with
experimental lattice constants (given in Ref. [90]). Figure 2
compares μ and μfit

eff values for several solids, obtained from
fitting with the model dielectric function and using the method
described in this paper, respectively. When compared with μ,
we observe μfit

eff deviates ∼0.1 for all solids. For some solids
such as BN, C, NiO, and SiC bulk solids, μfit

eff overestimates
∼0.2. Figure 3 compares the model dielectric function as a
function of reciprocal lattice vector G. As observed from the
relative mean-square error (RMSE), a maximum deviation of
0.060 is obtained for C, whereas we observe a very good

TABLE I. Comparison of different range-separated DDH functionals in terms of the Fock exchange fraction α and the range-separation
parameter μ.

Methods α of Eq. (4) μ obtained from Form of μ μ fitted from model dielectric function Ref.

RS-DDH 1/4 Eqs. (7) or (8) μWS, μTF No Ref. [89]
from fitting μerfc−fit, μTF−fit, μfit Yes Refs. [89,90]

DSH 1 Eq. (9) μDSH Yes Ref. [91]
DD-RSH-CAM 1 from fitting of Eq. (6) μfit Yes Ref. [90]
DD-RSH-CAM (μfit

eff ) 1 Eq. (19) μfit
eff No Present work
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FIG. 2. The μ and μfit
eff for several solids reported in Table II. μ

corresponds to the DD-RSH-CAM of Ref. [91] and μfit
eff is calculated

in this work using Eq. (19).

agreement for MgO. The overall analysis of Figs. 2 and 3
suggests that the constructed μfit

eff from the compressibility
sum rule agrees well with that of the μ obtained from the
least-squares fitting of the model dielectric function.

Table II compares values of different screening parameters
obtained using various strategies. As one can observe, in most
cases, both μWS and μTF underestimate the values compared
to μ. Here, the μ values are taken from Ref. [90] and sup-
plied in the second column of Table II (we recall μ = μfit,
as mentioned in Sec. II). However, as mentioned before, μfit

eff
shows overestimation in most cases, when compared with μ

fitted from the model dielectric function. One may note that
calculations of μfit

eff can be done using LDA density (as done in
this work) for the particular bulk solid before constructing ε∞
self-consistently (not done in this work; rather, we have used
values from Ref. [90]). This is possible as μfit

eff is not fitted
from the model dielectric function, which also depends on

FIG. 3. Comparison of model dielectric function as a function
of G for four solids. Black solid line for the μ values of Ref. [90],
whereas red dotted line for μfit

eff . Relative mean-square error (RMSE)
of the model dielectric function as obtained from μfit

eff from the actual
one (obtained using μ) is also shown.

TABLE II. Screening parameters μ (in bohr −1) of the 32 semi-
conductors and insulators. For comparison, screening parameters
obtained from other different methods are also shown.

Solids μa μfit
eff

b μWS μTF

Al2O3 0.80 0.98 0.71c 0.66c

AlAs 0.63 0.77 0.41d 0.50d

AlN 0.77 0.97 0.49c 0.55c

AlP 0.66 0.80 0.50c 0.55c

Ar 0.74 0.54 0.52c 0.56c

BN 0.89 1.18 0.75c 0.68c

BP 0.75 0.99 0.51d 0.56d

C 0.90 1.24 0.76c 0.68c

CaO 0.78 0.89 0.53d 0.57d

CdS 0.66 0.74 0.44d 0.52d

CdSe 0.62 0.71 0.42d 0.51d

Cu2O 0.70 0.92 0.75d 0.68d

GaAs 0.63 0.79 0.41d 0.50d

GaN 0.75 0.98 0.60c 0.61c

GaP 0.66 0.82 0.43d 0.51d

Ge 0.62 0.79 0.45d 0.52d

In2O3 0.60 0.75 0.91d 0.74d

InP 0.63 0.76 0.39d 0.49d

LiCl 0.70 0.75 0.53c 0.57c

LiF 0.82 0.85 0.68c 0.64c

MgO 0.80 0.98 0.64c 0.63c

MoS2 0.73 0.91 0.85d 0.72d

NaCl 0.69 0.68 0.49c 0.54c

NiO 0.82 1.12 0.82c 0.71c

Si 0.65 0.85 0.50c 0.55c

SiC 0.77 1.03 0.62c 0.62c

SiO2 0.73 0.66 0.96d 0.76d

SnO2 0.75 0.94 0.97d 0.77d

TiO2 0.76 0.94 0.68c 0.65c

ZnO 0.75 0.89 0.78c 0.69c

ZnS 0.69 0.79 0.65c 0.63c

ZnSe 0.65 0.76 0.45d 0.52d

Arithmetic mean of μ 0.71 0.87 0.61 0.60

aFrom Ref. [90] with DD-RSH-CAM level theory.
bPresent work using Eq. (19).
cFrom Ref. [89].
dCalculated in this work using Eqs. (7) and (8).

ε∞. However, if μ is fitted from the model dielectric function,
then one may also expect a self-consistent determination of
μ = μfit based on the output of ε∞ (as the model dielectric
function also depends on ε∞).

B. Band gaps and valence band structures

Table III compiles the band gaps of 32 semiconductors and
insulators using the static dielectric constants obtained from
the DD-RSH-CAM (using the full expression including vertex
corrections as mentioned in Ref. [90]). For all bulk band
gaps, we use the plane-wave code Vienna Ab initio Simulation
Package (VASP) [129–132], version 6.4.0. A Monkhorst-Pack
(MP)-like 12×12×12 �-centered k point is used for our cal-
culations. For Al2O3 and In2O3, we reduce the k points to
8×8×8. An energy cutoff of 550 eV is used for all our calcu-
lations. We use PBE pseudopotentials supplied with the VASP
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TABLE III. The Kohn-Sham (KS) band gaps (in eV) as obtained using different methods. Band gaps of AlAs (0.11), GaAs (0.12), Ge
(0.10), CdSe (0.14), and ZnSe (0.14) are corrected for spin-orbit coupling, as mentioned in Ref. [90]. Mean errors (MEs), mean absolute errors
(MAEs), and mean absolute percentage errors (MAPEs) with respect to experimental results are also shown. Error statistics of RS-DDH(μWS)
and RS-DDH(μTF) are calculated for 17 specified systems.

Solids DD-RSH-CAMa DD-RSH-CAM(μfit
eff )b RS-DDH(μWS)c RS-DDH(μTF )c Expt. [90]

Al2O3 9.51 9.56 9.63 9.61 9.10
AlAs 2.11 2.08 2.28
AlN 6.26 6.16 6.22 6.23 6.47
AlP 2.52 2.42 2.43 2.42 2.54
Ar 14.67 14.85 14.12 14.2 14.30
BN 6.56 6.39 6.33 6.34 6.74
BP 2.02 1.94 2.10
C 5.61 5.56 5.44 5.45 5.85
CaO 7.17 6.97 7.09
CdS 2.95 2.71 2.64
CdSe 1.75 1.76 1.88
Cu2O 2.49 2.35 2.20
GaAs 1.45 1.27 1.57
GaN 3.50 3.42 3.30 3.3 3.68
GaP 2.42 2.25 2.43
Ge 0.50 0.54 0.79
In2O3 3.51 3.79 2.93
InP 1.55 1.35 1.47
LiCl 9.89 9.63 9.52 9.54 9.57
LiF 15.56 15.49 15.24 15.18 15.35
MgO 8.19 8.04 8.23 8.22 8.36
MoS2 1.40 1.31 1.29
NaCl 9.10 8.79 8.60 8.66 9.14
NiO 4.68 4.44 4.45 4.51 4.30
Si 1.14 1.04 1.03 1.02 1.23
SiC 2.47 2.39 2.32 2.32 2.53
SiO2 10.40 11.04 9.70
SnO2 3.99 3.71 3.60
TiO2 4.18 3.63 3.16 3.17 3.45
ZnO 3.74 3.73 3.75 3.67 3.60
ZnS 4.08 3.96 3.85 3.86 3.94
ZnSe 2.64 2.78 2.87
ME (eV) 0.09 0.01
MAE (eV) 0.23 0.25
MAPE 7.3 7.2
ME (eV)d 0.09 −0.04 −0.15 −0.14
MAE (eV)d 0.23 0.24 0.25 0.24
MAPEd 4.5 4.6 5.3 5.2

aFrom Ref. [90].
bPresent work with ε−1

∞ calculated at DD-RSH-CAM level theory using RPA+ f bootstrap
xc . See Table IV of Ref. [90] for details.

cFrom Ref. [89].
dCalculated using 17 systems.

code to perform our calculations. In particular, for Ga, Ge, and
In relatively deep, Ga 3d , Ge 3d , and In 4d pseudopotentials
are used to treat valence orbitals. All band-gap calculations
are performed with experimental lattice constants taken from
Ref. [90].

The comparison of band gaps for different solids in
Table III shows a fairly good agreement when calculations are
performed using DD-RSH-CAM (μfit

eff ). However, both panels
of results for band gaps of Table III give an overall mean
absolute error (MAE) ∼0.2 eV (MARE=7%) with respect
to the experimental results. However, for a few solids, we
observe that the DD-RSH-CAM (μfit

eff ) results are a bit close

to that of the experimental values (such as for Cu2O, In2O3,
NiO, SnO2, TiO2, ZnS, and ZnSe). Regarding the RS-DDH
method, it is also quite good in predicting the KS band gaps.

Finally, Fig. 4 compares the experimental vs calculated
band gaps for DD-RSH-CAM and DD-RSH-CAM (μfit

eff ). We
observe that both methods perform similarly. Figure 4 also
suggests that DD-RSH-CAM (μfit

eff ) gives the slope of 1.03
(close to that of the DD-RSH-CAM) and an intercept of
−0.14 eV, slightly larger than DD-RSH-CAM. These error
statistics can also be compared with the other range-separated
DDHs and HSE hybrid functional, as reported in Ref. [90].
We also recall from Ref. [90] that another range-separated
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FIG. 4. The calculated vs experimental band gaps of 32 solids us-
ing (a) DD-RSH-CAM and (b) DD-RSH-CAM (μfit

eff ). See Table III
for details of the computational procedures. The linear regressions
formula that we have used in this work is given by Ecalc

g =κEexpt
g +γ ,

where κ is the slope, γ is the intercept (in eV), and r2 is the correla-
tion coefficient. Ecalc

g = Eexpt
g is given by the dashed lines.

DDH, i.e., RS-DDH, gives an MAE = 0.37 eV and intercept
of −0.33 eV for the same test set, which is much larger
than both DD-RSH-CAM and DD-RSH-CAM (μfit

eff ). Overall,
the performance of DD-RSH-CAM (μfit

eff ) suggests that this
method performs as accurately as DD-RSH-CAM for band
gaps of solids.

Next, we calculate the mean positions of the occupied d
band of selective semiconductors, and the results are reported
in Table IV. It is well known that approximate DFT xc func-
tionals suffer from delocalization errors. Hence the average
position of the occupied d state is underestimated, even for
hybrids with fixed HF percentage. As shown in Ref. [90],
DD-RSH-CAM can recover positions of the occupied d band
correctly. A very similar performance is also observed from

Table IV for DD-RSH-CAM (μfit
eff ), which owns MAE of

∼0.4 eV, which is significantly close to that of higher-level
methods such as GW �1-HSE06 [101].

C. IPs and EAs

Another serious assessment of the DDHs is the determi-
nation of absolute band positions, hence ionization potentials
(IPs) and electron affinities (EAs) calculated using the slab
model [101,133–136]. As stated previously, due to the self-
interaction error (SIE) (or delocalization error), semilocal
functionals tend to underestimate relative band positions.
Therefore, it is interesting to assess the performance of DD-
RSH-CAM for extended systems, where the magnitude of the
SIE strongly depends on the screening nature of the material
under consideration. Here, we report IPs and EAs for II-VI
and III-V semiconductors using DD-RSH-CAM (μfit

eff ).
Since a direct implementation of the DDHs to the slab

model is not feasible because of computational cost, a more
trivial way of doing this is to incorporate the corrections to
the valance band maximum (VBM) state of the bulk system
from DDHs, whereas the surface supercell slab calculations
are performed using semilocal LDA/GGA approximations. In
the present case, we use the Perdew-Burke-Ernzerhof (PBE)
GGA functional. We recall that this method is similar to that
of the quasiparticle (QP) GW -VBM approach as mentioned
in Refs. [133,134]. Following the protocols of the GW -VBM
method [133,134], the ionization potential at the DDHs level
theory can also be defined as

IPDDH = IPSL − �εDDH
VBM. (20)

Here, IPSL is the IPs calculated in the semilocal level PBE-
GGA functional as follows:

IPSL = [εVac,s − εRef,s] − [εVBM,b − εRef,b], (21)

and the corrections or shift to the VBM of the bulk solid
because of DDH (�εDDH

VBM) is given by

�εDDH
VBM = [

εDDH
VBM,b − εDDH

Ref,b

] − [εVBM,b − εRef,b]. (22)

TABLE IV. Mean positions of the occupied d band (in eV) relative to the VBM for selective semiconductors. The theoretical values are
calculated by averaging the d state energies at the � point.

Solids DD-RSH-CAMa DD-RSH-CAM(μfit
eff )b GW �1-HSE06c Expt.d

CdS −9.7 −9.7 −9.5 −9.6
CdSe −10.2 −10.0 −9.7 −10
InP −17.3 −16.9 −16.9 −16.8
GaAs −20.6 −19.8 −18.5 −18.9
GaN −18.0 −17.7 −17.0 −17
GaP −19.7 −19.4 −18.3 −18.7
ZnO −7.5 −7.8 −7.1 −7.5
ZnS −9.5 −9.4 −8.4 −9
ZnSe −10.2 −9.8 −8.6 −9.2
MAE (eV) 0.7 0.4 0.3

aFrom Ref. [90].
bCalculated using ε−1

∞ at DD-RSH-CAM level theory using RPA+ f bootstrap
xc . See Ref. [90] and Table for details.

cFrom Ref. [101].
dSee Ref. [90] for experimental values.
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Here, εVac,s − εRef,s is calculated for the surface supercell
from semilocal functionals, which is PBE for the present
case. For both the zinc-blende (zb) and diamond structures,
we construct the nonpolar (001) surface supercell. εVac,s and
εRef,s are the macroscopic average of the local electrostatic
potential in the vacuum and the bulk region of the super-
cell, respectively. From bulk calculations of semilocal and
DDHs, εVBM,b − εRef,b and εDDH

VBM,b − εDDH
Ref,b are determined,

with εVBM,b (or εDDH
VBM,b) the position of the VBM in semilocal

(or DDH) and εRef,b (εDDH
Ref,b) the reference level for the bulk

calculation for semilocal (or DDH), i.e., the average of the
electrostatic potential in the unit cell.

In detail, we perform all bulk and surface calculations for
IPs with the VASP code using the PBE-optimized geometries
and ionic positions are relaxed further with Hellmann-
Feynman forces of less than 0.005 eV/atom. To execute
surface calculations, we first consider all nonpolar (001) sur-
faces including the Si and Ge diamond structures These slabs
are made up of 14 atomic layers (18–39 Å) followed by 14
additional vacuum layers. All calculations (bulk and surface)
are performed with a kinetic energy cutoff of 550 eV. The
�-centered grid is used to sample the Brillouin zones (BZs),
with 15×15×1 k points for surface and 15×15×1 k points
for bulk calculations. As all the surfaces under consideration
are nonpolar, we do not consider dipole corrections. The ef-
fect of spin-orbit coupling is evaluated for bulk calculations
only since its inclusion in surface calculations has almost no
influence on the electrostatic potential. One may note that the
electrostatic potential used in this work is collected from the
LOCPOT output file, which includes the sum of the ionic po-
tential and the Hartree potential, not the exchange-correlation
potential [137]. In this way, our PBE results match very well
to that of the already reported PBE results in Ref. [101].

We show IPs and EAs of DD-RSH-CAM and DD-RSH-
CAM (μfit

eff ) along with the HSE06 and GW �1-HSE06 in
Table V. For instance, we also plot, in Fig. 5, the VBM
position (calculated from IPs and EAs) from DD-RSH-CAM
(μfit

eff ) along with experimental IPs and EAs. As shown in
Table V and Fig. 5, we observe that for II-VI and III-V semi-
conductors, IPs and EAs as obtained from both DDHs are well
respected and have similar accuracy with the HSE06 ones.
One may note that for II-VI and III-V solids, the performance
of HSE06 is respectable [101], as those are medium-range
band-gap solids and HSE06 describes well their screening.
The similar accuracy of both DDHs indicates that these DDHs
might also be a good choice for electronic structure cal-
culations of semiconductors defects [67,92,138,139], where
HSE06 with a fixed mixing parameter is not sufficient [67].

D. Optical absorption spectra

Hybrid functionals include nonlocal potential, which is
the key for improving optical properties of bulk solids
[54–58,145,147–150]. The optical absorption spectra as ob-
tained from DDHs are realistic [144], including excitonic

effects, i.e., ∼ ε−1
∞
q2 in the long-wavelength limit (q → 0)

[54,55]. The details of the methodology of the TD-DFT ap-
proach within DDH are given in Ref. [144]. Additionally,
we also recall that several low-cost xc kernels are available

FIG. 5. Band alignments of II-VI and III-V semiconductors
based on the IPs (negatives of the VBM to the vacuum level) and
EAs (negatives of CBM to the vacuum level) as obtained from DD-
RSH-CAM (μfit

eff ). For comparison, GW �1-HSE06 [101] (shown by
the bar) and experimental values (shown by a straight line) are also
shown. All the surface orientations are along the (110) directions.

to compute the optical properties of semiconductors and in-
sulators [59–63,151–153], describing well the excitons and
excitonic effects (e.g., Bootstrap [60] and jellium-with-gap
model (JGM) [59,151] kernels), in contrast to the RPA and
adiabatic LDA (ALDA) kernels.

All calculations of DD-RSH-CAM (μfit
eff ) are performed

by solving the Casida equation, as mentioned in Ref. [144].
To assess the performance of the DD-RSH-CAM (μfit

eff ), we
calculate the imaginary [ε2(ω)] and real [ε1(ω)] parts of the
macroscopic dielectric function εM of Si, C, MgO, and NaCl
in the optical limit of small wave vectors,

ε2(ω) = Im
{

lim
q→0

εM (q, ω)
}
,

ε1(ω) = Re
{

lim
q→0

εM (q, ω)
}
. (23)

We recall that the optical absorption spectrum is given by
ε2(ω), while other optical properties (e.g., Fresnel reflectiv-
ity at normal incidence, and the long-wavelength limit of
the electron-energy-loss function) depend on both ε1(ω) and
ε2(ω).

For the optical absorption spectrum, we use the VASP code
with 32×32×32 MP-like k points and 20 empty orbitals.
Since a straightforward calculation of DDH using these dense
k points would be expensive, we have performed the DDH
calculations in many shifted 8×8×8 grids (i.e., 8×8×8 k-
point grid and shifted with 0.25 irreducible k points [154])
and then averaged over respective weights or multiple grids,
as mentioned in Ref. [154]. All calculations are performed
with experimental lattice constants. We use complex shift
(CSHIFT) 0.3 to smoothen the real part of the dielectric func-
tion in all our calculations.

For the Si bulk, we observe quite realistic absorption spec-
tra from DD-RSH-CAM (μfit

eff ), showing two excitation peaks
at the right positions corresponding to the experimental re-
sults. However, the first peak at ∼3.5 eV, which represents
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FIG. 6. Imaginary part of absorption spectra [ε2(ω)] of Si, C,
NaCl, and MgO, calculated with DD-RSH-CAM (μfit

eff ), HSE06, and
DD-RSH-CAM functionals. Experimental spectra are taken from
Ref. [140] (for Si), Ref. [141] (for C), Ref. [142] (for NaCl), and
Ref. [143] (for MgO). Calculations of DD-RSH-CAM (μfit

eff ) are
performed using DD-RSH-CAM’s ε−1

∞ . Absorption spectra of DD-
RSH-CAM are taken from Ref. [144].

the oscillator strength, is always underestimated, similar to the
hybrids with fixed mixing parameters. A similar performance
is also observed for DD-RSH-CAM, as shown in Ref. [144].
Next, considering the optical spectra of the medium gap
semiconductor C diamond, the DD-RSH-CAM (μfit

eff ) peak
is blueshifted with about 1 eV because of the slightly larger
value of μfit

eff (see Fig. 2). However, we obtain reasonable

FIG. 7. Real part of absorption spectra [ε1(ω)] for Si, C, and
MgO calculated with DD-RSH-CAM (μfit

eff ), HSE06, and DD-RSH-
CAM functionals. The Si and C experimental data are taken from
Ref. [145], and the MgO experimental data are from Ref. [146].
Calculations of DD-RSH-CAM (μfit

eff ) are performed using DD-RSH-
CAM’s ε−1

∞ .

absorption spectra of NaCl and MgO insulators, which are
considered difficult tests for all the computational methods.
Compared to the absorption spectra of DD-RSH-CAM, as
studied in Ref. [144], we see similar tendencies from the
present method. One may also note from Fig. 6 that for the
wide band-gap insulators, the performance of HSE06 is un-
satisfactory, underestimating the absorption peak.

TABLE VI. Lattice constant (a0) and bulk modulus (B0) for selective solids. Mean percentage errors (MPEs) and mean absolute percentage
errors (MAPEs) of lattice constants and bulk moduli are also given.

a0 (Å) B0 (GPa)

Solids DD-RSH-CAMa DD-RSH-CAM(μfit
eff )b Expt.c DD-RSH-CAMa DD-RSH-CAM(μfit

eff )b Expt.d

BN 3.584 3.592 3.594 410 400 400
BP 4.527 4.531 4.527 172 165 173
C 3.552 3.551 3.555 438 455 442
CaO 4.755 4.77 4.781 124 121 120
GaAs 5.718 5.657 5.641 71 72 77
Ge 5.719 5.679 5.644 69 68 76
LiCl 5.092 5.068 5.072 33 35 35
LiF 3.927 3.92 3.974 82 86 70
MgO 4.158 4.148 4.188 179 183 165
NaCl 5.594 5.554 5.565 26 27 27
Si 5.447 5.444 5.422 96 95 99
SiC 4.349 4.352 4.348 229 230 225
MPE (%) 0.1 −0.1 0.2 1.3
MAPE (%) 0.6 0.4 5.3 5.6

aFrom Ref. [90].
bCalculated using ε−1

∞ obtained from DD-RSH-CAM and μfit
eff .

cSee Table VIII of Ref. [90] for details of the reference values. The zero-point anharmonic expansion (ZPAE) is included in the experimental
lattice constants.
dSee Table VIII of Ref. [90] for the references of bulk moduli.
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FIG. 8. DD-RSH-CAM and DD-RSH-CAM (μfit
eff ) relative errors

(in %) for the (a) equilibrium lattice constants and (b) bulk moduli of
several bulk solids. The DD-RSH-CAM results are from Ref. [90].

Furthermore, in Fig. 7, we show the real part of the di-
electric function. In the cases of Si and C, both the TD-DFT
spectra of DD-RSH-CAM (μfit

eff ) and HSE06 are in excellent
agreement with the experimental data. However, for the NaCl
and MgO insulators, DD-RSH-CAM (μfit

eff ) is more realistic
and the peaks are in the correct positions. One may also
note that both the real and imaginary parts of DD-RSH-CAM
match quite well with that of DD-RSH-CAM (μfit

eff ), especially
the peak position. For the imaginary part of DD-RSH-CAM,
we consider results from Ref. [144], whereas we calculate
DD-RSH-CAM for the real part.

E. Structural properties

Structural properties of DDH are performed using VASP

with a similar setup as mentioned in Sec. III B. In Table VI,
we calculate the structural properties of selective solids com-
piled in Ref. [90]. We obtain very reasonable equilibrium
lattice constants and bulk moduli for a wide range of solids
using DD-RSH-CAM (μfit

eff ). For lattice constants, the overall
MAPE of 12 solids is obtained to be 0.4%, slightly better
than DD-RSH-CAM. For bulk moduli, both perform similarly
with MAPE ∼5%. In Fig. 8, we plot the percentage error
of lattice constants and bulk moduli for 12 solids using the
two DDHs. We observe that DD-RSH-CAM (μfit

eff ) improves
over DD-RSH-CAM for the lattice constants of most solids.

For bulk moduli, the overall MAPE is within 6% for both
DDHs. Reference [90] also suggests that HSE06 offers similar
accuracy as DD-RSH-CAM for both lattice constants and bulk
moduli. Hence, a good description of the structural properties
can be acquired from DD-RSH-CAM (μfit

eff ) across a wide
variety of materials.

One may also note that from the trends shown in
Tables III−VI, the results of both DDHs are more sensitive
to the choice of macroscopic static dielectric constant than
to the inverse screening length μ. Hence, one can simply
choose its mean value, such as 0.7 bohr−1 or 0.8 bohr−1

(see the last line of Table II), which is material independent.
However, for more accurate calculations, one has to carefully
consider both the macroscopic static dielectric constant and
the material-dependent inverse screening length. Hence, the
present procedure should be quite useful, as one can obtain μ

entirely from first principles.

IV. CONCLUSIONS

We have presented a simple and effective way to deter-
mine the screening parameter for dielectric-dependent hybrids
from the compressibility sum rule combined with the linear-
response time-dependent density functional theory. When
applied to the bulk solids, the resultant effective screening
parameter, named μfit

eff , performs with similar accuracy for
bulk solids as that obtained from the fitting with (model)
dielectric function or valence electron density. Importantly,
the present effective screening parameter depends only on
the local Seitz radius, which is averaged over the unit-cell
volume of the solid, having no fitted empirical parameters.
In particular, the main advantage of the present procedure is
that it does not depend on the dielectric function and it can
be obtained entirely from first-principles calculations for any
bulk system.

Finally, our calculations show that DD-RSH-CAM (μfit
eff )

shows similar accuracy as DD-RSH-CAM for band gaps,
positions of the occupied d bands, and ionization potentials.
Also, it is quite successful for semiconductor and insulator
optical properties as well as for the structural properties of
solids. Importantly, one can obtain the value of μfit

eff quite
easily for any bulk solids, which we believe in turn reduces
the computational difficulty. For example, one can obtain the
macroscopic static dielectric constants from PBE (using den-
sity functional perturbation theory [155,156]) and combine
them with μfit

eff to perform calculations for materials.
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