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Exciton spectrum in atomically thin monolayers: The role of hBN encapsulation
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The high-quality structures containing semiconducting transition-metal dichalcogenide (S-TMD) monolayers
(MLs) required for optical and electrical studies are achieved by their encapsulation in hexagonal BN (hBN)
flakes. To examine the effect of hBN thickness in these systems, we consider a model with an S-TMD ML
placed between a semi-infinite in the out-of-plane direction substrate and complex top cover layers: a layer of
finite thickness, adjacent to the ML, and a semi-infinite in the out-of-plane direction top part. We obtain the
expression for the Coulomb potential for such a structure. Using this result, we demonstrate that the energies of
excitonic s states in the structure with a WSe2 ML change significantly for the top hBN with thickness less than
30 layers for different substrate cases, such as hBN and SiO2. For the larger thickness of the top hBN flake, the
binding energies of the excitons are saturated to their values of the bulk hBN limit.
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I. INTRODUCTION

The properties of excitons, i.e., electron-hole (e-h) pairs
bounded by Coulomb force, in two-dimensional (2D) mono-
layers (MLs) of semiconducting transition-metal dichalco-
genides (S-TMDs) are remarkably modified due to a sig-
nificant change in the Coulomb interaction between charge
carriers in such 2D crystals [1–3]. The excitons are char-
acterized by the energy spectrum, composed in analogy to
the hydrogen series as of the ground (1s) and excited (2s,
2p, 3s, . . . ) states. Although excitonic states of the s type
are observable in the linear optical spectra of S-TMD MLs,
i.e., photoluminescence [4–8], transmission [9–11], and re-
flectance contrast [6,12,13], the excitonic states of the p and
d types can be seen in nonlinear experiments performed on
S-TMD MLs, i.e., second harmonic generation or two-photon
absorption [14–17]. It turns out that the energy spectrum of
s-type states in these atomically thin semiconductors does not
reproduce the conventional Rydberg series of a 2D hydrogen
atom [18,19]. The main reason for that is the dielectric in-
homogeneity of the S-TMD structures, i.e., MLs surrounded
by dielectric materials. While the Coulomb interaction scales
as ∝ 1/εr with the dielectric response of the surrounding
medium ε at large e-h distances r, it appears to be significantly
weakened at short e-h distances due to exceptionally strong
dielectric screening within the ML plane. Consequently, the
energy spectrum of excitons in S-TMD MLs and hence their
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binding energy, defined as the energy difference between the
electronic band gap and the ground 1s state, can be strongly
modified by the used surrounding media of different dielectric
responses.

The influence of the surrounding dielectric on the excitonic
ladder has been studied both experimentally and theoretically
[6,9–12,20–26]. Note that the theoretical approaches rely
mostly on the ab initio [27–30], as well as the combination
of the ab initio and analytical methods [31,32]. In the latter
case, the results of ab initio simulations have been used as
input parameters for the analytical models, which are called
quantum electrostatic heterostructure (QEH) models. Such
incoming parameters are dielectric functions of the multilayer
van der Waals heterostructure [28,31], momentum-dependent
matrix elements of the screened Coulomb interaction and the
band structure of the valence and conduction bands [30], or
even the modified Coulomb potential V3χ (ρ) in Ref. [32].
However, in all these cases, the calculation of the excitons’
energies requires large computational powers. Therefore, the
QEH model, which takes into account all the basic charac-
teristics of the heterostructure but requires less computational
resources to calculate the excitonic spectrum, is still needed.

Note that the current approach to obtain the highest-quality
S-TMD MLs is based on their encapsulation in flakes of
atomically flat hexagonal BN (hBN). It results, in particular,
in a substantial narrowing of excitonic resonances approach-
ing the homogeneous linewidth limit [33–35], which allows
one to precisely identify their spectrum. Consequently, it is
of the utmost importance to perform theoretical calculations
of the thickness influence of the surrounding media on the
excitons spectra in S-TMD MLs within the aforementioned
QEH model.

In this work, we investigate theoretically the energy spec-
trum of free excitons in S-TMD MLs encapsulated in between
a semi-infinite in the out-of-plane direction bottom substrate
and complex top cover layers consisting of two parts: a layer
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FIG. 1. The schematic illustration of the S-TMD monolayer en-
capsulated in between a semi-infinite bottom substrate (first layer)
and a complex top cover layers consisting of two parts: second layer
of the finite thickness, adjacent to the ML and semi-infinite in the
out-of-plane direction third part.

of finite thickness L, adjacent to the ML, and semi-infinite in
the out-of-plane direction top part with the aid of generaliza-
tion of the Rytova-Keldysh potential. We demonstrate that the
energies of the excitonic s states in such a system with the
WSe2 ML are strongly modified when the thickness of the top
hBN layers decreases below about 30 layers. In addition, it
results in a significant reduction in excitonic binding energy
(Eb) of almost 40% in the transition from the sample without
the top hBN layer (Eb = 256 meV) to the one with an infinite
thickness of the top hBN layer (Eb = 165 meV). The similar
behavior of the binding energies as a function of the thickness
of the top hBN layer has been observed for the other type of
substrates.

The paper is organized as follows. In Sec. II, we present
the theoretical framework for the calculation of the effective
Coulomb potential in a nonhomogeneous planar system, pre-
sented in Fig. 1. We analyze the analytical expression for the
potential in momentum as well as in coordinate space, as
a function of the parameters of the system. In Sec. III, we
consider the particular case of the hBN substrate and hBN
top flake of finite thickness L, and calculate the corresponding
effective Coulomb potential for this case. Using the obtained
potential, we calculate in Sec. IV the energy ladder of the
excitons for the case of the WSe2 monolayer as a function
of the number of layers of the top hBN flake. In Sec. V,
we summarize all the findings. Moreover, the Supplemental
Material (SM) [36] presents additional calculations that take
into account the discrete structure of the top hBN layer. Using
this result, we obtain the spectrum of the excitons in the
WSe2 monolayer with a mono- and bilayer top hBN layer and
compare the result found within the model proposed in the
main text. We also study the role of the nonzero distance δ

between the monolayer and the sub- and superstrate on the
excitonic spectrum in such a system.

II. COULOMB POTENTIAL IN THE NONHOMOGENEOUS
SYSTEM: GENERAL CASE

Let us consider the S-TMD ML encapsulated in between
a semi-infinite bottom substrate (first layer) and complex top
cover layers consisting of two parts: second layer of finite
thickness L − δ, adjacent to the ML, and semi-infinite in the
out-of-plane direction third part. A schematic illustration of
the studied system is presented in Fig. 1. The ML is arranged

in the xy plane and is centered in the out-of-plane direction
(z = 0). The bottom substrate, first layer, belongs to the do-
main z ∈] − ∞,−δ], and is characterized by the in-plane ε1,‖
and out-of-plane ε1,⊥ dielectric constants. The top (second)
layer, next to the ML, unfolds in the range z ∈ [δ, L] with
the in-plane ε2,‖ and out-of-plane ε2,⊥ dielectric constants. Fi-
nally, the third top layer spreads over the distance z ∈ [L,∞[
and is described by the in-plane ε3,‖ and out-of-plane ε3,⊥
dielectric constants.

To find the potential energy between two charges in
S-TMD MLs, we solve the following electrostatic prob-
lem. We investigate the pointlike charge Q at the point
r = (ρ, z) = (0, 0, 0) and calculate the electric potential in
such a system following Refs. [38,39]. Namely, we analyze
four regions: bottom (z ∈] − ∞,−δ]), ML (z ∈ [−δ, δ]), top
finite (z ∈ [δ, L]), and overtop (z ∈ [L,∞[) media, with poten-
tials �1(ρ, z), �(ρ, z), �2(ρ, z), and �3(ρ, z), respectively.
These potentials are defined by the Maxwell equations. It is
convenient to present the potentials as a Fourier transform,

� j (ρ, z) = 1

(2π )2

∫
d2keikρ� j (k, z), (1)

�(ρ, z) = 1

(2π )2

∫
d2keikρ�(k, z). (2)

The � j (ρ, z) potentials for the jth region, where j =
1, 2, 3, satisfy Maxwell’s equation div D j (ρ, z) = 0, which
can be written as

−ε j,‖k2� j (k, z) + ε j,⊥
d2� j (k, z)

dz2
= 0. (3)

The solutions of these equations are

�1(k, z) = B1eκ1z for z ∈] − ∞,−δ], (4)

�2(k, z) = A2e−κ2z + B2eκ2z for z ∈ [δ, L], (5)

�3(k, z) = A3e−κ3z for z ∈ [L,∞], (6)

where κ j = |k|√ε j,‖/ε j,⊥ = k
√

ε j,‖/ε j,⊥.
Maxwell’s equation in the ML domain, i.e., z ∈ [−δ, δ],

reads div D(ρ, z) = 4πQδ(ρ)δ(z). It gives the equation for the
potential �(r, z),

[
	‖ + d2

dz2

]
�(ρ, z) = −4π [Qδ(ρ)δ(z) − 
ind(ρ, z)], (7)

where 	‖ is the 2D Laplace operator. The first term on the
right-hand side of Eq. (7) is the charge density of the charge
Q, localized in the ML plane. The second term represents the
polarization charge density 
ind(ρ, z), induced in the ML by
point charge Q, which is given by


ind(ρ, z) = div P(ρ, z). (8)

Following Ref. [38], we present the polarization in the form

P(ρ, z) = δ(z)P‖(ρ, z = 0). (9)

Using the proportionality between the induced polarization
P‖(ρ, 0) and the in-plane component of the electric field
E‖(ρ, 0), P‖(ρ, 0) = χTMDE‖(ρ, 0), we obtain the expression
for the induced charge,


ind(ρ, z) = −χTMDδ(z)	‖�(ρ, 0). (10)
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Here, χTMD is the 2D polarizability of the S-TMD mono-
layer [38,40]. Introducing the screening length parameter r0 =
2πχTMD and taking the Fourier transformation of Eq. (7) with
the induced charge from Eq. (10), one gets

[
k2 − d2

dz2

]
�(k, z) = 4πQδ(z) − 2r0k2δ(z)�(k, 0). (11)

This is a linear nonhomogeneous differential equation of the
second order, which solution can be presented as a sum of the
general solution of the homogeneous equation and a particular
solution of the nonhomogeneous equation (see Ref. [41] and
the Supplemental Material [36])

�(k, z) = �e−k|z| + Ae−kz + Bekz. (12)

The k-dependent parameters of the potential �, A, and B are
not independent. The relations between them are defined from
Eq. (7). Integrating it over z in the domain z ∈ [−ε, ε] and
then taking the limit ε → 0, one obtains

[1 + r0k]� + r0k[A + B] = 2πQ

k
. (13)

Using the continuity of the potential and z component of
the displacement field D(ρ, z) on the boundary of two adjusted
domains, one obtains the set of equations for the parameters

�, A, B, B1, A2, B2, A3. The boundary conditions for the first
and ML domains give the relations

B1e−κ1δ = �e−kδ + Aekδ + Be−kδ, (14)

ε1B1e−κ1δ = �e−kδ − Aekδ + Be−kδ. (15)

The boundary conditions between the ML and second do-
mains are described by the equations

A2e−κ2δ + B2eκ2δ = �e−kδ + Ae−kδ + Bekδ, (16)

ε2A2e−κ2δ − ε2B2eκ2δ = �e−kδ + Ae−kδ − Bekδ. (17)

Finally, the boundary conditions between the second and third
domains give

A2e−κ2L + B2eκ2L = A3e−κ3L, (18)

ε2A2e−κ2L − ε2B2eκ2L = ε3A3e−κ3L. (19)

Here, we introduce ε j = √
ε j,⊥ε j,‖ for j = 1, 2, 3. Solving

these equations together with Eq. (13), we obtain the values
of the �, A, and B parameters. Then substituting them into
the expression �(k, z = 0) = � + A + B = 2πQ/kε(k), we
obtain the effective in-plane Coulomb potential �(k, z = 0).
Here, ε(k) is the dielectric function of the system,

ε(k) = kr0 + 1 − (
ε1−1
ε1+1

)(
ε2−1
ε2+1

)
e−4kδ − (

ε2−ε3
ε2+ε3

)[(
ε2−1
ε2+1

) − (
ε1−1
ε1+1

)
e−4kδ

]
e−2κ2(L−δ)

[
1 − (

ε1−1
ε1+1

)
e−2kδ

]{
1 − (

ε2−1
ε2+1

)
e−2kδ + (

ε2−ε3
ε2+ε3

)[
e−2kδ − (

ε2−1
ε2+1

)]
e−2κ2(L−δ)

} . (20)

The coordinate-dependent potential �(ρ) for the considered
nonhomogeneous system with the dielectric function ε(k)
then reads

�(ρ) = Q
∫ ∞

0
dk

J0(kρ)

ε(k)
, (21)

where J0(x) is the zeroth Bessel function of the first kind. One
can see that the information about the studied heterostruc-
ture is fully contained in the second part of the expression.
Note that the expression for the in-plane potential contains
only the combinations ε j = √

ε j,‖ε j,⊥ and κ2 = k
√

ε2,‖/ε2,⊥.
The expression (20) simplifies in two important limits. The

limit L → ∞ provides

ε(k) = kr0 − 1 +
∑
j=1,2

1

1 − ( ε j−1
ε j+1

)
e−2kδ

. (22)

This formula interpolates between the case of suspended
monolayer δ → ∞ [ε(k) = kr0 + 1] and the case of mono-
layer, encapsulated between two media with dielectric con-
stants ε1, ε2, δ → 0 [ε(k) = kr0 + [ε1 + ε2]/2]. Both limit
cases correspond to the so-called Rytova-Keldysh potential in
coordinate space, first derived in Refs. [39,42].

Another limit of Eq. (20), which corresponds to the situa-
tion with zero distance δ → 0 between the S-TMD monolayer
and the dielectric media, provides

ε(k) = kr0 + ε1 − ε2

2
+ ε2

1 + (
ε2−ε3
ε2+ε3

)
e−2κ2L

. (23)

We consider this dielectric function as the simplest extension
of the Rytova-Keldysh model for the case of finite thickness L
of the superstrate.

One can see that the key parameter that regulates the shape
of ε(k) is τ = exp(−2κ2L). Namely, the long-wavelength
λ(k) = 2π/k → ∞ and short-wavelength λ(k) = 2π/k → 0
limits correspond to the τ → 1 and τ → 0 cases, respectively.
In the long-wavelength limit, the dielectric constant is ε(k) →
(ε1 + ε3)/2. This result reflects the fact that in this case, most
of the electric field lines occupy the bottom and second top
regions. In this case, neither the S-TMD monolayer nor the
thin first top layer contributes significantly to the dielectric
response of the system, due to their small volumes in compari-
son to the volumes of the other regions. The expression for the
potential takes the form �(k, z = 0) → 2πQ/(k[ε1 + ε3]/2).
It provides the following large distance, ρ → ∞, the behav-
ior of the potential in the coordinate space �(ρ, z = 0) →
Q/(ρ[ε1 + ε3]/2), which is simply the Coulomb potential of
point charge Q placed in between two substrates with dielec-
tric constants ε1 and ε3, respectively.

In the opposite limit, λ(k) → 0, the significant part of
the electric lines of the charge occupies the monolayer, the
first top layer, and bottom regions. In this case, the effective
dielectric constant takes the form ε(k) → kr0 + (ε1 + ε2)/2.
As one can see, the second top substrate does not give a
contribution to the potential. The corresponding limit defines
the small distance, ρ → 0, behavior of the potential �(ρ, z =
0) → (πQ/2){H0(ρ[ε1 + ε2]/2r0) − Y0(ρ[ε1 + ε2]/2r0)}.

Finally, note that both coordinate-dependent potentials also
correspond to two limits L → 0 and L → ∞ of the thickness
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FIG. 2. Normalized dielectric function ε(x, l )/εhBN for four val-
ues of dimensionless length parameter l: l = 0, l = 1, l = 5, and
l = ∞ (black, red, green, and blue curves, respectively) as a function
of a dimensionless distance parameter, x = kr0/εhBN.

L of the first top layer. Therefore, the potential with a finite
value of L interpolates between these two potentials, as is
depicted in Fig. 3 for particular cases of dielectric constants
of the surrounding media.

III. THE COULOMB POTENTIAL IN S-TMD SAMPLE:
EFFECT OF FINITE THICKNESS OF hBN top layer

We examine the particular case of an S-TMD ML en-
capsulated in hBN layers, i.e., ε1,‖ = ε2,‖ = εhBN,‖, ε1,⊥ =
ε2,⊥ = εhBN,⊥, ε3,‖ = ε3,⊥ = 1. Following the values avail-
able in the literature, we use ε1 = ε2 = εhBN = 4.5 and
κ2 = k

√
εhBN,‖/εhBN,⊥ ≈ 1.098 k [9]. Here we use the high-

frequency (infrared) values for the dielectric constants of
hBN. This is because the typical frequency scale at which the
hBN flake responds to the excitons in the WSe2 monolayer
is given approximately by their binding energies of hun-
dreds of meV; see more details in Refs. [9,20,43]. Note that
ε3,‖ = ε3,⊥ = 1 resemble typical experimental conditions,
i.e., the sample is placed in air, vacuum, or gaseous helium.
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FIG. 3. Potential function φ(ξ, l ) for four values of dimension-
less length parameter l: l = 0, l = 1, l = 5, and l = ∞ as a function
of a dimensionless distance parameter ξ .

Introducing the dimensionless momentum x = kr0/εhBN and
length l = εhBNL/r0 parameters, we obtain the following ex-
pression for the effective dielectric constant:

ε(x, l ) = εhBNx + εhBN

1 + εhBN−1
εhBN+1 exp

( − 2
√

εhBN,‖
εhBN,⊥

xl
) . (24)

This dielectric function, normalized for εhBN, for different
values of the dimensionless thickness l of the top hBN flake
is presented in Fig. 2.

The corresponding effective potential for the considered
case �(ξ ) = (Q/r0)φ(ξ, l ), as a function of the dimensionless
distance ξ = ρεhBN/r0, reads

φ(ξ, l ) =
∫ ∞

0
dx

J0(xξ )
[
1 + εhBN−1

εhBN+1 exp
( − 2

√
εhBN,‖
εhBN,⊥

xl
)]

1 + x
[
1 + εhBN−1

εhBN+1 exp
( − 2

√
εhBN,‖
εhBN,⊥

xl
)] .

(25)

Note that in the limit l → ∞, i.e., an ML encapsulated in
semi-infinite hBN layers, the potential expression is simplified
and gives the well-known Rytova-Keldysh potential [39,42],

φ(ξ,∞) =
∫ ∞

0
dx

J0(xξ )

1 + x
= π

2
[H0(ξ ) − Y0(ξ )]. (26)

The other limit l → 0 corresponds to the case of an ML
deposited on a semi-infinite hBN substrate, uncovered from
the top. The related potential also has the Rytova-Keldysh
form

φ(ξ, 0) = π

2

[
H0

(
εhBN + 1

2εhBN
ξ

)
− Y0

(
εhBN + 1

2εhBN
ξ

)]
. (27)

The evolution of the φ(ξ, l ) potential as a function of a ξ

parameter is presented in Fig. 3 for four l values. As can be
seen in the figure, the strongest φ(ξ, l ) potential is apparent
for l = 0, while the weakest potential is for the case l = ∞,
and the potential for l > 0 lies in the region in between two
former potentials. The obtained results are in full agreement
with the previously reported results [9,21,26], where it was
shown that an increase in the average dielectric constant of the
media surrounding the ML leads to a decrease in the confining
potential.

IV. EXCITONIC SPECTRUM IN NONHOMOGENEOUS
SYSTEM

Using the φ(ξ, l ) potential, expressed by Eq. (25), we can
evaluate the energy spectrum of the excitons in the investi-
gated structure composed of S-TMD ML as a function of the
parameter l . The corresponding equation for the eigenvalues
is given by[

b2 1

ξ

d

dξ

(
ξ

d

dξ

)
+ 2bφ(ξ, l ) + ε

]
ψ (ξ ) = 0, (28)

where we introduced b = h̄2ε2
hBN/(μe2r0) and E = Ry∗ε.

Ry∗ = μe4/(2h̄2ε2
hBN) is an effective Rydberg energy and

ψ (ξ ) represents the wave function of an exciton. μ =
memh/(me + mh) is the reduced mass of the exciton (e-h pair)
with the effective electron (me) and hole (mh) masses and e
represents the electron’s charge.
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Let us examine the case of WSe2 ML with r0 = 4.5 nm
[40] and μ = 0.21 m0 [6], where m0 is the electron’s mass.
It gives b ≈ 1.13357 and Ry∗ ≈ 141 meV. For the WSe2 ML
r0 = 4.5 nm, the dimensionless parameter l corresponds to the
l nm of the thickness of the top flake of hBN. Taking into
account that the distance between the layers in hBN (in other
words, the thickness of hBN ML) is d = 0.33 nm [44], we
conclude that l = 1 corresponds to three layers of hBN.

Note that in the case of the few-layer top hBN flake, when
its discreteness can play an important role, the phenomeno-
logical continuous model of the hBN medium considered
here should be additionally verified. To do it, we separately
perform the numerical analysis for the ML and bilayer (BL)
of the top hBN in the Supplemental Material (SM) [36].

The calculated energy spectra of an exciton for the ground
(1s) and four excited (2s – 5s) states as a function of the thick-
ness of the top hBN layer for the aforementioned continuous
model as well as the discrete one for the thinnest layers are
presented in Fig. 4. Due to the observed evolutions in the
figure, three main points can be raised: (i) The continuous
model provides a very good method for calculating the exciton
spectrum, even in the case of the extremely thin top hBN
flake of about 1–2 layers; the largest discrepancy is observed
between the homogeneous model and the ML of top hBN for
the energy of 1s state of about 5%. (ii) The energies of the
excitonic states are subjected to the most significant variations
for the thinnest top hBN layers with thicknesses below about
30 layers. For thicker top hBN layers, the corresponding exci-
tonic energies are almost fixed. (iii) The thickness effect of
the top hBN layer is the largest for the ground 1s state of
the exciton with its substantial reduction when the number
of excitonic states is increased. The maximum change of
the 1s energy is about 91 meV between two limits: without
the top hBN layer and with its infinite thickness. The anal-
ogous differences of the 2s, 3s, 4s, and 5s states are of the

TABLE I. Calculated binding energies of excitons (Eb) in WSe2

ML encapsulated in hBN layers for selected numbers of the top hBN
layer.

No.
top hBN layers 0 3 6 10 20 40 100 ∞

Eb (meV) 256 212 197 187 177 172 168 165

order of 39, 20, 13, and 8 meV, respectively. We can fo-
cus on analyzing the excitonic binding energy (Eb, defined
as the energy difference between the electronic bang gap
and the ground 1s state). The dependence of the Eb energy
in the WSe2 ML encapsulated in the hBN layers for selected
numbers of the top hBN layer is summarized in Table I.
The experimentally measured binding energies of excitons in
WSe2 MLs encapsulated in hBN flakes are about 170 meV
[5–7,9]. Although the structures with the hBN encapsulation
investigated experimentally differ from the one analyzed in
this work, e.g., a WSe2 ML sandwiched between 10-nm-thick
hBN deposited on the core of a single-mode optical fiber [9],
the theoretically calculated binding energies are in very good
agreement with the experimental ones. Using our approach,
the excitonic binding energy can be changed by almost 40%
in the transition from the sample without the top hBN layer
(Eb = 256 meV) to the one with the infinite thickness of the
top hBN layer (Eb = 165 meV). This reveals that the thickness
of the surrounding media of S-TMD MLs also plays a crucial
role in the modification of the exciton energy spectrum in
S-TMD MLs in addition to the engineering of the surrounding
dielectric environment, i.e., the encapsulation of an ML in
media characterized by dielectric constants [21].

To fulfill our results, we consider two additional cases
which can be realized in the experiment: (i) the case of the
SiO2 substrate, i.e., ε1 = 2.1; (ii) the case of the suspended
S-TMD monolayer together with the thick hBN flake, i.e.,
ε1 = 1. We repeat the calculation of the exciton spectrum in
the S-TMD monolayer for both cases and compare them with
the previous results in the SM [36]. Finally, we study the gen-
eral case, presented by Eq. (20), with a nonzero distance gap δ

between the S-TMD monolayer and the sub- and superstrate;
see SM [36] for details.

V. SUMMARY

We obtained the generalization of the Rytova-Keldysh po-
tential for the heterostructures which consists of the substrate,
the monolayer S-TMD, the top hBN flake of finite thickness,
and the overtop superstrate. Using the analytical interpreta-
tion of the potential, we calculated the energy spectrum of
the excitonic states in the S-TMD monolayer placed on a
semi-infinite hBN substrate and covered with a top hBN layer
with thickness L. We presented that the binding energies of
the excitons can be significantly modified due to screening
effects and as a function of thickness L. For a WSe2 ML in
such a structure, we demonstrated that the energies of the
excitonic states are substantially adjusted for the thinnest top
hBN layers with thicknesses below about 30 layers. For the
thickness of the top layer larger than 30 layers, the binding
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energies of the excitons saturate to the exciton energies in the
bulk hBN case.

Additionally, we have found that the thickness effect of the
top hBN layer is the largest for the ground 1s state of the ex-
citon. It results in a significant reduction in excitonic binding
energy that can be changed by almost 40% in the transition
from the sample without the top hBN layer to the one with an
infinite thickness of the top hBN layer. The proposed model
may be applicable to other 2D layered materials in which the

screening effects on the excitonic spectrum play an essential
role, e.g., 2D perovskites [45].
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Reichman, T. Taniguchi, K. Watanabe, D. Smirnov, and J. Yan,
Nano Lett. 19, 2464 (2019).

[6] M. R. Molas, A. O. Slobodeniuk, K. Nogajewski, M. Bartos, L.
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